1
|
Schäfer C, Keyßer G, Reuß-Borst M. [Influence of smoking, nutrition and other modifiable environmental factors on rheumatoid arthritis]. Z Rheumatol 2024; 83:706-720. [PMID: 39158701 DOI: 10.1007/s00393-024-01559-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2024] [Indexed: 08/20/2024]
Abstract
Numerous reports in recent years have focused on the influence of environmental factors on rheumatoid arthritis. This article provides an overview of the current study situation on the influence of modifiable environmental factors on the development and course of rheumatoid arthritis. Lifestyle factors, such as cigarette smoking, diet, exercise and body weight can be individually influenced. Factors such as air pollution and socioeconomic status can be influenced by environmental and sociopolitical measures at a public level. Epidemiological studies have identified nicotine abuse, an unhealthy diet and obesity as well as a low level of education and social status as risk factors for the development of rheumatoid arthritis. Numerous factors are also associated with a poorer response to treatment and a worse prognosis. As randomized interventional studies on most environmental factors are hardly feasible, the causal relationship of the individual factors to the incidence and progression of rheumatoid arthritis is difficult to quantify. Nevertheless, the current evidence already enables the provision of appropriate counselling to patients with rheumatoid arthritis with respect to a healthy lifestyle including abstaining from cigarette smoking, maintaining a healthy diet, physical activity and avoiding obesity.
Collapse
Affiliation(s)
- Christoph Schäfer
- Klinik für Innere Medizin II, Universitätsklinikum Halle, Ernst-Grube-Str. 40, 06120, Halle, Deutschland.
| | - Gernot Keyßer
- Klinik für Innere Medizin II, Universitätsklinikum Halle, Ernst-Grube-Str. 40, 06120, Halle, Deutschland
| | - Monika Reuß-Borst
- Schwerpunktpraxis für Rheumatologie, Frankenstraße 36, 97708, Bad Bocklet, Deutschland
| |
Collapse
|
2
|
Shan L, Chelliah R, Rahman SME, Hwan Oh D. Unraveling the gut microbiota's role in Rheumatoid arthritis: dietary pathways to modulation and therapeutic potential. Crit Rev Food Sci Nutr 2024:1-11. [PMID: 38832654 DOI: 10.1080/10408398.2024.2362412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Rheumatoid arthritis (RA) is a significant global health issue. Recent research highlights the gut microbiota's critical role in RA's development, noting how dietary factors can alter these microbial communities. This has led to an increased focus on how the gut microbiota (GM) influences RA and the potential for dietary ingredients to offer anti-RA benefits by modifying GM. This review presents a concise examination of the GM associated with RA, identifying specific microbial taxa at various levels that are implicated in the disease. It delves into dietary components known for their anti-RA properties through GM modulation and their mechanisms. Findings from numerous studies, including both animal and human research, show significant differences in the GM composition between individuals with early and established RA. Certain microbes like Tenericutes, Synergistetes, and Proteobacteria have been linked to RA progression, whereas Bacteroidetes and some strains of Lactobacillus are shown to have protective effects against RA. Dietary elements such as fibers, polysaccharides, resistant starch, and peptides have been identified as influential in combating RA. These components work by altering the GM's metabolites and impacting immune cells related to the GM. This review suggests the potential for developing functional foods aimed at treating RA by targeting GM.
Collapse
Affiliation(s)
- LingYue Shan
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Republic of South Korea
- Future F Biotech Co., Ltd, Chuncheon, Republic of South Korea
| | - Ramachandran Chelliah
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Republic of South Korea
- Future F Biotech Co., Ltd, Chuncheon, Republic of South Korea
| | - Syed Mohammad Ehsanur Rahman
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Republic of South Korea
- Department of Animal Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Deog Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Republic of South Korea
- Future F Biotech Co., Ltd, Chuncheon, Republic of South Korea
| |
Collapse
|
3
|
Mazhar MU, Naz S, Zulfiqar T, Khan JZ, Ghazanfar S, Tipu MK. Immunostimulant, hepatoprotective, and nephroprotective potential of Bacillus subtilis (NMCC-path-14) in comparison to dexamethasone in alleviating CFA-induced arthritis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3275-3299. [PMID: 37930392 DOI: 10.1007/s00210-023-02814-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 10/22/2023] [Indexed: 11/07/2023]
Abstract
To investigate and compare efficacy as well as safety of Bacillus subtilis and dexamethasone (Dexa) in complete Freund's adjuvant (CFA)-induced arthritis, we used glucocorticoid monotherapy (Dexa 5 mg/kg/day) and B. subtilis (1 × 108 CFU/animal/day p.o) as pre-treatment and concurrent treatment for a duration of 35 days. Specific emphasis was on chronic aspect of this study since long-term use of Dexa is known to produce undesirable side effects. Treatment with Dexa significantly attenuated the arthritic symptoms but produced severe side effects like weight loss, increased mortality, immunosuppression, and altered histology of liver, kidney, and spleen. Oxidative stress was also elevated by Dexa in these organs which contributed to the damage. Treatment with B. subtilis improved symptoms of arthritis without producing any deleterious side effects as seen with Dexa therapy. Immunohistochemistry (IHC) profile revealed decreased expression of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), interleukin (IL)-1β, tumor necrosis factor alpha (TNF-α), and increased nuclear factor erythroid 2-related factor 2 (Nrf-2) expression by B. subtilis and Dexa treatment in ankle joint of arthritic mice. Radiological scores were also improved by both treatments. This study concludes that B. subtilis could be an effective alternative for treating arthritis than Dexa since it does not produce life-threatening side effects on prolong treatment.
Collapse
Affiliation(s)
- Muhammad Usama Mazhar
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Sadaf Naz
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Tayyaba Zulfiqar
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Jehan Zeb Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Shakira Ghazanfar
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Centre (NARC), Islamabad, Pakistan
| | - Muhammad Khalid Tipu
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| |
Collapse
|
4
|
Levenson BM, Rossouw PE, Michelogiannakis D, Javed F. Probing the antinociceptive and therapeutic potential of probiotics in managing temporomandibular joint arthritis. J Taibah Univ Med Sci 2024; 19:372-378. [PMID: 38357582 PMCID: PMC10864793 DOI: 10.1016/j.jtumed.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/26/2023] [Accepted: 01/23/2024] [Indexed: 02/16/2024] Open
Abstract
This literature review explored the antinociceptive and therapeutic effects of probiotic therapy (PT) in the treatment of arthritic conditions affecting the temporomandibular joint (TMJ). Indexed databases were searched without time and language restrictions up to and including February 2023, to identify studies addressing the question: "Is PT effective for the management of TMJ arthritis?" The following keywords were used in different combinations with Boolean operators: arthritis, osteoarthritis, pain, probiotic, rheumatoid, temporomandibular disorders, and temporomandibular joint. Original clinical and experimental studies assessing the therapeutic efficacy of PT in the management of osteoarthritis were eligible for inclusion. Letters to the editor, reviews, commentaries, perspectives, and expert opinions were not sought. The structure of the current review was tailored to encapsulate relevant information. A total of 297 relevant studies were identified during the initial literature search, and the full text and reference lists of these studies were scrutinized. To date, the potential role of PT in managing osteoarthritis of the TMJ region remains uninvestigated. No clinical trials in the indexed literature have assessed the efficacy of PT in managing TMJ arthritis; however, this finding does not preclude a potential role of probiotics as antinociceptive and therapeutic agents in susceptible populations.
Collapse
Affiliation(s)
- Benjamin M. Levenson
- Department of Orthodontics and Dentofacial Orthopedics, Eastman Institute for Oral Health, University of Rochester, Rochester, NY, United States
| | - P. Emile Rossouw
- Department of Orthodontics and Dentofacial Orthopedics, Eastman Institute for Oral Health, University of Rochester, Rochester, NY, United States
| | - Dimitrios Michelogiannakis
- Department of Orthodontics and Dentofacial Orthopedics, Eastman Institute for Oral Health, University of Rochester, Rochester, NY, United States
| | - Fawad Javed
- Department of Orthodontics and Dentofacial Orthopedics, Eastman Institute for Oral Health, University of Rochester, Rochester, NY, United States
| |
Collapse
|
5
|
Zeng L, Yang K, He Q, Zhu X, Long Z, Wu Y, Chen J, Li Y, Zeng J, Cui G, Xiang W, Hao W, Sun L. Efficacy and safety of gut microbiota-based therapies in autoimmune and rheumatic diseases: a systematic review and meta-analysis of 80 randomized controlled trials. BMC Med 2024; 22:110. [PMID: 38475833 PMCID: PMC10935932 DOI: 10.1186/s12916-024-03303-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 02/13/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Previous randomized controlled trials (RCTs) suggested that gut microbiota-based therapies may be effective in treating autoimmune diseases, but a systematic summary is lacking. METHODS Pubmed, EMbase, Sinomed, and other databases were searched for RCTs related to the treatment of autoimmune diseases with probiotics from inception to June 2022. RevMan 5.4 software was used for meta-analysis after 2 investigators independently screened literature, extracted data, and assessed the risk of bias of included studies. RESULTS A total of 80 RCTs and 14 types of autoimmune disease [celiac sprue, SLE, and lupus nephritis (LN), RA, juvenile idiopathic arthritis (JIA), spondyloarthritis, psoriasis, fibromyalgia syndrome, MS, systemic sclerosis, type 1 diabetes mellitus (T1DM), oral lichen planus (OLP), Crohn's disease, ulcerative colitis] were included. The results showed that gut microbiota-based therapies may improve the symptoms and/or inflammatory factor of celiac sprue, SLE and LN, JIA, psoriasis, PSS, MS, systemic sclerosis, Crohn's disease, and ulcerative colitis. However, gut microbiota-based therapies may not improve the symptoms and/or inflammatory factor of spondyloarthritis and RA. Gut microbiota-based therapies may relieve the pain of fibromyalgia syndrome, but the effect on fibromyalgia impact questionnaire score is not significant. Gut microbiota-based therapies may improve HbA1c in T1DM, but its effect on total insulin requirement does not seem to be significant. These RCTs showed that probiotics did not increase the incidence of adverse events. CONCLUSIONS Gut microbiota-based therapies may improve several autoimmune diseases (celiac sprue, SLE and LN, JIA, psoriasis, fibromyalgia syndrome, PSS, MS, T1DM, Crohn's disease, and ulcerative colitis).
Collapse
Affiliation(s)
- Liuting Zeng
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China.
| | - Kailin Yang
- Hunan University of Chinese Medicine, Changsha, China
| | - Qi He
- People's Hospital of Ningxiang City, Ningxiang, China
| | | | - Zhiyong Long
- Department of Rehabilitation Medicine, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Yang Wu
- Department of Rheumatology, National Clinical Research Center for Dermatologic and Immunologic Diseases, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | | | - Yuwei Li
- Hunan University of Science and Technology, Xiangtan, China
| | - Jinsong Zeng
- Department of Rheumatology, National Clinical Research Center for Dermatologic and Immunologic Diseases, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Ge Cui
- Department of Epidemiology and Statistics, School of Public Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Wang Xiang
- Department of Rheumatology, The First People's Hospital Changde City, Changde, China
| | - Wensa Hao
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lingyun Sun
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China.
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
6
|
Yang Y, Hong Q, Zhang X, Liu Z. Rheumatoid arthritis and the intestinal microbiome: probiotics as a potential therapy. Front Immunol 2024; 15:1331486. [PMID: 38510244 PMCID: PMC10950920 DOI: 10.3389/fimmu.2024.1331486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/19/2024] [Indexed: 03/22/2024] Open
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disorder characterized by swollen joints, discomfort, stiffness, osteoporosis, and reduced functionality. Genetics, smoking, dust inhalation, high BMI, and hormonal and gut microbiota dysbiosis are all likely causes of the onset or development of RA, but the underlying mechanism remains unknown. Compared to healthy controls, patients with RA have a significantly different composition of gut microbiota. It is well known that the human gut microbiota plays a key role in the initiation, maintenance, and operation of the host immune system. Gut microbiota dysbiosis has local or systematic adverse effects on the host immune system, resulting in host susceptibility to various diseases, including RA. Studies on the intestinal microbiota modulation and immunomodulatory properties of probiotics have been reported, in order to identify their potential possibility in prevention and disease activity control of RA. This review summarized current studies on the role and potential mechanisms of gut microbiota in the development and progression of RA, as well as the preventative and therapeutic effects and potential mechanisms of probiotics on RA. Additionally, we proposed the challenges and difficulties in the application of probiotics in RA, providing the direction for the research and application of probiotics in the prevention of RA.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China
| | - Qing Hong
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China
| | - Xuehong Zhang
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhenmin Liu
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China
| |
Collapse
|
7
|
Blenkinsopp HC, Seidler K, Barrow M. Microbial Imbalance and Intestinal Permeability in the Pathogenesis of Rheumatoid Arthritis: A Mechanism Review with a Focus on Bacterial Translocation, Citrullination, and Probiotic Intervention. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2024; 43:59-76. [PMID: 37294082 DOI: 10.1080/27697061.2023.2211129] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/01/2023] [Indexed: 06/10/2023]
Abstract
This review aims to investigate the role of intestinal permeability (IP) in rheumatoid arthritis (RA), following the hypotheses that leakage of intestinal microbes can influence increased citrullination of peptides leading to anti-citrullinated protein antibody (ACPA) production and inflammation in RA; and that leaked microbes can migrate to the peripheral joints, leading to immune responses and synovitis in peripheral joints. This review explored the evidence for the link between microbial dysbiosis and increased IP in the inflammatory state in RA, as well as the role of increased citrullination and bacterial translocation in the link between microbiota and immune responses in RA. Furthermore, this research aims to evaluate the potential effect of probiotics on RA symptoms and pathogenesis via proposed mechanisms, including the support of microbial balance and suppression of inflammatory factors in RA. A systematic literature search was conducted in three tranches (review, mechanism, intervention). 71 peer-reviewed papers met the inclusions criteria and are summarized in a narrative analysis. Primary studies were critically appraised, synthesized and their relevance to clinical practice evaluated. Evidence found in this mechanism review consistently supported intestinal dysbiosis and increased IP in arthritis. An altered intestinal microbiome was demonstrated in RA with specific microbes such as Collinsella and Eggerthella correlating with increased IP, mucosal inflammation, and immune responses. Hypercitrullination and ACPA production correlated with arthritic symptoms and intestinal microbes were shown to influence hypercitrullination. Some in vitro and animal studies demonstrated a link between leakage of microbes and bacterial translocation, but further research is needed to elucidate the link between IP and citrullination. Probiotic intervention studies evidenced reductions in inflammatory markers IL-6 and TNFα, associated with proliferation of synovial tissue and pain perception in RA joint inflammation. Despite some conflict in the literature, probiotics may present a promising nutritional intervention in the suppression of both, disease activity and inflammatory markers.Key teaching pointsThere is evidence for a dysbiotic profile of the RA gut with specific RA-associated microbes.Increased intestinal permeability and leakage of PAD enzyme facilitates citrullination of peptides.Hypercitrullination and ACPA production correlate to arthritic signs.Microbial leakage and translocation plays a role in the pathogenesis of RA.Probiotics (e.g. L. Casei 01) may reduce inflammation and ameliorate RA symptoms.
Collapse
Affiliation(s)
- Holly C Blenkinsopp
- The Centre for Nutritional Education and Lifestyle Management (CNELM), Wokingham, UK
| | - Karin Seidler
- The Centre for Nutritional Education and Lifestyle Management (CNELM), Wokingham, UK
| | - Michelle Barrow
- The Centre for Nutritional Education and Lifestyle Management (CNELM), Wokingham, UK
| |
Collapse
|
8
|
Ahangari Maleki M, Malek Mahdavi A, Soltani-Zangbar MS, Yousefi M, Khabbazi A. Randomized double-blinded controlled trial on the effect of synbiotic supplementation on IL-17/IL-23 pathway and disease activity in patients with axial spondyloarthritis. Immunopharmacol Immunotoxicol 2023; 45:43-51. [PMID: 35947039 DOI: 10.1080/08923973.2022.2112220] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND Interleukin 17 (IL17)-expressing CD4+ T cells and IL-17/IL-23 pathway play a key role in the pathogenesis of axial spondyloarthritis (axSpA). Synbiotics have been suggested due to their immunomodulatory effects in the treatment of autoimmune diseases. This randomized double-blind, placebo-controlled trial was designed to assess the effects of synbiotic supplement on IL-17/IL-23 pathway and disease activity in patients with axSpA. METHODS Forty-eight axSpA patients were randomly allocated to use one synbiotic capsule or placebo daily for 12 weeks. Disease activity was assessed using the Bath Ankylosing Spondylitis Disease Activity Index (BASDAI) and ASAS-endorsed disease activity score-C-reactive protein (ASDAS-CRP). The secondary outcome was proportion of IL17-expressing CD4+ T cells, IL-17 and IL-23 gene expression, and supernatant levels of IL-17 and IL-23, which were measured at the baseline and end of the trial. RESULTS A total of 48 patients were randomized into the synbiotic and placebo groups. Thirty-eight patients completed the study. Synbiotic supplementation significantly reduced the proportion of IL17-expressing CD4+ T cells (4.88 ± 2.47 vs. 2.16 ± 1.25), gene expression of IL-17 (1.03 ± 0.24 vs. 0.65 ± 0.26) and IL-23 (1.01 ± 0.13 vs. 0.68 ± 0.24) and serum IL-17 (38.22 ± 14.40 vs. 24.38 ± 11.68) and IL-23 (51.77 ± 17.40 vs. 32.16 ± 12.46) compared with baseline. Significant differences between groups were noticed only in the proportion of IL17-expressing CD4+ T cells, and IL-17 and IL-23 gene expression. Synbiotic supplementation did not significantly alter BASDAI and ASDAS-CRP compared with baseline and placebo group at the end of trial. CONCLUSION Present study indicated beneficial effect of synbiotic supplement on IL-17/IL-23 pathway without improving disease activity in axSpApatients.HighlightsSynbiotic supplementation reduced IL17-expressing CD4+ T cells proportion in axSpA.Synbiotic supplementation decreased IL-17 and IL-23 gene expression in axSpA.Synbiotic supplementation did not change disease activity score in axSpA.
Collapse
Affiliation(s)
- Masoud Ahangari Maleki
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aida Malek Mahdavi
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Rahat Breath and Sleep Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Khabbazi
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
9
|
Schäfer C, Keyßer G. Lifestyle Factors and Their Influence on Rheumatoid Arthritis: A Narrative Review. J Clin Med 2022; 11:jcm11237179. [PMID: 36498754 PMCID: PMC9736780 DOI: 10.3390/jcm11237179] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/23/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
In recent years, a possible association of lifestyle factors with rheumatoid arthritis (RA) has attracted increasing public interest. The aim of this review is to provide an overview of the extent and the limitations of current evidence regarding lifestyle factors and RA. The PubMed medical database was screened for epidemiological and prospective studies investigating the contribution of lifestyle factors to the development and the course of the disease. Large epidemiological studies have identified smoking, unhealthy diet and adiposity, as well as a low educational level and low socioeconomic status, as factors that increase the incidence of RA. In addition, several lifestyle habits influence the response of RA to antirheumatic drugs. Among others, smoking, obesity and poor physical activity are associated with a worse treatment outcome. Methodological problems often impair firm conclusions with respect to the causal role of these factors in the risk and the course of RA. However, current evidence is sufficient to recommend a healthy diet, the prevention of obesity, the cessation of smoking and the maintenance of a high level of physical activity to support the effectivity of modern antirheumatic medication.
Collapse
|
10
|
Zeng L, Deng Y, He Q, Yang K, Li J, Xiang W, Liu H, Zhu X, Chen H. Safety and efficacy of probiotic supplementation in 8 types of inflammatory arthritis: A systematic review and meta-analysis of 34 randomized controlled trials. Front Immunol 2022; 13:961325. [PMID: 36217542 PMCID: PMC9547048 DOI: 10.3389/fimmu.2022.961325] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Objective To evaluate Safety and efficacy of probiotic supplementation in inflammatory arthritis. Methods The literature on the treatment of inflammatory arthritis with probiotics has been collected in databases such as CNKI, Pubmed, Cochrane library, Embase, etc. The search time is for them to build the database until May 2022. The included literatures are randomized controlled trials (RCTs) of probiotics in the treatment of hyperuricemia and gout. The Cochrane risk assessment tool was used for quality evaluation, and the Rev Man5.3 software was used for meta-analysis. Results A total of 37 records were finally included, involving 34 RCTs and 8 types of autoimmune disease (Hyperuricemia and gout, Inflammatory bowel disease arthritis, juvenile idiopathic arthritis [JIA], Osteoarthritis [OA], Osteoporosis and Osteopenia, Psoriasis, rheumatoid arthritis (RA), Spondyloarthritis). RA involved 10 RCTs (632 participants) whose results showed that probiotic intervention reduced CRP. Psoriasis involved 4 RCTs (214 participants) whose results showed that probiotic intervention could reduce PASI scores. Spondyloarthritis involved 2 RCTs (197 participants) whose results showed that probiotic intervention improved symptoms in patients. Osteoporosis and Ostepenia involving 10 RCTs (1156 participants) showed that probiotic intervention improved bone mineral density in patients. Hyperuricemia and gout involving 4 RCTs (294 participants) showed that probiotic intervention improved serum uric acid in patients. OA involving 1 RCTs (433 participants) showed that probiotic intervention improved symptoms in patients. JIA involving 2 RCTs (72 participants) showed that probiotic intervention improved symptoms in patients. Inflammatory bowel disease arthritis involving 1 RCTs (120 participants) showed that probiotic intervention improved symptoms in patients. All of the above RCTs showed that probiotics did not increase the incidence of adverse events. Conclusion Probiotic supplements may improve Hyperuricemia and gout, Inflammatory bowel disease arthritis, JIA, OA, Osteoporosis and Osteopenia, Psoriasis, RA, Spondyloarthritis. However, more randomized controlled trials are needed in the future to determine the efficacy and optimal dosing design of probiotics. Systematic Review Registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42021286425, identifier CRD42021286425.
Collapse
Affiliation(s)
- Liuting Zeng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Ying Deng
- People’s Hospital of Ningxiang City, Ningxiang, China
| | - Qi He
- People’s Hospital of Ningxiang City, Ningxiang, China
| | - Kailin Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Jun Li
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Wang Xiang
- The First People's Hospital of Changde City, Changde, China
| | - Huiping Liu
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | | | - Hua Chen
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| |
Collapse
|
11
|
Zhao T, Wei Y, Zhu Y, Xie Z, Hai Q, Li Z, Qin D. Gut microbiota and rheumatoid arthritis: From pathogenesis to novel therapeutic opportunities. Front Immunol 2022; 13:1007165. [PMID: 36159786 PMCID: PMC9499173 DOI: 10.3389/fimmu.2022.1007165] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease that primarily affects the joints. Microbial infection is considered a crucial inducer of RA. Alterations in the composition of intestinal bacteria in individuals with preclinical and established RA suggest a vital role of the gut microbiota in immune dysfunction characteristic of RA. However, the mechanisms by which gut dysbiosis contributes to RA are not fully understood. Furthermore, multiple therapies commonly used to treat RA may alter gut microbiota diversity, suggesting that modulating the gut microbiota may help prevent or treat RA. Hence, a better understanding of the changes in the gut microbiota that accompany RA should aid the development of novel therapeutic approaches. This mini-review discusses the impact of gut dysbiosis in the pathogenesis of RA, the selection of gut microbiota-related biomarkers for diagnosing RA, and provides examples of cross-modulation between the gut microbiota and some drugs commonly used to treat RA. Some suggestions and outlooks are also raised, which may help guide future research efforts.
Collapse
Affiliation(s)
- Ting Zhao
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Yuanyuan Wei
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Youyang Zhu
- The Third Affiliated Hospital, Yunnan University of Chinese Medicine, Kunming, China
| | - Zhaohu Xie
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Qingshan Hai
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
- *Correspondence: Dongdong Qin, ; Qingshan Hai, ; Zhaofu Li,
| | - Zhaofu Li
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
- *Correspondence: Dongdong Qin, ; Qingshan Hai, ; Zhaofu Li,
| | - Dongdong Qin
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
- *Correspondence: Dongdong Qin, ; Qingshan Hai, ; Zhaofu Li,
| |
Collapse
|
12
|
Kiousi DE, Kouroutzidou AZ, Neanidis K, Matthaios D, Pappa A, Galanis A. Evaluating the Role of Probiotics in the Prevention and Management of Age-Related Diseases. Int J Mol Sci 2022; 23:3628. [PMID: 35408987 PMCID: PMC8999082 DOI: 10.3390/ijms23073628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 03/20/2022] [Accepted: 03/25/2022] [Indexed: 02/01/2023] Open
Abstract
The human lifespan has been significantly increased due to scientific advancements in the management of disease; however, the health span of the aging population does not follow the same trend. Aging is the major risk factor for multimorbidity that is derived from the progressive loss of homeostasis, immunological and stem cell exhaustion, as well as exacerbated inflammation responses. Age-related diseases presenting with high frequencies include neurodegenerative, musculoskeletal, cardiovascular, metabolic diseases and cancer. These diseases can be co-morbid and are usually managed using a disease-specific approach that can eventually lead to polypharmacy, low medication adherence rates and undesired drug-drug interactions. Novel studies suggest targeting the shared biological basis of age-related diseases to retard the onset and manage their manifestations. Harvesting the anti-inflammatory and immunomodulatory capacity of probiotics to tackle the root cause of these diseases, could pose a viable alternative. In this article, a comprehensive review of the effects of probiotic supplementation on the molecular pathogenesis of age-related diseases, and the potential of probiotic treatments as preventative or alleviatory means is attempted. Furthermore, issues on the safety and efficiency of probiotic supplementation, as well as the pitfalls of current clinical studies are discussed, while new perspectives for systematic characterization of probiotic benefits on aged hosts are outlined.
Collapse
Affiliation(s)
- Despoina E. Kiousi
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (D.E.K.); (A.Z.K.)
| | - Antonia Z. Kouroutzidou
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (D.E.K.); (A.Z.K.)
| | - Konstantinos Neanidis
- Oncology Department, 424 General Military Training Hospital, 56429 Thessaloniki, Greece;
| | | | - Aglaia Pappa
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (D.E.K.); (A.Z.K.)
| | - Alex Galanis
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (D.E.K.); (A.Z.K.)
| |
Collapse
|
13
|
Ramires LC, Santos GS, Ramires RP, da Fonseca LF, Jeyaraman M, Muthu S, Lana AV, Azzini G, Smith CS, Lana JF. The Association between Gut Microbiota and Osteoarthritis: Does the Disease Begin in the Gut? Int J Mol Sci 2022; 23:1494. [PMID: 35163417 PMCID: PMC8835947 DOI: 10.3390/ijms23031494] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/11/2022] [Accepted: 01/25/2022] [Indexed: 02/05/2023] Open
Abstract
Some say that all diseases begin in the gut. Interestingly, this concept is actually quite old, since it is attributed to the Ancient Greek physician Hippocrates, who proposed the hypothesis nearly 2500 years ago. The continuous breakthroughs in modern medicine have transformed our classic understanding of the gastrointestinal tract (GIT) and human health. Although the gut microbiota (GMB) has proven to be a core component of human health under standard metabolic conditions, there is now also a strong link connecting the composition and function of the GMB to the development of numerous diseases, especially the ones of musculoskeletal nature. The symbiotic microbes that reside in the gastrointestinal tract are very sensitive to biochemical stimuli and may respond in many different ways depending on the nature of these biological signals. Certain variables such as nutrition and physical modulation can either enhance or disrupt the equilibrium between the various species of gut microbes. In fact, fat-rich diets can cause dysbiosis, which decreases the number of protective bacteria and compromises the integrity of the epithelial barrier in the GIT. Overgrowth of pathogenic microbes then release higher quantities of toxic metabolites into the circulatory system, especially the pro-inflammatory cytokines detected in osteoarthritis (OA), thereby promoting inflammation and the initiation of many disease processes throughout the body. Although many studies link OA with GMB perturbations, further research is still needed.
Collapse
Affiliation(s)
- Luciano C. Ramires
- Department of Orthopaedics and Sports Medicine, Mãe de Deus Hospital, Porto Alegre 90110-270, RS, Brazil;
| | - Gabriel Silva Santos
- Department of Orthopaedics, The Bone and Cartilage Institute, Indaiatuba 13334-170, SP, Brazil; (G.A.); (J.F.L.)
| | - Rafaela Pereira Ramires
- Department of Biology, Cellular, Molecular and Biomedical Science, Boise State University, 1910 W University Drive, Boise, ID 83725, USA;
| | - Lucas Furtado da Fonseca
- Department of Orthopaedics, The Federal University of São Paulo, São Paulo 04024-002, SP, Brazil
| | - Madhan Jeyaraman
- Department of Orthopaedics, Faculty of Medicine, Sri Lalithambigai Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai 600095, Tamil Nadu, India;
| | - Sathish Muthu
- Department of Orthopaedics, Government Medical College and Hospital, Dindigul 624304, Tamil Nadu, India;
| | - Anna Vitória Lana
- Department of Medicine, Max Planck University Center, Indaiatuba 13343-060, SP, Brazil;
| | - Gabriel Azzini
- Department of Orthopaedics, The Bone and Cartilage Institute, Indaiatuba 13334-170, SP, Brazil; (G.A.); (J.F.L.)
| | - Curtis Scott Smith
- Department of Medicine, University of Washington School of Medicine, Seattle, WA 83703, USA;
| | - José Fábio Lana
- Department of Orthopaedics, The Bone and Cartilage Institute, Indaiatuba 13334-170, SP, Brazil; (G.A.); (J.F.L.)
| |
Collapse
|
14
|
Sanchez P, Letarouilly JG, Nguyen Y, Sigaux J, Barnetche T, Czernichow S, Flipo RM, Sellam J, Daïen C. Efficacy of Probiotics in Rheumatoid Arthritis and Spondyloarthritis: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients 2022; 14:nu14020354. [PMID: 35057535 PMCID: PMC8779560 DOI: 10.3390/nu14020354] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/07/2022] [Accepted: 01/13/2022] [Indexed: 02/06/2023] Open
Abstract
Background: We aimed to provide a systematic review and meta-analysis of randomized controlled trials assessing the effect of probiotics supplementation on symptoms and disease activity in patients with chronic inflammatory rheumatic diseases (rheumatoid arthritis (RA), spondylarthritis (SpA), or psoriatic arthritis). Methods: A systematic literature review and meta-analysis from RA and SpA randomized controlled trials were conducted searching for articles in MEDLINE/PubMed and abstracts from recent international rheumatology meetings. The control group was a placebo or another dietary intervention. The risk of bias of the selected studies was evaluated using the Cochrane Collaboration tool and the Jadad scale. Results: The initial search yielded 173 articles. Of these, 13 studies were included in the qualitative synthesis, 8 concerning a total of 344 RA patients and 2 concerning a total of 197 SpA patients. Three meta-analyses were also analyzed. Probiotic strains and quantities used were different among trials (5 studies using Lactobacillus sp., 1 trial Bacillus coagulans and the others a mix of different probiotic strains). Time to assess response ranged from 8 weeks to one year. Two studies associated probiotic supplementation with a dietary intervention. Meta-analysis showed a statistically significant decrease of C-reactive protein (CRP) concentration (mean difference (MD)) −3.04 (95% CI −4.47, −1.62) mg/L, p < 0.001; I2 = 20%, n patients = 209) with probiotics in RA. However, after excluding high-risk-of-bias trials of meta-analysis, there was no difference between probiotics and placebo on DAS28 (standard MD −0.54; 95% CI −1.94 to 0.85, p = 0.45, I2 93%, n patients = 143). The two studies on SpA patients showed no efficacy of probiotics. Conclusions: Probiotic supplementation might decrease RA activity with a moderate decrease effect on CRP, but lack of evidence and studies’ heterogeneity do not allow us to propose them to patients with inflammatory arthritis to control their disease. Further RCTs are required in the future to determinate the efficacy of probiotics and the optimal administration design.
Collapse
Affiliation(s)
- Pauline Sanchez
- Department of Rheumatology, CHU de Montpellier, Montpellier University, F-34295 Montpellier, France;
| | | | - Yann Nguyen
- Department of Internal Medicine, Hôpital Beaujon, AP-HP Nord, Université de Paris, F-92100 Clichy, France;
| | - Johanna Sigaux
- Department of Rheumatology, Hôpital Avicenne, AP-HP, INSERM U1125, Université Paris 13, F-93017 Bobigny, France;
| | - Thomas Barnetche
- Department of Rheumatology, FHU ACRONIM, Bordeaux University Hospital, F-33076 Bordeaux, France;
| | - Sébastien Czernichow
- Department of Nutrition, Specialized Obesity Center, Hôpital Européen Georges Pompidou, Université de Paris, AP-HP, F-75015 Paris, France;
- Epidemiology and Biostatistics Sorbonne Paris City Center, UMR1153, Institut National de la Santé et de la Recherche Médicale, F-75004 Paris, France
| | - René-Marc Flipo
- Department of Rheumatology, CHU Lille, Université de Lille, F-59000 Lille, France; (J.-G.L.); (R.-M.F.)
| | - Jérémie Sellam
- Department of Rheumatology, Hôpital Saint Antoine, AP-HP, DMU 3ID, CRSA Inserm UMRS_938, Sorbonne Université, F-75012 Paris, France;
| | - Claire Daïen
- Department of Rheumatology, CHU de Montpellier, Montpellier University, F-34295 Montpellier, France;
- PhyMedExp, University of Montpellier, INSERM U1046, CNRS UMR 9214, F-34295 Montpellier, France
- Correspondence: ; Tel.: +33-4-67-33-87-10
| |
Collapse
|
15
|
Rawat P, Dhingra M, Kosta K, Das A. Microflora impacts immune system and its antitumor function. MICROBIAL CROSSTALK WITH IMMUNE SYSTEM 2022:177-205. [DOI: 10.1016/b978-0-323-96128-8.00007-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
16
|
Dietary Recommendations of the French Society for Rheumatology for Patients with Chronic Inflammatory Rheumatic Diseases. Joint Bone Spine 2021; 89:105319. [PMID: 34902577 DOI: 10.1016/j.jbspin.2021.105319] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2021] [Indexed: 11/20/2022]
Abstract
This article presents the 1st set of dietary recommendations of the French Society for Rheumatology for patients suffering from chronic inflammatory rheumatic diseases (IRD) made by a working group consisting of 12 rheumatology experts, 3 physician nutrition specialists, 1 internal medicine specialist, 1 registered dietician and 3 representatives from patient associations. This group relied on a systematic literature review and on expert opinions, while taking into consideration not only the joint effects of diet in IRD but also the extra-articular ones. Eight general principles and nine recommendations were established. The general principles emphasize that nutritional advice is not a substitute for pharmacological treatment of IRD and that it is an integral part of the patients' overall care, which could help the patient actively participate in their care. The recommendations propose supporting weight loss in subjects who are overweight or obese, a Mediterranean-type diet and supplementation in polyunsaturated fatty acids, mainly omega-3. Conversely, gluten-free diets (in the absence of celiac disease), vegetarian/vegan diets, fasting and elimination of dairy products should not be proposed. Supplementation with vitamins or trace elements is not indicated for controlling chronic IRD activity, while the use of probiotics or spices is not recommended given the limited or disparate data.
Collapse
|
17
|
Jeong Y, Jhun J, Lee SY, Na HS, Choi J, Cho KH, Lee SY, Lee AR, Park SJ, You HJ, Kim JW, Park MS, Kwon B, Cho ML, Ji GE, Park SH. Therapeutic Potential of a Novel Bifidobacterium Identified Through Microbiome Profiling of RA Patients With Different RF Levels. Front Immunol 2021; 12:736196. [PMID: 34867956 PMCID: PMC8634832 DOI: 10.3389/fimmu.2021.736196] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 10/08/2021] [Indexed: 02/01/2023] Open
Abstract
The potential therapeutic effects of probiotic bacteria in rheumatoid arthritis (RA) remain controversial. Thus, this study aimed to discover potential therapeutic bacteria based on the relationship between the gut microbiome and rheumatoid factor (RF) in RA. Bacterial genomic DNA was extracted from the fecal samples of 93 RA patients and 16 healthy subjects. Microbiota profiling was conducted through 16S rRNA sequencing and bioinformatics analyses. The effects of Bifidobacterium strains on human peripheral blood mononuclear cells and collagen-induced arthritis (CIA) mice were assessed. Significant differences in gut microbiota composition were observed in patients with different RF levels. The relative abundance of Bifidobacterium and Collinsella was lower in RF-high than in RF-low and RF-negative RA patients, while the relative abundance of Clostridium of Ruminococcaceae family was higher in RF-high than in RF-low and RF-negative patients. Among 10 differentially abundant Bifidobacterium, B. longum RAPO exhibited the strongest ability to inhibit IL-17 secretion. Oral administration of B. longum RAPO in CIA mice, obese CIA, and humanized avatar model significantly reduced RA incidence, arthritis score, inflammation, bone damage, cartilage damage, Th17 cells, and inflammatory cytokine secretion. Additionally, B. longum RAPO significantly inhibited Th17 cells and Th17-related genes—IL-17A, IRF4, RORC, IL-21, and IL-23R—in the PBMCs of rheumatoid arthritis patients. Our findings suggest that B. longum RAPO may alleviate RA by inhibiting the production of IL-17 and other proinflammatory mediators. The safety and efficacy of B. longum RAPO in patients with RA and other autoimmune disorders merit further investigation.
Collapse
Affiliation(s)
- Yunju Jeong
- Department of Food and Nutrition, Research Institute of Human Ecology, Seoul National University, Seoul, South Korea.,Research Center, BIFIDO Co., Ltd., Hongcheon, South Korea
| | - JooYeon Jhun
- Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Seon-Yeong Lee
- Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Hyun Sik Na
- Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - JeongWon Choi
- Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Keun-Hyung Cho
- Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Seung Yoon Lee
- Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - A Ram Lee
- Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Sang-Jun Park
- Research Center, BIFIDO Co., Ltd., Hongcheon, South Korea
| | - Hyun Ju You
- Institute of Environmental Health, School of Public Health, Seoul National University, Seoul, South Korea.,N-Bio, Seoul National University, Seoul, South Korea
| | - Ji-Won Kim
- Division of Rheumatology, Department of Internal Medicine, Daegu Catholic University School of Medicine, Daegu, South Korea
| | | | - Bin Kwon
- Research Center, BIFIDO Co., Ltd., Hongcheon, South Korea
| | - Mi-La Cho
- Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Department of Medical Life Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Geun Eog Ji
- Department of Food and Nutrition, Research Institute of Human Ecology, Seoul National University, Seoul, South Korea.,Research Center, BIFIDO Co., Ltd., Hongcheon, South Korea
| | - Sung-Hwan Park
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
18
|
Turesson Wadell A, Bärebring L, Hulander E, Gjertsson I, Hagberg L, Lindqvist HM, Winkvist A. Effects on health-related quality of life in the randomized, controlled crossover trial ADIRA (Anti-inflammatory Diet In Rheumatoid Arthritis). PLoS One 2021; 16:e0258716. [PMID: 34648598 PMCID: PMC8516209 DOI: 10.1371/journal.pone.0258716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 09/26/2021] [Indexed: 12/18/2022] Open
Abstract
Background Patients with Rheumatoid Arthritis (RA) often report impaired health-related quality of life (HrQoL) such as difficulties in daily life, pain, fatigue and an affected social life. Even when lowering disease activity, pharmacological treatment does not always resolve these factors. Objective To investigate if a proposed anti-inflammatory diet improves HrQoL in patients with RA. Design In this controlled crossover trial, 50 patients were randomized to start with either an intervention diet (anti-inflammatory) or a control diet (usual Swedish intake) for ten weeks followed by a wash out period before switching to the other diet. Participants received food equivalent to ~1100 kcal/day, five days/week, and instructions to consume similarly for the remaining meals. HrQoL was evaluated using Health Assessment Questionnaire (HAQ), 36-item Short Form Survey (SF-36), Visual Analogue Scales (VAS) for pain, fatigue and morning stiffness, and a time scale for morning stiffness. Results Forty-seven participants completed ≥1 diet period and were included in the main analyses. No significant difference between intervention and control diet at end of diet periods was observed for any outcome. However, significant improvements were obtained for SF-36 Physical Functioning (mean:5.79, SE: 2.12, 95% CI: 1.58, 10.01) during the intervention diet period. When excluding participants with anti-rheumatic medication changes, the differences between diet periods increased for most outcomes, favoring the intervention diet period, and the difference for SF-36 Physical Functioning became significant (n = 25, mean:7.90, 95% CI:0.56, 15.24, p = 0.036). Conclusions In main analyses, the proposed anti-inflammatory diet did not significantly improve HrQoL for patients with RA compared to control diet. In sub-analyses, significant improvements in physical functioning were detected. Larger studies with consistent medication use and in populations more affected by the disease may be needed to obtain conclusive evidence.
Collapse
Affiliation(s)
- Anna Turesson Wadell
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- * E-mail: (ATW); (AW)
| | - Linnea Bärebring
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Erik Hulander
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Inger Gjertsson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lars Hagberg
- Centre for Health Care Science, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Helen M. Lindqvist
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Winkvist
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- * E-mail: (ATW); (AW)
| |
Collapse
|
19
|
Bungau SG, Behl T, Singh A, Sehgal A, Singh S, Chigurupati S, Vijayabalan S, Das S, Palanimuthu VR. Targeting Probiotics in Rheumatoid Arthritis. Nutrients 2021; 13:nu13103376. [PMID: 34684377 PMCID: PMC8539185 DOI: 10.3390/nu13103376] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 01/02/2023] Open
Abstract
Rheumatoid arthritis (RA) is a progressive inflammatory disorder characterized by swollen joints, discomfort, tightness, bone degeneration and frailty. Genetic, agamogenetic and sex-specific variables, Prevotella, diet, oral health and gut microbiota imbalance are all likely causes of the onset or development of RA, perhaps the specific pathways remain unknown. Lactobacillus spp. probiotics are often utilized as relief or dietary supplements to treat bowel diseases, build a strong immune system and sustain the immune system. At present, the action mechanism of Lactobacillus spp. towards RA remains unknown. Therefore, researchers conclude the latest analysis to effectively comprehend the ultimate pathogenicity of rheumatoid arthritis, as well as the functions of probiotics, specifically Lactobacillus casei or Lactobacillus acidophilus, in the treatment of RA in therapeutic and diagnostic reports. RA is a chronic inflammation immunological illness wherein the gut microbiota is affected. Probiotics are organisms that can regulate gut microbiota, which may assist to relieve RA manifestations. Over the last two decades, there has been a surge in the use of probiotics. However, just a few research have considered the effect of probiotic administration on the treatment and prevention of arthritis. Randomized regulated experimental trials have shown that particular probiotics supplement has anti-inflammatory benefits, helps people with RA enhance daily activities and alleviates symptoms. As a result, utilizing probiotic microorganisms as therapeutics could be a potential possibility for arthritis treatment. This review highlights the known data on the therapeutic and preventative effects of probiotics in RA, as well as their interactions.
Collapse
Affiliation(s)
- Simona Gabriela Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
- Doctoral Scool of Biological and Biomedical Sciences, University of Oradea, 410073 Oradea, Romania
- Correspondence: (S.G.B.); (T.B.)
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (A.S.); (A.S.); (S.S.)
- Correspondence: (S.G.B.); (T.B.)
| | - Anuja Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (A.S.); (A.S.); (S.S.)
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (A.S.); (A.S.); (S.S.)
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (A.S.); (A.S.); (S.S.)
| | - Sridevi Chigurupati
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraidah 52571, Saudi Arabia;
| | - Shantini Vijayabalan
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya 47500, Malaysia;
| | - Suprava Das
- Deprtment of Pharmacology, Faculty of Medicine, AIMST University, Semeling, Bedong 08100, Malaysia;
| | - Vasanth Raj Palanimuthu
- Department of Pharmaceutical Biotechnology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty 643001, Tamilnadu, India;
| |
Collapse
|
20
|
Ferro M, Charneca S, Dourado E, Guerreiro CS, Fonseca JE. Probiotic Supplementation for Rheumatoid Arthritis: A Promising Adjuvant Therapy in the Gut Microbiome Era. Front Pharmacol 2021; 12:711788. [PMID: 34366867 PMCID: PMC8346200 DOI: 10.3389/fphar.2021.711788] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/05/2021] [Indexed: 12/14/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic immune-mediated inflammatory disease that ultimately leads to joint destruction and functional disability. Although the exact etiology of RA is not fully understood, it is well established that gut microbiota (GM) plays a vital role in the pathogenesis of RA, with accumulating evidence suggesting that gut dysbiosis induces a chronic inflammatory response that may be linked to disease development. Of interest, patients with RA have significant changes in the intestinal microbiota compared to healthy controls, and several studies have suggested the use of probiotics as a possible adjuvant therapy for RA. Benefits of probiotic supplementation were reported in animal models of arthritis and human studies, but the current evidence regarding the effect of probiotic supplementation in the management of RA remains insufficient to make definite recommendations. Several different strains of Lactobacillus and Bifidobacteria, as single species or in mixed culture, have been investigated, and some have demonstrated beneficial effects on disease activity in RA human subjects. As of now, L.casei probiotic bacteria seems to be the strongest candidate for application as adjuvant therapy for RA patients. In this review, we highlight the role of GM in the development and progression of RA and summarize the current knowledge on the use of probiotics as a potential adjuvant therapy for RA. We also review the proposed mechanisms whereby probiotics regulate inflammation. Finally, the role of fermented foods is discussed as a possible alternative to probiotic supplements since they have also been reported to have health benefits.
Collapse
Affiliation(s)
- Margarida Ferro
- Laboratório de Nutrição, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Sofia Charneca
- Laboratório de Nutrição, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Eduardo Dourado
- Serviço de Reumatologia e Doenças Ósseas Metabólicas, Centro Hospitalar Universitário Lisboa Norte, Centro Académico de Medicina de Lisboa (CAML), Lisboa, Portugal.,Unidade de Investigação em Reumatologia, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, CAML, Lisboa, Portugal
| | - Catarina Sousa Guerreiro
- Laboratório de Nutrição, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Saúde Ambiental, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - João Eurico Fonseca
- Serviço de Reumatologia e Doenças Ósseas Metabólicas, Centro Hospitalar Universitário Lisboa Norte, Centro Académico de Medicina de Lisboa (CAML), Lisboa, Portugal.,Unidade de Investigação em Reumatologia, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, CAML, Lisboa, Portugal
| |
Collapse
|
21
|
Horta-Baas G, Sandoval-Cabrera A, Romero-Figueroa MDS. Modification of Gut Microbiota in Inflammatory Arthritis: Highlights and Future Challenges. Curr Rheumatol Rep 2021; 23:67. [PMID: 34218340 DOI: 10.1007/s11926-021-01031-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2021] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW This Review evaluates the available information on the modification of the microbiota by diet, prebiotics, probiotics, or drugs and its association with the severity of arthritis in animals and humans and highlights how this modulation could have therapeutic applications in RA. RECENT FINDINGS The gut microbiota and microbiota-derived metabolites play a role in developing rheumatoid arthritis (RA) in animals and humans, making the intestinal microbiota an exciting novel approach to suppress autoimmunity. Studies in animal models of RA show that it is possible to modify the intestinal microbiota with drugs, natural products, diet, probiotics, and prebiotics. Furthermore, these changes showed beneficial effects on symptom relief in animal models of RA and that these effects were associated with modulation of the immune response. Therapies that modify the gut microbiota would significantly impact the preclinical stage of arthritis, based on the fact that dysbiosis occurs before clinical arthritis. The effects of interventions to modulate the microbiota could not reverse arthritis. Furthermore, the therapies modulating therapies in controlling symptoms were limited once arthritis developed. The results obtained in the study of acarbose, probiotics, and prebiotics suggest that these interventions may decrease the disease's incidence rather than treat or cure it.
Collapse
Affiliation(s)
- Gabriel Horta-Baas
- Servicio de Reumatología, Hospital General Regional número 1, Delegación Yucatán, Instituto Mexicano del Seguro Social, Calle 41 No. 439 x 34. Colonia Industrial, 97150, Mérida, Yucatán, Mexico.
| | - Antonio Sandoval-Cabrera
- Laboratorio de alta especialidad en Hemato-Oncología, Hospital para el Niño, IMIEM, Toluca, Mexico.,Facultad de Medicina, Campus Universitario Siglo XXl, Zinacantepec, State of Mexico, Mexico
| | - María Del Socorro Romero-Figueroa
- Facultad de Medicina, Campus Universitario Siglo XXl, Zinacantepec, State of Mexico, Mexico.,Centro de Investigación en Ciencias de la Salud, Campus Norte Huixquilucan, Universidad Anáhuac México, Mexico City, Mexico
| |
Collapse
|
22
|
Shivaji S. A systematic review of gut microbiome and ocular inflammatory diseases: Are they associated? Indian J Ophthalmol 2021; 69:535-542. [PMID: 33595467 PMCID: PMC7942081 DOI: 10.4103/ijo.ijo_1362_20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The primary focus of this review was to establish the possible association of dysbiotic changes in the gut bacterial microbiomes with both intestinal and extra-intestinal diseases with emphasis on ocular diseases such as bacterial keratitis, fungal keratitis, uveitis, age-related macular degeneration, and ocular mucosal diseases. For this particular purpose, a systematic search was conducted using PubMed and Google Scholar for publications related to gut microbiome and human health (using the keywords: gut microbiome, ocular disease, dysbiosis, keratitis, uveitis, and AMD). The predictions are that microbiome studies would help to unravel dysbiotic changes in the gut bacterial microbiome at the taxonomic and functional level and thus form the basis to mitigate inflammatory diseases of the eye by using nutritional supplements or fecal microbiota transplantation.
Collapse
Affiliation(s)
- Sisinthy Shivaji
- Scientist Emeritus and Distinguished Scientist, Jhaveri Microbiology Centre, Prof Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, Telangana, India
| |
Collapse
|
23
|
MAIT Cells and Microbiota in Multiple Sclerosis and Other Autoimmune Diseases. Microorganisms 2021; 9:microorganisms9061132. [PMID: 34074025 PMCID: PMC8225125 DOI: 10.3390/microorganisms9061132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 12/12/2022] Open
Abstract
The functions of mucosal-associated invariant T (MAIT) cells in homeostatic conditions include the interaction with the microbiota and its products, the protection of body barriers, and the mounting of a tissue-repair response to injuries or infections. Dysfunction of MAIT cells and dysbiosis occur in common chronic diseases of inflammatory, metabolic, and tumor nature. This review is aimed at analyzing the changes of MAIT cells, as well as of the microbiota, in multiple sclerosis and other autoimmune disorders. Common features of dysbiosis in these conditions are the reduced richness of microbial species and the unbalance between pro-inflammatory and immune regulatory components of the gut microbiota. The literature concerning MAIT cells in these disorders is rather complex, and sometimes not consistent. In multiple sclerosis and other autoimmune conditions, several studies have been done, or are in progress, to find correlations between intestinal permeability, dysbiosis, MAIT cell responses, and clinical biomarkers in treated and treatment-naïve patients. The final aims are to explain what activates MAIT cells in diseases not primarily infective, which interactions with the microbiota are potentially pathogenic, and their dynamics related to disease course and disease-modifying treatments.
Collapse
|
24
|
Paul AK, Paul A, Jahan R, Jannat K, Bondhon TA, Hasan A, Nissapatorn V, Pereira ML, Wilairatana P, Rahmatullah M. Probiotics and Amelioration of Rheumatoid Arthritis: Significant Roles of Lactobacillus casei and Lactobacillus acidophilus. Microorganisms 2021; 9:1070. [PMID: 34065638 PMCID: PMC8157104 DOI: 10.3390/microorganisms9051070] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/08/2021] [Accepted: 05/14/2021] [Indexed: 02/07/2023] Open
Abstract
Rheumatoid arthritis is a chronic autoimmune disorder that can lead to disability conditions with swollen joints, pain, stiffness, cartilage degradation, and osteoporosis. Genetic, epigenetic, sex-specific factors, smoking, air pollution, food, oral hygiene, periodontitis, Prevotella, and imbalance in the gastrointestinal microbiota are possible sources of the initiation or progression of rheumatoid arthritis, although the detailed mechanisms still need to be elucidated. Probiotics containing Lactobacillus spp. are commonly used as alleviating agents or food supplements to manage diarrhea, dysentery, develop immunity, and maintain general health. The mechanism of action of Lactobacillus spp. against rheumatoid arthritis is still not clearly known to date. In this narrative review, we recapitulate the findings of recent studies to understand the overall pathogenesis of rheumatoid arthritis and the roles of probiotics, particularly L. casei or L. acidophilus, in the management of rheumatoid arthritis in clinical and preclinical studies.
Collapse
Affiliation(s)
- Alok K. Paul
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Dhaka 1207, Bangladesh; (A.K.P.); (R.J.); (K.J.); (T.A.B.); (A.H.)
| | - Anita Paul
- Department of Pharmacy, University of Development Alternative, Dhaka 1207, Bangladesh;
| | - Rownak Jahan
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Dhaka 1207, Bangladesh; (A.K.P.); (R.J.); (K.J.); (T.A.B.); (A.H.)
| | - Khoshnur Jannat
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Dhaka 1207, Bangladesh; (A.K.P.); (R.J.); (K.J.); (T.A.B.); (A.H.)
| | - Tohmina A. Bondhon
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Dhaka 1207, Bangladesh; (A.K.P.); (R.J.); (K.J.); (T.A.B.); (A.H.)
| | - Anamul Hasan
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Dhaka 1207, Bangladesh; (A.K.P.); (R.J.); (K.J.); (T.A.B.); (A.H.)
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences, World Union for Herbal Drug Discovery (WUHeDD), and Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Nakhon Si Thammarat 80160, Thailand;
| | - Maria L. Pereira
- CICECO-Aveiro Institute of Materials & Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 73170, Thailand
| | - Mohammed Rahmatullah
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Dhaka 1207, Bangladesh; (A.K.P.); (R.J.); (K.J.); (T.A.B.); (A.H.)
| |
Collapse
|
25
|
Arora V, Singh G, O-Sullivan I, Ma K, Natarajan Anbazhagan A, Votta-Velis EG, Bruce B, Richard R, van Wijnen AJ, Im HJ. Gut-microbiota modulation: The impact of thegut-microbiotaon osteoarthritis. Gene 2021; 785:145619. [PMID: 33781857 DOI: 10.1016/j.gene.2021.145619] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/11/2021] [Accepted: 03/23/2021] [Indexed: 02/08/2023]
Abstract
Osteoarthritis (OA) is one of the most common medical conditions affecting > 300 million people globally which represents the formidable public health challenge. Despite its clinical and financial ramifications, there are currently no approved disease modifying OA drugs available and symptom palliation is the only alternative. Currently, the amount of data on the human intestinal microbiome is growing at a high rate, both in health and in various pathological conditions. With an increase in the amount of the accumulated data, there is an expanded understanding that the microbiome provides compelling evidence of a link between thegut microbiomeand development ofOA. The microbiota management tools of probiotics and/or prebiotics or symbiotic have been developed and indeed, commercialized over the past few decades with the expressed purpose of altering the microbiota within the gastrointestinal tract which could be a potentially novel intervention to tackle or prevent OA. However, the mechanisms how intestinal microbiota affects the OA pathogenesis are still not clear and further research targeting specific gut microbiota or its metabolites is still needed to advance OA treatment strategies from symptomatic management to individualized interventions of OA pathogenesis. This article provides an overview of the various preclinical and clinical studies using probiotics and prebiotics as plausible therapeutic options that can restore the gastrointestinal microbiota and its impact on the OA pathogenesis. May be in the near future the targeted alterations of gut microbiota may pave the way for developing new interventions to prevent and treat OA.
Collapse
Affiliation(s)
- Vipin Arora
- Department of Neural and Pain Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA
| | - Gurjit Singh
- Departments of Bioengineering, the University of Illinois at Chicago, Chicago, IL, USA
| | - InSug O-Sullivan
- Departments of Medicine, the University of Illinois at Chicago, Chicago, IL, USA
| | - Kaige Ma
- Departments of Bioengineering, the University of Illinois at Chicago, Chicago, IL, USA
| | | | - E Gina Votta-Velis
- Departments of Anesthesiology, the University of Illinois at Chicago, Chicago, IL, USA; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Benjamin Bruce
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Ripper Richard
- Departments of Anesthesiology, the University of Illinois at Chicago, Chicago, IL, USA
| | | | - Hee-Jeong Im
- Departments of Bioengineering, the University of Illinois at Chicago, Chicago, IL, USA; Jesse Brown Veterans Affairs Medical Center (JBVAMC) at Chicago, IL, USA.
| |
Collapse
|
26
|
Davoodvandi A, Marzban H, Goleij P, Sahebkar A, Morshedi K, Rezaei S, Mahjoubin-Tehran M, Tarrahimofrad H, Hamblin MR, Mirzaei H. Effects of therapeutic probiotics on modulation of microRNAs. Cell Commun Signal 2021; 19:4. [PMID: 33430873 PMCID: PMC7798223 DOI: 10.1186/s12964-020-00668-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 09/22/2020] [Indexed: 12/15/2022] Open
Abstract
Probiotics are beneficial bacteria that exist within the human gut, and which are also present in different food products and supplements. They have been investigated for some decades, due to their potential beneficial impact on human health. Probiotics compete with pathogenic microorganisms for adhesion sites within the gut, to antagonize them or to regulate the host immune response resulting in preventive and therapeutic effects. Therefore, dysbiosis, defined as an impairment in the gut microbiota, could play a role in various pathological conditions, such as lactose intolerance, gastrointestinal and urogenital infections, various cancers, cystic fibrosis, allergies, inflammatory bowel disease, and can also be caused by antibiotic side effects. MicroRNAs (miRNAs) are short non-coding RNAs that can regulate gene expression in a post-transcriptional manner. miRNAs are biochemical biomarkers that play an important role in almost all cellular signaling pathways in many healthy and disease states. For the first time, the present review summarizes current evidence suggesting that the beneficial properties of probiotics could be explained based on the pivotal role of miRNAs. Video Abstract.
Collapse
Affiliation(s)
| | - Havva Marzban
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Pouya Goleij
- Department of Genetics, Faculty of Biology,Sana Institute of Higher Education, Sari, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Korosh Morshedi
- Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Samaneh Rezaei
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Mahjoubin-Tehran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Tarrahimofrad
- Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Michael R. Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, 40 Blossom Street, Boston, MA 02114 USA
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
27
|
Haran JP, McCormick BA. Aging, Frailty, and the Microbiome-How Dysbiosis Influences Human Aging and Disease. Gastroenterology 2021; 160:507-523. [PMID: 33307030 PMCID: PMC7856216 DOI: 10.1053/j.gastro.2020.09.060] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 09/08/2020] [Accepted: 09/16/2020] [Indexed: 02/07/2023]
Abstract
The human gut microbiome is a collection of bacteria, protozoa, fungi, and viruses that coexist in our bodies and are essential in protective, metabolic, and physiologic functions of human health. Gut dysbiosis has traditionally been linked to increased risk of infection, but imbalances within the intestinal microbial community structure that correlate with untoward inflammatory responses are increasingly recognized as being involved in disease processes that affect many organ systems in the body. Furthermore, it is becoming more apparent that the connection between gut dysbiosis and age-related diseases may lie in how the gut microbiome communicates with both the intestinal mucosa and the systemic immune system, given that these networks have a common interconnection to frailty. We therefore discuss recent advances in our understanding of the important role the microbiome plays in aging and how this knowledge opens the door for potential novel therapeutics aimed at shaping a less dysbiotic microbiome to prevent or treat age-related diseases.
Collapse
Affiliation(s)
- John P Haran
- Department of Emergency Medicine; Department of Microbiology and Physiological Systems; Center for Microbiome Research, University of Massachusetts Medical School, Worcester, Massachusetts.
| | - Beth A McCormick
- Department of Microbiology and Physiological Systems; Center for Microbiome Research, University of Massachusetts Medical School, Worcester, Massachusetts
| |
Collapse
|
28
|
Yao Y, Cai X, Fei W, Ren F, Wang F, Luan X, Chen F, Zheng C. Regulating Gut Microbiome: Therapeutic Strategy for Rheumatoid Arthritis During Pregnancy and Lactation. Front Pharmacol 2020; 11:594042. [PMID: 33343364 PMCID: PMC7748111 DOI: 10.3389/fphar.2020.594042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/05/2020] [Indexed: 12/12/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by synovial inflammation and bone destruction. Microbial infection is considered to be the most important inducement of RA. The pregnancy planning of women in childbearing age is seriously affected by the disease activity of RA. Gut microbiome, related to immunity and inflammatory response of the host. At present, emerging evidence suggested there are significant differences in the diversity and abundance of gut microbiome during pregnancy and lactation, which may be associated with the fluctuation of RA disease activity. Based on these research foundations, we pioneer the idea of regulating gut microbiome for the treatment of RA during pregnancy and lactation. In this review, we mainly introduce the potential treatment strategies for controlling the disease activity of RA based on gut microbiome during pregnancy and lactation. Besides, we also briefly generalize the effects of conventional anti-rheumatic drugs on gut microbiome, the effects of metabolic changes during pregnancy on gut microbiome, alteration of gut microbiome during pregnancy and lactation, and the effects of anti-rheumatic drugs commonly used during pregnancy and lactation on gut microbiome. These will provide a clear knowledge framework for researchers in immune-related diseases during pregnancy. Regulating gut microbiome may be a potential and effective treatment to control the disease activity of RA during pregnancy and lactation.
Collapse
Affiliation(s)
- Yao Yao
- Department of Pharmacy, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoyu Cai
- Department of Pharmacy, Hangzhou First People's Hospital, Hangzhou, China
| | - Weidong Fei
- Department of Pharmacy, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Fujia Ren
- Department of Pharmacy, Hangzhou Women's Hospital, Hangzhou, China
| | - Fengmei Wang
- Department of Pharmacy, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaofei Luan
- Department of Pharmacy, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Fengying Chen
- Department of Pharmacy, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Caihong Zheng
- Department of Pharmacy, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
29
|
Vural M, Gilbert B, Üstün I, Caglar S, Finckh A. Mini-Review: Human Microbiome and Rheumatic Diseases. Front Cell Infect Microbiol 2020; 10:491160. [PMID: 33304855 PMCID: PMC7693548 DOI: 10.3389/fcimb.2020.491160] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/14/2020] [Indexed: 12/16/2022] Open
Abstract
Rheumatoid arthritis and spondyloarthropathy are the most common inflammatory rheumatic diseases. As the human microbiome is involved in the immune homeostasis, it has the potential to be a key factor in the development of autoimmune diseases and rheumatic diseases. In this article, we review the role of various human microbiota on the pathogenesis of rheumatic diseases, focusing on spondylarthritis and rheumatoid arthritis.
Collapse
Affiliation(s)
- Meltem Vural
- Physical Medicine and Rehabilitation Clinic, University of Health Sciences, Bakırkoy Dr. Sadi Konuk Training Hospital, Istanbul, Turkey
| | - Benoit Gilbert
- Rheumatology Division, Department of Medicine, Geneva University Hospital (HUG), Geneva, Switzerland
| | - Işıl Üstün
- Physical Medicine and Rehabilitation Clinic, University of Health Sciences, Bakırkoy Dr. Sadi Konuk Training Hospital, Istanbul, Turkey
| | - Sibel Caglar
- Physical Medicine and Rehabilitation Clinic, University of Health Sciences, Bakırkoy Dr. Sadi Konuk Training Hospital, Istanbul, Turkey
| | - Axel Finckh
- Rheumatology Division, Department of Medicine, Geneva University Hospital (HUG), Geneva, Switzerland
| |
Collapse
|
30
|
Ferreira RDS, Mendonça LABM, Ribeiro CFA, Calças NC, Guimarães RDCA, Nascimento VAD, Gielow KDCF, Carvalho CME, Castro APD, Franco OL. Relationship between intestinal microbiota, diet and biological systems: an integrated view. Crit Rev Food Sci Nutr 2020; 62:1166-1186. [PMID: 33115284 DOI: 10.1080/10408398.2020.1836605] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The health-disease process can be influenced by the intestinal microbiota. As this plays a fundamental role in protecting the organism, the importance of studying the composition and diversity of this community becomes increasingly evident. Changes in the composition of the intestinal bacterial community may result in dysbiosis, and this process may contribute to triggering various diseases in all biological systems. This imbalance of intestinal microbiota homeostasis may alter commensal bacteria and the host metabolism, as well as immune function. Dysbiosis also causes an increase in intestinal permeability due to exposure to molecular patterns associated with the pathogen and lipopolysaccharides, leading to a chronic inflammatory process that can result in diseases for all biological systems. In this context, dietary intervention through the use of probiotics, prebiotics and antioxidant foods can be considered a contribution to the modulation of intestinal microbiota. Probiotics have been used to provide up to 10 billion colony forming units, and probiotic foods, Kefir and fermented natural yogurt are also used. Prebiotics, in turn, are found in supplemental formulations of processed foods and in functional foods that are also sources of phenolic compounds, such as flavonoids, antioxidant and anti-inflammatory substances, polyunsaturated fatty acids, vitamins, and minerals. In this review, we will discuss the relationship between an imbalance in the intestinal microbiota with the development of diseases, besides indicating the need for future studies that can establish bacterial parameters for the gastrointestinal tract by modulating the intestinal microbiota, associated with the adoption of healthy habits during all life cycles.
Collapse
Affiliation(s)
- Rosângela Dos Santos Ferreira
- S-Inova Biotech, Post Graduate Program in Biotechnology, Catholic University Dom Bosco, Campo Grande, Mato Grosso do Sul, Brazil
| | | | - Camila Fontoura Acosta Ribeiro
- S-Inova Biotech, Post Graduate Program in Biotechnology, Catholic University Dom Bosco, Campo Grande, Mato Grosso do Sul, Brazil
| | - Natali Camposano Calças
- S-Inova Biotech, Post Graduate Program in Biotechnology, Catholic University Dom Bosco, Campo Grande, Mato Grosso do Sul, Brazil
| | - Rita de Cássia Avellaneda Guimarães
- Post Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Valter Aragão do Nascimento
- Post Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Karine de Cássia Freitas Gielow
- Post Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | | | - Alinne Pereira de Castro
- S-Inova Biotech, Post Graduate Program in Biotechnology, Catholic University Dom Bosco, Campo Grande, Mato Grosso do Sul, Brazil
| | - Octávio Luiz Franco
- S-Inova Biotech, Post Graduate Program in Biotechnology, Catholic University Dom Bosco, Campo Grande, Mato Grosso do Sul, Brazil.,Center of Proteomic and Biochemical Analysis, Post Graduate Program in Genomic Sciences and Biotechnology, Catholic University of Brasilia, Brasilia, Distrito Federal, Brazil
| |
Collapse
|
31
|
Marietta E, Mangalam AK, Taneja V, Murray JA. Intestinal Dysbiosis in, and Enteral Bacterial Therapies for, Systemic Autoimmune Diseases. Front Immunol 2020; 11:573079. [PMID: 33193357 PMCID: PMC7655733 DOI: 10.3389/fimmu.2020.573079] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/05/2020] [Indexed: 12/19/2022] Open
Abstract
Recent studies have shown that a number of common autoimmune diseases have perturbations of their intestinal microbiome (dysbiosis). These include: Celiac Disease (CeD), Multiple Sclerosis (MS), Rheumatoid Arthritis (RA), Sjogren’s Syndrome (SS), and Type 1 diabetes (T1D). All of these have intestinal microbiomes that are different from healthy controls. There have been numerous studies using animal models of single probiotics (monoclonal) or mixtures of probiotics (polyclonal) and even complete microbiota transfer (fecal microbial transfer-FMT) to inhibit or delay the onset of autoimmune diseases such as the aforementioned common ones. However, proportionally, fewer clinical trials have utilized monoclonal therapies or FMT than polyclonal therapies for treating autoimmune diseases, even though bacterial mono-therapies do inhibit the development of autoimmune diseases and/or delay the onset of autoimmune diseases in rodent models of those autoimmune diseases. In this review then, we review the previously completed and currently ongoing clinical trials that are testing bacterial therapies (FMT, monoclonal, and polyclonal) to treat common autoimmune dseases and discuss the successes in using bacterial monotherapies to treat rodent models of these common autoimmune diseases.
Collapse
Affiliation(s)
- Eric Marietta
- Department of Gastroenterology and Hepatology, Mayo Clinic Rochester, Rochester, MN, United States.,Department of Immunology, Mayo Clinic Rochester, Rochester, MN, United States.,Department of Dermatology, Mayo Clinic Rochester, Rochester, MN, United States
| | | | - Veena Taneja
- Department of Immunology, Mayo Clinic Rochester, Rochester, MN, United States
| | - Joseph A Murray
- Department of Gastroenterology and Hepatology, Mayo Clinic Rochester, Rochester, MN, United States.,Department of Immunology, Mayo Clinic Rochester, Rochester, MN, United States
| |
Collapse
|
32
|
Nelson J, Sjöblom H, Gjertsson I, Ulven SM, Lindqvist HM, Bärebring L. Do Interventions with Diet or Dietary Supplements Reduce the Disease Activity Score in Rheumatoid Arthritis? A Systematic Review of Randomized Controlled Trials. Nutrients 2020; 12:E2991. [PMID: 33003645 PMCID: PMC7600426 DOI: 10.3390/nu12102991] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 12/24/2022] Open
Abstract
The aim was to compile the evidence from Randomized Controlled Trials (RCTs) of diet or dietary supplements used to reduce disease activity in adults with Rheumatoid Arthritis (RA). Searches were performed in the databases PubMed, Scopus and Cochrane. Only RCT studies of diets, foods or dietary supplements, looking at effects on the Disease Activity Score in 28 joints (DAS28) among adults with RA, published in peer-reviewed journals, were included. A total of 27 articles were included-three of whole diets (Mediterranean diet, raw food and anti-inflammatory diet), five of food items, five of n-3 fatty acids, five of single micronutrient supplements, four of single antioxidant supplements and five of pre-, pro- or synbiotics. Studies that showed moderate strength evidence for positive effects on disease activity in RA included interventions with a Mediterranean diet, spices (ginger powder, cinnamon powder, saffron), antioxidants (quercetin and ubiquinone), and probiotics containing Lactobacillus Casei. Other diets or supplements had either no effects or low to very low strength of evidence. In conclusion, RCT studies on diet or dietary supplements are limited in patients with RA, but based on the results in this review there is evidence that some interventions might have positive effects on DAS28.
Collapse
Affiliation(s)
- Josefine Nelson
- The Department of Biosciences and Nutrition, Stockholm University, 17177 Stockholm, Sweden;
| | - Helen Sjöblom
- Biomedical Library, Gothenburg University Library, University of Gothenburg, 40530 Gothenburg, Sweden;
| | - Inger Gjertsson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden;
| | - Stine M. Ulven
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Blindern, 0317 Oslo, Norway;
| | - Helen M. Lindqvist
- Department of Internal Medicine and Clinical Nutrition, University of Gothenburg, 40530 Gothenburg, Sweden;
| | - Linnea Bärebring
- Department of Internal Medicine and Clinical Nutrition, University of Gothenburg, 40530 Gothenburg, Sweden;
| |
Collapse
|
33
|
Oliviero F, Spinella P. Benefits of Probiotics in Rheumatic Diseases. Front Nutr 2020; 7:157. [PMID: 33015127 PMCID: PMC7509441 DOI: 10.3389/fnut.2020.00157] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/04/2020] [Indexed: 12/21/2022] Open
Affiliation(s)
- Francesca Oliviero
- Rheumatology Unit, Department of Medicine-DIMED, University of Padova, Padua, Italy
| | - Paolo Spinella
- Clinical Nutrition Unit, Department of Medicine-DIMED, University of Padova, Padua, Italy
| |
Collapse
|
34
|
The Gut Microbiota and Respiratory Diseases: New Evidence. J Immunol Res 2020; 2020:2340670. [PMID: 32802893 PMCID: PMC7415116 DOI: 10.1155/2020/2340670] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/13/2020] [Accepted: 06/18/2020] [Indexed: 12/14/2022] Open
Abstract
Human body surfaces, such as the skin, intestines, and respiratory and urogenital tracts, are colonized by a large number of microorganisms, including bacteria, fungi, and viruses, with the gut being the most densely and extensively colonized organ. The microbiome plays an essential role in immune system development and tissue homeostasis. Gut microbiota dysbiosis not only modulates the immune responses of the gastrointestinal (GI) tract but also impacts the immunity of distal organs, such as the lung, further affecting lung health and respiratory diseases. Here, we review the recent evidence of the correlations and underlying mechanisms of the relationship between the gut microbiota and common respiratory diseases, including asthma, chronic obstructive pulmonary disease (COPD), cystic fibrosis (CF), lung cancer, and respiratory infection, and probiotic development as a therapeutic intervention for these diseases.
Collapse
|
35
|
Troublesome friends within us: the role of gut microbiota on rheumatoid arthritis etiopathogenesis and its clinical and therapeutic relevance. Clin Exp Med 2020; 21:1-13. [PMID: 32712721 DOI: 10.1007/s10238-020-00647-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/13/2020] [Indexed: 12/14/2022]
Abstract
The role of gut microbiota on immune regulation and the development of autoimmune diseases such as rheumatoid arthritis (RA) is an emerging research topic. Multiple studies have demonstrated alterations on gut microbiota composition and/or function (referred to as dysbiosis) both in early and established RA patients. Still, research delineating the molecular mechanisms by which gut microorganisms induce the loss of immune tolerance or contribute to disease progression is scarce. Available data indicate that gut microbiota alterations are involved in RA autoimmune response by several mechanisms including the post-translational modification of host proteins, molecular mimicry between bacterial and host epitopes, activation of immune system and polarization toward inflammatory phenotypes, as well as induction of intestinal permeability. Therefore, in this review we analyze recent clinical and molecular evidence linking gut microbiota with the etiopathogenesis of RA. The potential of the gut microbiota as a diagnostic or severity biomarker is discussed, as well as the opportunity areas for the development of complementary therapeutic strategies based on the modulation of gut microbiota in the rheumatic patient.
Collapse
|
36
|
Lowe JR, Briggs AM, Whittle S, Stephenson MD. A systematic review of the effects of probiotic administration in inflammatory arthritis. Complement Ther Clin Pract 2020; 40:101207. [PMID: 32771911 DOI: 10.1016/j.ctcp.2020.101207] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 05/27/2020] [Accepted: 06/01/2020] [Indexed: 12/28/2022]
Abstract
OBJECTIVE To systematically identify and appraise evidence of the formulation specific effects and population specific responses of probiotics in inflammatory arthritis. METHODS MEDLINE (PubMed), CINAHL, EMBASE, and SCOPUS databases were searched for studies utilising probiotics in populations with inflammatory arthritis. The Joanna Briggs Institute (JBI) method was used to conduct the systematic review. A single reviewer undertook screening and data extraction. Two independent reviewers assessed the quality of evidence using JBI tools. RESULTS The search identified 5876 unique articles, with 154 potentially relevant full text articles retrieved. Twelve studies met the inclusion criteria and were included in the review, of which ten (83%) were randomised control trials (RCT) and two (17%) were quasi-experimental studies. Four studies included a variety of spondyloarthopathies (SpAs) and eight studies focused on rheumatoid arthritis (RA). Probiotics were supplied for a median of 60 days and mode of 56 days across all included studies (range 7-365 days). Overall, 17 different probiotics were supplied in colony forming units (CFU) per 24 hrs ranging from 1 × 108 to 2.25 × 1011. The order of probiotics supplied to the most participants and across the most studies was Lactobacillales. There was no statistical difference in the relative risk (RR) of minor adverse events between probiotic and control groups (RR 1.02, 95% CI 0.69 to 1.51) when including nil event studies. Meta-analysis identified a statistically significant benefit of probiotics on quality of life with a standard mean difference (SMD) of -0.37 (95% CI -0.59,-0.15) with subgroup analysis favouring Lactobacillales-only formulations. Small but statistically significant reductions in pain were identified, with a mean difference (MD) of -8.97 (95% CI-15.38, -2.56) on a 100mm visual analogue scale, independent of formulation. Meta-analysis confirmed the known statistically significant benefit of probiotics on the inflammatory marker C-reactive protein (CRP) concentration MD (mg/L) -2.33 (95% CI -4.26, -0.41), with subgroup analysis demonstrating a greater effect in RA and from combined Bifidobacteriales and Lactobacillales formulations. CONCLUSION This review indicates there may be differential benefits to combined formulations of Bifidobacteriales and Lactobacillales compared to purely Lactobacillales formulations, with respect to reducing pain, lowering CRP and improving quality of life. It also suggests variable benefits associated with the type of inflammatory arthritis. Relatively less benefit for lowering CRP was attributed to individuals with SpA compared to individuals with RA. Generalisability of results to clinical practice is limited by the dominant demographic of older individuals with established disease beyond the 'therapeutic window of intervention'. Small but statistically significant benefits require confirmation in clinical studies with greater consideration to potentially confounding factors of age, gender, diet and individual microbial signature.
Collapse
Affiliation(s)
- Judith R Lowe
- Joanna Briggs Institute, University of Adelaide, South Australia, Australia.
| | - Andrew M Briggs
- School of Physiotherapy and Exercise Science, Curtin University, Western Australia, Australia.
| | - Sam Whittle
- Department of Rheumatology, The Queen Elizabeth Hospital, Adelaide, South Australia, Australia.
| | | |
Collapse
|
37
|
Vadell AKE, Bärebring L, Hulander E, Gjertsson I, Lindqvist HM, Winkvist A. Anti-inflammatory Diet In Rheumatoid Arthritis (ADIRA)-a randomized, controlled crossover trial indicating effects on disease activity. Am J Clin Nutr 2020; 111:1203-1213. [PMID: 32055820 PMCID: PMC7266686 DOI: 10.1093/ajcn/nqaa019] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 01/27/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Many patients with rheumatoid arthritis (RA) report symptom relief from certain foods. Earlier research indicates positive effects of food and food components on clinical outcomes in RA, but insufficient evidence exists to provide specific dietary advice. Food components may interact but studies evaluating combined effects are lacking. OBJECTIVES We aimed to investigate if an anti-inflammatory diet reduces disease activity in patients with RA. METHODS In this single-blinded crossover trial, 50 patients with RA were randomly assigned to an intervention diet containing a portfolio of suggested anti-inflammatory foods, or a control diet similar to the general dietary intake in Sweden, for 10 wk. After a 4-mo washout period the participants switched diet. Food equivalent to ∼50% of energy requirements was delivered weekly to their homes. For the remaining meals, they were encouraged to consume the same type of foods as the ones provided during each diet. Primary outcome was change in Disease Activity Score in 28 joints-Erythrocyte Sedimentation Rate (DAS28-ESR). Secondary outcomes were changes in the components of DAS28-ESR (tender and swollen joints, ESR, and visual analog scale for general health) and DAS28-C-reactive protein. RESULTS In the main analysis, a linear mixed ANCOVA model including the 47 participants completing ≥1 diet period, there was no significant difference in DAS28-ESR between the intervention and control periods (P = 0.116). However, in unadjusted analyses, DAS28-ESR significantly decreased during the intervention period and was significantly lower after the intervention than after the control period in the participants who completed both periods (n = 44; median: 3.05; IQR: 2.41, 3.79 compared with median: 3.27; IQR: 2.69, 4.28; P = 0.04, Wilcoxon's Signed Rank test). No significant differences in the components were observed. CONCLUSIONS This trial indicates positive effects of a proposed anti-inflammatory diet on disease activity in patients with RA. Additional studies are required to determine if this diet can cause clinically relevant improvements.This trial was registered at clinicaltrials.gov as NCT02941055.
Collapse
Affiliation(s)
- Anna K E Vadell
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Linnea Bärebring
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Erik Hulander
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Inger Gjertsson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Helen M Lindqvist
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Winkvist
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
38
|
Vandana UK, Barlaskar NH, Gulzar ABM, Laskar IH, Kumar D, Paul P, Pandey P, Mazumder PB. Linking gut microbiota with the human diseases. Bioinformation 2020; 16:196-208. [PMID: 32405173 PMCID: PMC7196170 DOI: 10.6026/97320630016196] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 02/20/2020] [Indexed: 12/13/2022] Open
Abstract
The human gut is rich in microbes. Therefore, it is of interest to document data to link known human diseases with the gut microbiota. Various factors like hormones, metabolites and dietary habitats are responsible for shaping the microbiota of the gut. Imbalance in the gut microbiota is responsible for the pathogenesis of various disease types including rheumatoid arthritis, different types of cancer, diabetes mellitus, obesity, and cardiovascular disease. We report a review of known data for the correction of dysbiosis (imbalance in microbe population) towards improved human health.
Collapse
Affiliation(s)
| | | | | | | | - Diwakar Kumar
- Department of Microbiology, Assam University, Silchar, Assam, India
| | - Prosenjit Paul
- Department of Biotechnology, Assam University, Silchar, Assam, India
| | - Piyush Pandey
- Department of Microbiology, Assam University, Silchar, Assam, India
| | | |
Collapse
|
39
|
Drago L. Prevotella Copri and Microbiota in Rheumatoid Arthritis: Fully Convincing Evidence? J Clin Med 2019; 8:jcm8111837. [PMID: 31683983 PMCID: PMC6912755 DOI: 10.3390/jcm8111837] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 10/22/2019] [Indexed: 02/07/2023] Open
Abstract
Gut microbiota regulates the host’s immune system. Microorganisms and their compounds can co-exist peacefully with the immune system and coordinate its function and regulation. Some microbial clusters may be harmful and others helpful in the respective negative or positive balance of the immune network. These insights have revealed important mechanisms for understanding and treating autoimmune and inflammatory diseases. This Editorial aims to clarify the role of specific genus of gut microbiota, such as Prevotella, in influencing the pathogenesis of Rheumatoid Arthritis (RA).
Collapse
Affiliation(s)
- Lorenzo Drago
- Laboratory of Clinical Microbiology & Microbiome Unit, Department of Biomedical Sciences for Health, "Invernizzi" Pediatric Clinical Research Center, University of Milan, 20133 Milan, Italy.
| |
Collapse
|
40
|
Sun Y, Chen Q, Lin P, Xu R, He D, Ji W, Bian Y, Shen Y, Li Q, Liu C, Dong K, Tang YW, Pei Z, Yang L, Lu H, Guo X, Xiao L. Characteristics of Gut Microbiota in Patients With Rheumatoid Arthritis in Shanghai, China. Front Cell Infect Microbiol 2019; 9:369. [PMID: 31709198 PMCID: PMC6819506 DOI: 10.3389/fcimb.2019.00369] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 10/09/2019] [Indexed: 12/29/2022] Open
Abstract
Little is known regarding differences in the gut microbiomes of rheumatoid arthritis (RA) patients and healthy cohorts in China. This study aimed to identify differences in the fecal microbiomes of 66 Chinese patients with RA and 60 healthy Chinese controls. The V3-V4 variable regions of bacterial 16S rRNA genes were sequenced with the Illumina system to define the bacterial composition. The alpha-diversity index of the microbiome of the RA patients was significantly lower than that of the control group. The bacterial genera Bacteroides (p = 0.02202) and Escherichia-Shigella (p = 0.03137) were more abundant in RA patients. In contrast, Lactobacillus (p = 0.000014), Alloprevotella (p = 0.0000008615), Enterobacter (p = 0.000005759), and Odoribacter (p = 0.0000166) were less abundant in the RA group than in the control group. Spearman correlation analysis of blood physiological measures of RA showed that bacterial genera such as Dorea and Ruminococcus were positively correlated with RF-IgA and anti-CCP antibodies. Furthermore, Alloprevotella and Parabacteroides were positively correlated with the erythrocyte sedimentation rate, and Prevotella-2 and Alloprevotella were positively correlated with C-reactive protein, both biomarkers of inflammation. These findings suggest that the gut microbiota may contribute to RA development via interactions with the host immune system.
Collapse
Affiliation(s)
- Yang Sun
- Institute of Arthritis Research, Shanghai Academy of Chinese Medical Sciences, Shanghai, China.,Guanghua Integrative Medicine Hospital, Shanghai, China
| | - Qian Chen
- Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine, The College of Basic Medical Sciences, Shanghai, China
| | - Ping Lin
- Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rong Xu
- Institute of Arthritis Research, Shanghai Academy of Chinese Medical Sciences, Shanghai, China.,Guanghua Integrative Medicine Hospital, Shanghai, China
| | - Dongyi He
- Institute of Arthritis Research, Shanghai Academy of Chinese Medical Sciences, Shanghai, China.,Guanghua Integrative Medicine Hospital, Shanghai, China
| | - Weiqing Ji
- Institute of Arthritis Research, Shanghai Academy of Chinese Medical Sciences, Shanghai, China.,Guanghua Integrative Medicine Hospital, Shanghai, China
| | - Yanqin Bian
- Institute of Arthritis Research, Shanghai Academy of Chinese Medical Sciences, Shanghai, China.,Guanghua Integrative Medicine Hospital, Shanghai, China
| | - Yu Shen
- Institute of Arthritis Research, Shanghai Academy of Chinese Medical Sciences, Shanghai, China.,Guanghua Integrative Medicine Hospital, Shanghai, China
| | - Qingtian Li
- Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine, The College of Basic Medical Sciences, Shanghai, China
| | - Chang Liu
- Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine, The College of Basic Medical Sciences, Shanghai, China
| | - Ke Dong
- Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine, The College of Basic Medical Sciences, Shanghai, China
| | - Yi-Wei Tang
- Clinical Microbiology Service, Department of Laboratory Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY, United States
| | - Zhiheng Pei
- Departments of Pathology and Medicine, New York University School of Medicine, New York, NY, United States.,The Department of Veterans Affairs New York Harbor Healthcare System, New York, NY, United States
| | - Liying Yang
- Departments of Pathology and Medicine, New York University School of Medicine, New York, NY, United States.,The Department of Veterans Affairs New York Harbor Healthcare System, New York, NY, United States
| | - Hongzhou Lu
- Department of Infectious Diseases, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Xiaokui Guo
- Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine, The College of Basic Medical Sciences, Shanghai, China
| | - Lianbo Xiao
- Institute of Arthritis Research, Shanghai Academy of Chinese Medical Sciences, Shanghai, China.,Guanghua Integrative Medicine Hospital, Shanghai, China
| |
Collapse
|
41
|
Comparative Analysis of Fecal Microbiota Composition Between Rheumatoid Arthritis and Osteoarthritis Patients. Genes (Basel) 2019; 10:genes10100748. [PMID: 31557878 PMCID: PMC6827100 DOI: 10.3390/genes10100748] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 09/15/2019] [Accepted: 09/24/2019] [Indexed: 12/14/2022] Open
Abstract
The aim of this study was to investigate differences between the gut microbiota composition in patients with rheumatoid arthritis (RA) and those with osteoarthritis (OA). Stool samples from nine RA patients and nine OA patients were collected, and DNA was extracted. The gut microbiome was assessed using 16S rRNA gene amplicon sequencing. The structures and differences in the gut microbiome between RA and OA were analyzed. The analysis of diversity revealed no differences in the complexity of samples. The RA group had a lower Bacteroidetes: Firmicutes ratio than did the OA group. Lactobacilli and Prevotella, particularly Prevotella copri, were more abundant in the RA than in the OA group, although these differences were not statistically significant. The relative abundance of Bacteroides and Bifidobacterium was lower in the RA group. At the species level, the abundance of certain bacterial species was significantly lower in the RA group, such as Fusicatenibacter saccharivorans, Dialister invisus, Clostridium leptum, Ruthenibacterium lactatiformans, Anaerotruncus colihominis, Bacteroides faecichinchillae, Harryflintia acetispora, Bacteroides acidifaciens, and Christensenella minuta. The microbial properties of the gut differed between RA and OA patients, and the RA dysbiosis revealed results similar to those of other autoimmune diseases, suggesting that a specific gut microbiota pattern is related to autoimmunity.
Collapse
|
42
|
Bodkhe R, Balakrishnan B, Taneja V. The role of microbiome in rheumatoid arthritis treatment. Ther Adv Musculoskelet Dis 2019; 11:1759720X19844632. [PMID: 31431810 PMCID: PMC6685117 DOI: 10.1177/1759720x19844632] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 03/25/2019] [Indexed: 12/15/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disorder with multifactorial etiology; both genetic and environmental factors are known to be involved in pathogenesis. Treatment with disease-modifying antirheumatic drugs (DMARDs) plays an essential role in controlling disease progression and symptoms. DMARDs have immunomodulatory properties and suppress immune response by interfering in various pro-inflammatory pathways. Recent evidence has shown that the gut microbiota directly and indirectly modulates the host immune system. RA has been associated with dysbiosis of the gut microbiota. Patients with RA treated with DMARDs show partial restoration of eubiotic gut microbiome. Hence, it is essential to understand the impact of DMARDs on the microbial composition and its consequent influences on the host immune system to identify novel therapies for RA. In this review, we discuss the importance of antirheumatic-drug-induced host microbiota modulations and possible probiotics that can generate eubiosis.
Collapse
Affiliation(s)
- Rahul Bodkhe
- Department of Immunology, Mayo Clinic, Rochester, MN, USA
| | | | - Veena Taneja
- Department of Immunology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| |
Collapse
|
43
|
The effect of probiotics on inflammatory biomarkers: a meta-analysis of randomized clinical trials. Eur J Nutr 2019; 59:633-649. [PMID: 30854594 DOI: 10.1007/s00394-019-01931-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 02/16/2019] [Indexed: 12/28/2022]
Abstract
PURPOSE No study has summarized earlier findings on the effect of probiotic supplementation on inflammatory biomarkers. This systematic review and meta-analysis was conducted to systematically review the available placebo-controlled clinical trials about the effect of probiotic supplementation on several inflammatory biomarkers in adults. METHODS Relevant papers published up to March 2018 were searched up through PubMed, MEDLINE, SCOPUS, EMBASE, and Google Scholar, using following suitable keywords. Clinical trials that examined the effect of probiotic supplementation on inflammation in adults were included. RESULTS Overall, 42 randomized clinical trials (1138 participants in intervention and 1120 participants in control groups) were included. Combining findings from included studies, we found a significant reduction in serum hs-CRP [standardized mean difference (SMD) - 0.46; 95% CI - 0.73, - 0.19], TNF-a (- 0.21; - 0.34, - 0.08), IL-6 (- 0.37; - 0.51, - 0.24), IL-12 (- 0.47; - 0.67, - 0.27), and IL-4 concentrations (- 0.48; - 0.76, - 0.20) after probiotic supplementation. Pooling effect sizes from 11 studies with 12 effect sizes, a significant increase in IL-10 concentrations was seen (0.21; 0.04, 0.38). We failed to find a significant effect of probiotic supplementation on serum IL-1B (- 0.17; - 0.37, 0.02), IL-8 (- 0.01; - 0.30, 0.28), and IFN-g (- 0.08; - 0.31, 0.15) and IL-17 concentrations (0.06; - 0.34, 0.46). CONCLUSIONS Probiotic supplementation significantly reduced serum concentrations of pro-inflammatory cytokines including, hs-CRP, TNF-a, IL-6, IL-12, and IL-4, but it did not influence IL-1B, IL-8, IFN-g, and IL-17 concentrations. A significant increase in serum concentrations of IL-10, as a anti-inflammatory cytokine was also documented after probiotic supplementation.
Collapse
|
44
|
Guerreiro CS, Calado Â, Sousa J, Fonseca JE. Diet, Microbiota, and Gut Permeability-The Unknown Triad in Rheumatoid Arthritis. Front Med (Lausanne) 2018; 5:349. [PMID: 30619860 PMCID: PMC6302746 DOI: 10.3389/fmed.2018.00349] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 11/27/2018] [Indexed: 12/21/2022] Open
Abstract
Growing experimental and clinical evidence suggests that a chronic inflammatory response induced by gut dysbiosis can critically contribute to the development of rheumatic diseases, including rheumatoid arthritis (RA). Of interest, an adherence to a Mediterranean diet has been linked to a reduction in mortality and morbidity in patients with inflammatory diseases. Diet and intestinal microbiota are modifying factors that may influence intestinal barrier strength, functional integrity, and permeability regulation. Intestinal microbiota may play a crucial role in RA pathogenesis, but up to now no solid data has clarified a mechanistic relationship between gut microbiota and the development of RA. Nonetheless, microbiota composition in subjects with RA differs from that of controls and this altered microbiome can be partially restored after prescribing disease modifying antirheumatic drugs. High levels of Prevotella copri and similar species are correlated with low levels of microbiota previously associated with immune regulating properties. In addition, some nutrients can alter intestinal permeability and thereby influence the immune response without a known impact on the microbiota. However, critical questions remain to be elucidated, such as the way microbiome fluctuates in relation to diet, and how disease activity may be influenced by changes in diet, microbiota or diet-intestinal microbiota equilibrium.
Collapse
Affiliation(s)
- Catarina Sousa Guerreiro
- Laboratório de Nutrição, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Instituto de Saúde Ambiental, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Ângelo Calado
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Instituto de Bioquímica, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Joana Sousa
- Laboratório de Nutrição, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Instituto de Saúde Ambiental, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - João Eurico Fonseca
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Serviço de Reumatologia e Doenças Ósseas Metabólicas, Hospital de Santa Maria, CHLN, Lisbon, Portugal.,Centro Académico de Medicina de Lisboa, Lisbon, Portugal
| |
Collapse
|
45
|
Picchianti-Diamanti A, Panebianco C, Salemi S, Sorgi ML, Di Rosa R, Tropea A, Sgrulletti M, Salerno G, Terracciano F, D'Amelio R, Laganà B, Pazienza V. Analysis of Gut Microbiota in Rheumatoid Arthritis Patients: Disease-Related Dysbiosis and Modifications Induced by Etanercept. Int J Mol Sci 2018; 19:ijms19102938. [PMID: 30261687 PMCID: PMC6213034 DOI: 10.3390/ijms19102938] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 09/19/2018] [Accepted: 09/25/2018] [Indexed: 12/24/2022] Open
Abstract
A certain number of studies were carried out to address the question of how dysbiosis could affect the onset and development of rheumatoid arthritis (RA), but little is known about the reciprocal influence between microbiota composition and immunosuppressive drugs, and how this interaction may have an impact on the clinical outcome. The aim of this study was to characterize the intestinal microbiota in a groups of RA patients treatment-naïve, under methotrexate, and/or etanercept (ETN). Correlations between the gut microbiota composition and validated immunological and clinical parameters of disease activity were also evaluated. In the current study, a 16S analysis was employed to explore the gut microbiota of 42 patients affected by RA and 10 healthy controls. Disease activity score on 28 joints (DAS-28), erythrocyte sedimentation rate, C-reactive protein, rheumatoid factor, anti-cyclic citrullinated peptides, and dietary and smoking habits were assessed. The composition of the gut microbiota in RA patients free of therapy is characterized by several abnormalities compared to healthy controls. Gut dysbiosis in RA patients is associated with different serological and clinical parameters; in particular, the phylum of Euryarchaeota was directly correlated to DAS and emerged as an independent risk factor. Patients under treatment with ETN present a partial restoration of a beneficial microbiota. The results of our study confirm that gut dysbiosis is a hallmark of the disease, and shows, for the first time, that the anti-tumor necrosis factor alpha (TNF-α) ETN is able to modify microbial communities, at least partially restoring a beneficial microbiota.
Collapse
Affiliation(s)
- Andrea Picchianti-Diamanti
- Department of Clinical and Molecular Medicine, Sant'Andrea University Hospital, Sapienza University of Rome, 00185 Rome, Italy.
| | - Concetta Panebianco
- Gastroenterology Unit, IRCCS "Casa Sollievo della Sofferenza" Hospital, Viale dei Cappuccini, 1, 71013 San Giovanni Rotondo, Italy.
| | - Simonetta Salemi
- Department of Clinical and Molecular Medicine, Sant'Andrea University Hospital, Sapienza University of Rome, 00185 Rome, Italy.
| | - Maria Laura Sorgi
- Department of Clinical and Molecular Medicine, Sant'Andrea University Hospital, Sapienza University of Rome, 00185 Rome, Italy.
| | - Roberta Di Rosa
- Department of Clinical and Molecular Medicine, Sant'Andrea University Hospital, Sapienza University of Rome, 00185 Rome, Italy.
| | - Alessandro Tropea
- Department of Clinical and Molecular Medicine, Sant'Andrea University Hospital, Sapienza University of Rome, 00185 Rome, Italy.
| | - Mayla Sgrulletti
- Department of Clinical and Molecular Medicine, Sant'Andrea University Hospital, Sapienza University of Rome, 00185 Rome, Italy.
| | - Gerardo Salerno
- Department of Clinical and Molecular Medicine, Sant'Andrea University Hospital, Sapienza University of Rome, 00185 Rome, Italy.
| | - Fulvia Terracciano
- Gastroenterology Unit, IRCCS "Casa Sollievo della Sofferenza" Hospital, Viale dei Cappuccini, 1, 71013 San Giovanni Rotondo, Italy.
| | - Raffaele D'Amelio
- Department of Clinical and Molecular Medicine, Sant'Andrea University Hospital, Sapienza University of Rome, 00185 Rome, Italy.
| | - Bruno Laganà
- Department of Clinical and Molecular Medicine, Sant'Andrea University Hospital, Sapienza University of Rome, 00185 Rome, Italy.
| | - Valerio Pazienza
- Gastroenterology Unit, IRCCS "Casa Sollievo della Sofferenza" Hospital, Viale dei Cappuccini, 1, 71013 San Giovanni Rotondo, Italy.
| |
Collapse
|
46
|
Kragsnaes MS, Kjeldsen J, Horn HC, Munk HL, Pedersen FM, Holt HM, Pedersen JK, Holm DK, Glerup H, Andersen V, Fredberg U, Kristiansen K, Christensen R, Ellingsen T. Efficacy and safety of faecal microbiota transplantation in patients with psoriatic arthritis: protocol for a 6-month, double-blind, randomised, placebo-controlled trial. BMJ Open 2018; 8:e019231. [PMID: 29703851 PMCID: PMC5922473 DOI: 10.1136/bmjopen-2017-019231] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION An unbalanced intestinal microbiota may mediate activation of the inflammatory pathways seen in psoriatic arthritis (PsA). A randomised, placebo-controlled trial of faecal microbiota transplantation (FMT) infused into the small intestine of patients with PsA with active peripheral disease who are non-responsive to methotrexate (MTX) treatment will be conducted. The objective is to explore clinical aspects associated with FMT performed in patients with PsA. METHODS AND ANALYSIS This trial is a randomised, two-centre stratified, double-blind (patient, care provider and outcome assessor), placebo-controlled, parallel-group study. Eighty patients will be included and randomised (1:1) to either placebo (saline) or FMT provided from an anonymous healthy donor. Throughout the study, both groups will continue the weekly self-administered subcutaneous MTX treatment, remaining on the preinclusion dosage (15-25 mg/week). The clinical measures of psoriasis and PsA disease activity used include the Short (2-page) Health Assessment Questionnaire, the Dermatology Quality of Life Index, the Spondyloarthritis Research Consortium of Canada Enthesitis Index, the Psoriasis Area Severity Index, a dactylitis digit count, a swollen/tender joint count (66/68), plasma C reactive protein as well as visual analogue scales for pain, fatigue and patient and physician global assessments. The primary end point is the proportion of patients who experience treatment failure during the 6-month trial period. The number of adverse events will be registered throughout the study. ETHICS AND DISSEMINATION This is a proof-of-concept clinical trial and will be performed in agreement with Good Clinical Practice standards. Approvals have been obtained from the local Ethics Committee (DK-S-20150080) and the Danish Data Protection Agency (15/41684). The study has commenced in May 2017. Dissemination will be through presentations at national and international conferences and through publications in international peer-reviewed journal(s). TRIAL REGISTRATION NUMBER NCT03058900; Pre-results.
Collapse
Affiliation(s)
- Maja Skov Kragsnaes
- Department of Rheumatology, Odense University Hospital, Odense, Denmark
- Odense Patient data Explorative Network (OPEN), Department of Clinical Institute, University of Southern Denmark, Odense, Denmark
| | - Jens Kjeldsen
- Department of Gastroenterology, Odense University Hospital, Odense, Denmark
| | | | | | | | - Hanne Marie Holt
- Department of Clinical Microbiology, Odense University Hospital, Odense, Denmark
| | | | | | - Henning Glerup
- Diagnostic Centre, Silkeborg Regional Hospital, Silkeborg, Denmark
| | - Vibeke Andersen
- IRS-Centre Sonderjylland, Hospital of Southern Jutland, Aabenraa, Denmark
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Ulrich Fredberg
- Diagnostic Centre, Silkeborg Regional Hospital, Silkeborg, Denmark
| | - Karsten Kristiansen
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Institute of Metagenomics, BGI-Shenzhen, Shenzhen, China
| | - Robin Christensen
- Musculoskeletal Statistics Unit, Parker Institute, Frederiksberg and Bispebjerg Hospital, Copenhagen, Denmark
| | - Torkell Ellingsen
- Department of Rheumatology, Odense University Hospital, Odense, Denmark
| |
Collapse
|
47
|
Vaghef-Mehrabani E, Homayouni-Rad A, Alipour B, Vaghef-Mehrabany L, Saghafi-Asl M. Formulation and Design of Probiotic Supplements for Rheumatoid Arthritis Patients. PHARMACEUTICAL SCIENCES 2018. [DOI: 10.15171/ps.2018.08] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
48
|
Abstract
The role of the gut microbiome in models of inflammatory and autoimmune disease is now well characterized. Renewed interest in the human microbiome and its metabolites, as well as notable advances in host mucosal immunology, has opened multiple avenues of research to potentially modulate inflammatory responses. The complexity and interdependence of these diet-microbe-metabolite-host interactions are rapidly being unraveled. Importantly, most of the progress in the field comes from new knowledge about the functional properties of these microorganisms in physiology and their effect in mucosal immunity and distal inflammation. This review summarizes the preclinical and clinical evidence on how dietary, probiotic, prebiotic, and microbiome based therapeutics affect our understanding of wellness and disease, particularly in autoimmunity.
Collapse
Affiliation(s)
- Jose C Clemente
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Julia Manasson
- Department of Medicine, Division of Rheumatology, New York University School of Medicine and Hospital for Joint Diseases, New York, NY 10003, USA
| | - Jose U Scher
- Department of Medicine, Division of Rheumatology, New York University School of Medicine and Hospital for Joint Diseases, New York, NY 10003, USA
| |
Collapse
|
49
|
The efficacy of probiotic supplementation in rheumatoid arthritis: a meta-analysis of randomized, controlled trials. Inflammopharmacology 2018; 26:67-76. [PMID: 29302905 DOI: 10.1007/s10787-017-0436-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 12/18/2017] [Indexed: 01/23/2023]
Abstract
Probiotics are considered as -immunomodulatory agents; their efficacy as an adjunct therapy option for rheumatoid arthritis (RA), however, remains controversial. The main aim of the present meta-analysis, therefore, was to compare available data from the published randomized, controlled trials (RCTs) recruiting adults with RA which compared probiotics with placebo. The English literature search was performed using Ovid version of Medline, EmBase, Web of Science, and the Central Cochrane library through October 2016 and supplemented by hand searching reference lists. Among 240 citations identified, 4 RCTs (153 participants; 89% female) were included. All data were pooled using a standardized mean difference (SMD) with a 95% CI. Compared to the placebo, probiotics did not change the inflammatory parameters (erythrocyte sedimentation rate, tumor necrosis factor [TNF]-α, interleukin [IL]-1β, IL-6, IL-10, and IL-12) and oxidative stress indices (total antioxidant capacity and malondialdehyde) significantly. The borderline significant reduction as a result of probiotic administration was only determined in C-reactive protein [SDM - 0.32 (95% CI - 0.65 to 0.00)]. Among disease activity indices (disease activity score [DAS], tender joint count, and swollen joint count), DAS showed a significant improvement following probiotic treatment with a SMD (95% CI) of - 0.58 (- 0.97 to - 0.19). The number of trials was too small to determine if a strain-, dose-, or duration-response effect was present. Probiotics seem to be less effective in RA; however, to reach a firm conclusion, we need further evidence.
Collapse
|
50
|
Khanna S, Jaiswal KS, Gupta B. Managing Rheumatoid Arthritis with Dietary Interventions. Front Nutr 2017; 4:52. [PMID: 29167795 PMCID: PMC5682732 DOI: 10.3389/fnut.2017.00052] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/10/2017] [Indexed: 12/19/2022] Open
Abstract
Self-help by means of dietary interventions can help in management of various disorders including rheumatoid arthritis (RA), a debilitating autoimmune disease. Dietary interventions necessitate a widespread appeal for both patients as well as clinicians due to factors including affordability, accessibility, and presence of scientific evidences that demonstrate substantial benefits in reducing disease symptoms such as pain, joint stiffness, swelling, tenderness and associated disability with disease progression. However, there is still an uncertainty among the community about the therapeutic benefits of dietary manipulations for RA. In the present review, we provide an account of different diets and their possible molecular mechanism of actions inducing observed therapeutic benefits for remission and management of RA. We further indicate food that can be a potential aggravating factor for the disease or may help in symptomatic relief. We thereafter summarize and thereby discuss various diets and food which help in reducing levels of inflammatory cytokines in RA patients that may play an effective role in management of RA following proper patient awareness. We thus would like to promote diet management as a tool that can both supplement and complement present treatment strategies for a better patient health and recovery.
Collapse
Affiliation(s)
- Shweta Khanna
- Disease Biology Laboratory, School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | - Kumar Sagar Jaiswal
- Disease Biology Laboratory, School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | - Bhawna Gupta
- Disease Biology Laboratory, School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| |
Collapse
|