1
|
Rahmayanti SU, Amalia R, Rusdiana T. Systematic review: genetic polymorphisms in the pharmacokinetics of high-dose methotrexate in pediatric acute lymphoblastic leukemia patients. Cancer Chemother Pharmacol 2024; 94:141-155. [PMID: 39002021 DOI: 10.1007/s00280-024-04694-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 06/25/2024] [Indexed: 07/15/2024]
Abstract
Variations in pharmacokinetic responses to high-dose methotrexate are essential for the prognosis and management of toxicity in the treatment of pediatric acute lymphoblastic leukemia (ALL) patients. This systematic review aimed to identify and evaluate genetic polymorphisms that are significantly associated with the pharmacokinetic parameters of methotrexate during the consolidation phase of pediatric ALL treatment. Using the Preferred Reporting Items for Systematic Reviews (PRISMA) guidelines, we systematically reviewed the literature from 2013 to 2023. The databases used were PubMed and Scopus. The outcomes of interest are the study design, patient characteristics, sample size, chemotherapy protocol utilized, pharmacokinetic parameters identified, and genetic polymorphisms implicated. We included 31 articles in the qualitative synthesis and found that the SLCO1B1, ABCB1, ABCC2, and MTHFR genes appear to play significant roles in MTX metabolism and clearance. Among these, variations in SLCO1B1 have the most significant and consistent impact on methotrexate clearance. These implicated variants may contribute to the precision and tailoring of HD-MTX treatment in pediatric ALL patients.
Collapse
Affiliation(s)
- Siti Utami Rahmayanti
- Master Program in Pharmacy, Faculty of Pharmacy, Padjadjaran University, Sumedang, West Java, 45363, Indonesia
| | - Riezki Amalia
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Padjadjaran University, Sumedang, 45363, Indonesia
| | - Taofik Rusdiana
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Padjadjaran University, Sumedang, 45363, Indonesia.
| |
Collapse
|
2
|
Larkin T, Kashif R, Elsayed AH, Greer B, Mangrola K, Raffiee R, Nguyen N, Shastri V, Horn B, Lamba JK. Polygenic Pharmacogenomic Markers as Predictors of Toxicity Phenotypes in the Treatment of Acute Lymphoblastic Leukemia: A Single-Center Study. JCO Precis Oncol 2023; 7:e2200580. [PMID: 36952646 PMCID: PMC10309546 DOI: 10.1200/po.22.00580] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/31/2023] [Indexed: 03/25/2023] Open
Abstract
PURPOSE Acute lymphoblastic leukemia (ALL) is the most prevalent cause of childhood cancer and requires a long course of therapy consisting of three primary phases with interval intensification blocks. Although these phases are necessary to achieve remission, the primary chemotherapeutic agents have potentially serious toxicities, which may lead to delays or discontinuations of therapy. The purpose of this study was to perform a comprehensive pharmacogenomic evaluation of common antileukemic agents and develop a polygenic toxicity risk score predictive of the most common toxicities observed during ALL treatment. METHODS This cross-sectional study included 75 patients with pediatric ALL treated between 2012 and 2020 at the University of Florida. Toxicity data were collected within 100 days of initiation of therapy using CTCAE v4.0 for toxicity grading. For pharmacogenomic evaluation, single-nucleotide polymorphisms (SNPs) and genes were selected from previous reports or PharmGKB database. 116 unique SNPs were evaluated for incidence of various toxicities. A multivariable multi-SNP modeling for up to 3-SNP combination was performed to develop a polygenic toxicity risk score of prognostic value. RESULTS We identified several SNPs predictive of toxicity phenotypes in univariate analysis. Further multivariable SNP-SNP combination analysis suggest that susceptibility to chemotherapy-induced toxicities is likely multigenic in nature. For 3-SNPscore models, patients with high scores experienced increased risk of GI (P = 2.07E-05, 3 SNPs: TYMS-rs151264360/FPGS-rs1544105/GSTM1-GSTM5-rs3754446), neurologic (P = .0005, 3 SNPs: DCTD-rs6829021/SLC28A3-rs17343066/CTPS1-rs12067645), endocrine (P = 4.77E-08, 3 SNPs: AKR1C3-rs1937840/TYMS-rs2853539/CTH-rs648743), and heme toxicities (P = .053, 3 SNPs: CYP3A5-rs776746/ABCB1-rs4148737/CTPS1-rs12067645). CONCLUSION Our results imply that instead of a single-SNP approach, SNP-SNP combinations in multiple genes in drug pathways increases the robustness of prediction of toxicity. These results further provide promising SNP models that can help establish clinically relevant biomarkers allowing for greater individualization of cancer therapy to maximize efficacy and minimize toxicity for each patient.
Collapse
Affiliation(s)
- Trisha Larkin
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL
- St Joseph's Children's Hospital/BayCare Medical Group, Tampa, FL
| | - Reema Kashif
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL
| | - Abdelrahman H. Elsayed
- Department of Pharmacotherapy and Translational Research, University of Florida College of Pharmacy, Gainesville, FL
| | - Beate Greer
- Pediatrics Division, UF Health Cancer Center, University of Florida, Gainesville, FL
| | - Karna Mangrola
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL
| | - Roya Raffiee
- Department of Pharmacotherapy and Translational Research, University of Florida College of Pharmacy, Gainesville, FL
| | - Nam Nguyen
- Department of Pharmacotherapy and Translational Research, University of Florida College of Pharmacy, Gainesville, FL
| | - Vivek Shastri
- Department of Pharmacotherapy and Translational Research, University of Florida College of Pharmacy, Gainesville, FL
| | - Biljana Horn
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL
| | - Jatinder K. Lamba
- Department of Pharmacotherapy and Translational Research, University of Florida College of Pharmacy, Gainesville, FL
| |
Collapse
|
3
|
Xu M, Wu S, Wang Y, Zhao Y, Wang X, Wei C, Liu X, Hao F, Hu C. Association between high-dose methotrexate-induced toxicity and polymorphisms within methotrexate pathway genes in acute lymphoblastic leukemia. Front Pharmacol 2022; 13:1003812. [PMID: 36532750 PMCID: PMC9748425 DOI: 10.3389/fphar.2022.1003812] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/21/2022] [Indexed: 09/22/2023] Open
Abstract
Methotrexate (MTX) is a folic acid antagonist, the mechanism of action is to inhibit DNA synthesis, repair and cell proliferation by decreasing the activities of several folate-dependent enzymes. It is widely used as a chemotherapy drug for children and adults with malignant tumors. High-dose methotrexate (HD-MTX) is an effective treatment for extramedullary infiltration and systemic consolidation in children with acute lymphoblastic leukemia (ALL). However, significant toxicity results in most patients treated with HD-MTX, which limits its use. HD-MTX-induced toxicity is heterogeneous, and this heterogeneity may be related to gene polymorphisms in related enzymes of the MTX intracellular metabolic pathway. To gain a deeper understanding of the differences in toxicity induced by HD-MTX in individuals, the present review examines the correlation between HD-MTX-induced toxicity and the gene polymorphisms of related enzymes in the MTX metabolic pathway in ALL. In this review, we conclude that only the association of SLCO1B1 and ARID5B gene polymorphisms with plasma levels of MTX and MTX-related toxicity is clearly described. These results suggest that SLCO1B1 and ARID5B gene polymorphisms should be evaluated before HD-MTX treatment. In addition, considering factors such as age and race, the other exact predictor of MTX induced toxicity in ALL needs to be further determined.
Collapse
Affiliation(s)
- Meng Xu
- College of Laboratory Medicine, Jilin Medical University, Jilin, China
- School of Laboratory Medicine, Beihua University, Jilin, China
| | - Shuangshuang Wu
- Department of Pediatric Hematology, The First Hospital of Jilin University, Changchun, China
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Yue Wang
- Department of Pediatric Hematology, The First Hospital of Jilin University, Changchun, China
| | - Yundong Zhao
- School of Laboratory Medicine, Beihua University, Jilin, China
| | - Ximin Wang
- Jilin Drug Inspection Center, Changchun, China
| | - Changhong Wei
- Department of Hematology, The Linyi Central Hospital, Linyi, China
| | - Xueying Liu
- College of Laboratory Medicine, Jilin Medical University, Jilin, China
- School of Laboratory Medicine, Beihua University, Jilin, China
| | - Feng Hao
- College of Laboratory Medicine, Jilin Medical University, Jilin, China
| | - Cheng Hu
- College of Laboratory Medicine, Jilin Medical University, Jilin, China
| |
Collapse
|
4
|
Song Z, Hu Y, Liu S, Jiang D, Yi Z, Benjamin MM, Zhao R. The Role of Genetic Polymorphisms in High-Dose Methotrexate Toxicity and Response in Hematological Malignancies: A Systematic Review and Meta-Analysis. Front Pharmacol 2021; 12:757464. [PMID: 34744734 PMCID: PMC8570281 DOI: 10.3389/fphar.2021.757464] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/08/2021] [Indexed: 01/10/2023] Open
Abstract
Objective: High-dose methotrexate (HDMTX) is a mainstay therapeutic agent for the treatment of diverse hematological malignancies, and it plays a significant role in interindividual variability regarding the pharmacokinetics and toxicity. The genetic association of HDMTX has been widely investigated, but the conflicting results have complicated the clinical utility. Therefore, this systematic review aims to determine the role of gene variants within the HDMTX pathway and to fill the gap between knowledge and clinical practice. Methods: Databases including EMBASE, PubMed, Cochrane Central Register of Controlled Trials (CENTRAL), and the Clinical Trials.gov were searched from inception to November 2020. We included twelve single-nucleotide polymorphisms (SNPs) within the HDMTX pathway, involving RFC1, SLCO1B1, ABCB1, FPGS, GGH, MTHFR, DHFR, TYMS, and ATIC. Meta-analysis was conducted by using Cochrane Collaboration Review Manager software 5.3. The odds ratios (ORs) or hazard ratios (HRs) with 95% confidence interval (95% CI) were analyzed to evaluate the associations between SNPs and clinical outcomes. This study was performed according to the PRISMA guideline. Results: In total, 34 studies with 4102 subjects were identified for the association analysis. Nine SNPs involving MTHFR, RFC1, ABCB1, SLCO1B1, TYMS, FPGS, and ATIC genes were investigated, while none of studies reported the polymorphisms of GGH and DHFR yet. Two SNPs were statistically associated with the increased risk of HDMTX toxicity: MTHFR 677C>T and hepatotoxicity (dominant, OR=1.52, 95% CI=1.03-2.23; recessive, OR=1.68, 95% CI=1.10-2.55; allelic, OR=1.41, 95% CI=1.01-1.97), mucositis (dominant, OR=2.11, 95% CI=1.31-3.41; allelic, OR=1.91, 95% CI=1.28-2.85), and renal toxicity (recessive, OR=3.54, 95% CI=1.81-6.90; allelic, OR=1.89, 95% CI=1.18-3.02); ABCB1 3435C>T and hepatotoxicity (dominant, OR=3.80, 95% CI=1.68-8.61), whereas a tendency toward the decreased risk of HDMTX toxicity was present in three SNPs: TYMS 2R>3R and mucositis (dominant, OR=0.66, 95% CI=0.47-0.94); RFC1 80A>G and hepatotoxicity (recessive, OR=0.35, 95% CI=0.16-0.76); and MTHFR 1298A>C and renal toxicity (allelic, OR=0.41, 95% CI=0.18-0.97). Since the data of prognosis outcomes was substantially lacking, current studies were underpowered to investigate the genetic association. Conclusions: We conclude that genotyping of MTHFR and/or ABCB1 polymorphisms prior to treatment, MTHFR 677C>T particularly, is likely to be potentially useful with the aim of tailoring HDMTX therapy and thus reducing toxicity in patients with hematological malignancies.
Collapse
Affiliation(s)
- Zaiwei Song
- Department of Pharmacy, Peking University Third Hospital, Beijing, China.,Institute for Drug Evaluation, Peking University Health Science Center, Beijing, China.,Therapeutic Drug Monitoring and Clinical Toxicology Center, Peking University, Beijing, China
| | - Yang Hu
- Department of Pharmacy, Peking University Third Hospital, Beijing, China.,Institute for Drug Evaluation, Peking University Health Science Center, Beijing, China.,Therapeutic Drug Monitoring and Clinical Toxicology Center, Peking University, Beijing, China.,Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Shuang Liu
- Department of Pharmacy, Peking University Third Hospital, Beijing, China.,Institute for Drug Evaluation, Peking University Health Science Center, Beijing, China.,Therapeutic Drug Monitoring and Clinical Toxicology Center, Peking University, Beijing, China
| | - Dan Jiang
- Department of Pharmacy, Peking University Third Hospital, Beijing, China.,Institute for Drug Evaluation, Peking University Health Science Center, Beijing, China.,Therapeutic Drug Monitoring and Clinical Toxicology Center, Peking University, Beijing, China.,Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Zhanmiao Yi
- Department of Pharmacy, Peking University Third Hospital, Beijing, China.,Institute for Drug Evaluation, Peking University Health Science Center, Beijing, China.,Therapeutic Drug Monitoring and Clinical Toxicology Center, Peking University, Beijing, China
| | - Mason M Benjamin
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, United States
| | - Rongsheng Zhao
- Department of Pharmacy, Peking University Third Hospital, Beijing, China.,Institute for Drug Evaluation, Peking University Health Science Center, Beijing, China.,Therapeutic Drug Monitoring and Clinical Toxicology Center, Peking University, Beijing, China
| |
Collapse
|
5
|
Taylor ZL, Vang J, Lopez-Lopez E, Oosterom N, Mikkelsen T, Ramsey LB. Systematic Review of Pharmacogenetic Factors That Influence High-Dose Methotrexate Pharmacokinetics in Pediatric Malignancies. Cancers (Basel) 2021; 13:cancers13112837. [PMID: 34200242 PMCID: PMC8201112 DOI: 10.3390/cancers13112837] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/27/2021] [Accepted: 06/02/2021] [Indexed: 02/07/2023] Open
Abstract
Methotrexate (MTX) is a mainstay therapeutic agent administered at high doses for the treatment of pediatric and adult malignancies, such as acute lymphoblastic leukemia, osteosarcoma, and lymphoma. Despite the vast evidence for clinical efficacy, high-dose MTX displays significant inter-individual pharmacokinetic variability. Delayed MTX clearance can lead to prolonged, elevated exposure, causing increased risks for nephrotoxicity, mucositis, seizures, and neutropenia. Numerous pharmacogenetic studies have investigated the effects of several genes and polymorphisms on MTX clearance in an attempt to better understand the pharmacokinetic variability and improve patient outcomes. To date, several genes and polymorphisms that affect MTX clearance have been identified. However, evidence for select genes have conflicting results or lack the necessary replication and validation needed to confirm their effects on MTX clearance. Therefore, we performed a systematic review to identify and then summarize the pharmacogenetic factors that influence high-dose MTX pharmacokinetics in pediatric malignancies. Using the PRISMA guidelines, we analyzed 58 articles and 24 different genes that were associated with transporter pharmacology or the folate transport pathway. We conclude that there is only one gene that reliably demonstrates an effect on MTX pharmacokinetics: SLCO1B1.
Collapse
Affiliation(s)
- Zachary L. Taylor
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH 45267, USA;
- Division of Research in Patient Services, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Division of Clinical Pharmacology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Jesper Vang
- Department of Health Technology, Technical University of Denmark, 2800 Lyngby, Denmark;
- Paediatric Oncology Research Laboratory, University Hospital of Copenhagen, Rigshospitalet Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Elixabet Lopez-Lopez
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, 48940 Leioa, Spain;
- Pediatric Oncology Group, BioCruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
| | - Natanja Oosterom
- Princess Máxima Center for Pediatric Oncology, 3720 Utrecht, The Netherlands;
| | - Torben Mikkelsen
- Department of Pediatric Oncology, Aarhus University Hospital, 8200 Aarhus, Denmark;
| | - Laura B. Ramsey
- Division of Research in Patient Services, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Division of Clinical Pharmacology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Correspondence: ; Tel.: +1-513-803-8963
| |
Collapse
|
6
|
Fu J, Liu Y, Wang C, Zhang H, Yu B, Wang Y, Zhu H. Persistent follicular granulosa cell senescence and apoptosis induced by methotrexate leading to oocyte dysfunction and aberrant embryo development. Clin Transl Sci 2021; 14:2043-2054. [PMID: 33982403 PMCID: PMC8504813 DOI: 10.1111/cts.13068] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 02/08/2021] [Accepted: 04/06/2021] [Indexed: 11/26/2022] Open
Abstract
Evidence from clinical cases indicates an association between the low success rate of in vitro fertilization (IVF) and ovarian injury due to previous methotrexate (MTX) administration. Therefore, it is necessary to develop and propose reasonable clinical drug guidelines to improve the quality of oocytes and the development of embryos before pregnancy. In this study, we established a mouse model with previous MTX exposure to validate the effects of MTX on reproductive function in female mice. We observed that MTX administration could result in a decrease in the success rate of fertilization and an aberrant embryonic development in both natural fertilization and IVF, even after completion of five to six ovulation cycles after MTX withdrawal. Further research revealed senescence and apoptosis of follicular granulosa cells (GCs), accompanied by arrested follicle development and aberrant estradiol and anti‐Mullerian hormone levels. Supportive evidence indicated that MTX administration induced senescence and apoptosis of human GCs in vitro, and the effects were consistent with the high levels of p21, p53, and oxidative stress. We further demonstrated that folic acid (FA) could improve oocyte function and embryonic development in vivo and in vitro by protecting GCs against apoptosis and senescence. Based on these findings, we propose the implementation of extended intervals between MTX exposure and conception or IVF and recommend FA as a special dietary supplement during this interval period; however, prospective inquiry in humans is necessary to further understand the relationship between MTX and FA recovery.
Collapse
Affiliation(s)
- Jingbo Fu
- Department of Cell BiologyNaval Medical University (Second Military Medical University)ShanghaiChina
| | - Yang Liu
- Department of Cell BiologyNaval Medical University (Second Military Medical University)ShanghaiChina
| | - Chen Wang
- Department of Cell BiologyNaval Medical University (Second Military Medical University)ShanghaiChina
| | - Hongxia Zhang
- Department of Cell BiologyNaval Medical University (Second Military Medical University)ShanghaiChina
| | - Bin Yu
- Renji HospitalShanghai Jiao Tong UniversityShanghaiChina
| | - Ye Wang
- Department of Cell BiologyNaval Medical University (Second Military Medical University)ShanghaiChina
- Department of UrologyChinese People’s Liberation Army (PLA) General HospitalPLA Medical SchoolBeijingChina
- Centre for Reproductive MedicineChanghai HospitalNaval Medical University (Second Military Medical University)ShanghaiChina
| | - Haiying Zhu
- Department of Cell BiologyNaval Medical University (Second Military Medical University)ShanghaiChina
| |
Collapse
|
7
|
Yamashita K, Kiyonari S, Tsubota S, Kishida S, Sakai R, Kadomatsu K. Thymidylate synthase inhibitor raltitrexed can induce high levels of DNA damage in MYCN-amplified neuroblastoma cells. Cancer Sci 2020; 111:2431-2439. [PMID: 32415892 PMCID: PMC7385364 DOI: 10.1111/cas.14485] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/02/2020] [Accepted: 05/11/2020] [Indexed: 12/14/2022] Open
Abstract
MYCN gene amplification is consistently associated with poor prognosis in patients with neuroblastoma, a pediatric tumor arising from the sympathetic nervous system. Conventional anticancer drugs, such as alkylating agents and platinum compounds, have been used for the treatment of high-risk patients with MYCN-amplified neuroblastoma, whereas molecule-targeting drugs have not yet been approved. Therefore, the development of a safe and effective therapeutic approach is highly desired. Although thymidylate synthase inhibitors are widely used for colorectal and gastric cancers, their usefulness in neuroblastoma has not been well studied. Here, we investigated the efficacies of approved antifolates, methotrexate, pemetrexed, and raltitrexed (RTX), on MYCN-amplified and nonamplified neuroblastoma cell lines. Cell growth-inhibitory assay revealed that RTX showed a superior inhibitory activity against MYCN-amplified cell lines. We found no significant differences in the protein expression levels of the antifolate transporter or thymidylate synthase, a primary target of RTX, among the cell lines. Because thymidine supplementation could rescue the RTX-induced cell growth suppression, the effect of RTX was mainly due to the reduction in dTTP synthesis. Interestingly, RTX treatments induced single-stranded DNA damage response in MYCN-amplified cells to a greater extent than in the nonamplified cells. We propose that the high DNA replication stress and elevated levels of DNA damage, which are a result of deregulated expression of MYCN target genes, could be the cause of increased sensitivity to RTX.
Collapse
Affiliation(s)
- Ken Yamashita
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinichi Kiyonari
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Division of Biochemistry, Kitasato University School of Medicine, Sagamihara, Japan
| | - Shoma Tsubota
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Satoshi Kishida
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ryuichi Sakai
- Division of Biochemistry, Kitasato University School of Medicine, Sagamihara, Japan
| | - Kenji Kadomatsu
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
8
|
Srivastava AC, Thompson YG, Singhal J, Stellern J, Srivastava A, Du J, O'Connor TR, Riggs AD. Elimination of human folypolyglutamate synthetase alters programming and plasticity of somatic cells. FASEB J 2019; 33:13747-13761. [PMID: 31585510 DOI: 10.1096/fj.201901721r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Folates are vital cofactors for the regeneration of S-adenosyl methionine, which is the methyl source for DNA methylation, protein methylation, and other aspects of one-carbon (C1) metabolism. Thus, folates are critical for establishing and preserving epigenetic programming. Folypolyglutamate synthetase (FPGS) is known to play a crucial role in the maintenance of intracellular folate levels. Therefore, any modulation in FPGS is expected to alter DNA methylation and numerous other metabolic pathways. To explore the role of polyglutamylation of folate, we eliminated both isoforms of FPGS in human cells (293T), producing FPGS knockout (FPGSko) cells. The elimination of FPGS significantly decreased cell proliferation, with a major effect on oxidative phosphorylation and a lesser effect on glycolysis. We found a substantial reduction in global DNA methylation and noteworthy changes in gene expression related to C1 metabolism, cell division, DNA methylation, pluripotency, Glu metabolism, neurogenesis, and cardiogenesis. The expression levels of NANOG, octamer-binding transcription factor 4, and sex-determining region Y-box 2 levels were increased in the mutant, consistent with the transition to a stem cell-like state. Gene expression and metabolite data also indicate a major change in Glu and GABA metabolism. In the appropriate medium, FPGSko cells can differentiate to produce mainly cells with characteristics of either neural stem cells or cardiomyocytes.-Srivastava, A. C., Thompson, Y. G., Singhal, J., Stellern, J., Srivastava, A., Du, J., O'Connor, T. R., Riggs, A. D. Elimination of human folypolyglutamate synthetase alters programming and plasticity of somatic cells.
Collapse
Affiliation(s)
- Avinash C Srivastava
- Department of Diabetes Complications and Metabolism, City of Hope National Medical Center, Duarte, California, USA
| | | | - Jyotsana Singhal
- Department of Diabetes Complications and Metabolism, City of Hope National Medical Center, Duarte, California, USA
| | - Jordan Stellern
- Department of Cancer Biology, City of Hope National Medical Center, Duarte, California, USA
| | - Anviksha Srivastava
- Department of Cancer Biology, City of Hope National Medical Center, Duarte, California, USA
| | - Juan Du
- Integrative Genomics Core Facility, City of Hope National Medical Center, Duarte, California, USA
| | - Timothy R O'Connor
- Department of Cancer Biology, City of Hope National Medical Center, Duarte, California, USA
| | - Arthur D Riggs
- Department of Diabetes Complications and Metabolism, City of Hope National Medical Center, Duarte, California, USA
| |
Collapse
|
9
|
Sandhu A, Dhir V, Ahmad S, Dhawan V, Kaur J, Bhatnagar A. Clinico-genetic model to predict methotrexate intolerance in rheumatoid arthritis. Clin Rheumatol 2019; 39:201-206. [PMID: 31522319 DOI: 10.1007/s10067-019-04770-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/06/2019] [Accepted: 09/03/2019] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Methotrexate is the gold-standard DMARD in rheumatoid arthritis but is often associated with "mild" adverse effects like intolerance or laboratory abnormalities. Although non-life threatening, they are responsible for drug discontinuation in 17-50%. There is limited data on clinical and genetic markers that predict their occurrence. METHODS This prospective study enrolled patients with active rheumatoid arthritis. They were started on methotrexate at a weekly dose of 15 mg, escalated gradually to reach 25 mg which was continued till the end of the study. Intolerance (symptomatic adverse effects) was ascertained by a questionnaire at 4, 8, 16, and 24 weeks. Laboratory testing for occurrence of cytopenia and/or transaminitis was done at the same study visits. Seven SNPs in four genes involved in methotrexate handling were genotyped using real-time polymerase chain reaction. RESULTS This study included 110 patients with rheumatoid arthritis who received methotrexate for 24 weeks; the final mean weekly methotrexate dose was 22.0 ± 4.0 mg. Methotrexate intolerance occurred in 40 (37%), common being nausea (and vomiting) in 29 and anxiety (and dizziness) in 9. It was associated with lower BMI at baseline (21.5 ± 3.7, 23.8 ± 4.6 kg/m2, p = 0.01). FPGS rs10106 was significantly associated with intolerance with an allelic odds ratio (95% CI) of 2.02 (1.14-3.57) and the recessive genetic model (AA+AG versus GG) with an odds ratio of 3.8 (95% CI 1.5-9.6, p = 0.004). A model including both BMI and FPGS rs10106 could modestly predict methotrexate intolerance with an accuracy of 66.3%. CONCLUSIONS A clinical-genetic model including BMI and SNP FPGS 10101 was found to have a modest prediction ability for methotrexate intolerance.Key Points• Methotrexate intolerance (symptomatic adverse effects) was common and occurred in 37% patients over 6 months.• SNP FPGS rs10106 and low body mass index were associated with methotrexate intolerance.• Clinico-genetic model had a modest ability of 66% for predicting intolerance.
Collapse
Affiliation(s)
- Amit Sandhu
- Department of Internal Medicine (Rheumatology Unit), Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India.,Department of Biochemistry, Panjab University, Chandigarh, 160014, India
| | - Varun Dhir
- Department of Internal Medicine (Rheumatology Unit), Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India.
| | - Shabeer Ahmad
- Department of Internal Medicine (Rheumatology Unit), Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Veena Dhawan
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Jasbinder Kaur
- Department of Biochemistry, Government Medical College and Hospital Sector 32, Chandigarh, India
| | - Archana Bhatnagar
- Department of Biochemistry, Panjab University, Chandigarh, 160014, India
| |
Collapse
|
10
|
Vitale L, Serpieri V, Lauriola M, Piovesan A, Antonaros F, Cicchini E, Locatelli C, Cocchi G, Strippoli P, Caracausi M. Human trisomy 21 fibroblasts rescue methotrexate toxic effect after treatment with 5-methyl-tetrahydrofolate and 5-formyl-tetrahydrofolate. J Cell Physiol 2019; 234:15010-15024. [PMID: 30667057 DOI: 10.1002/jcp.28140] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 12/21/2019] [Indexed: 01/24/2023]
Abstract
Trisomy 21 causes Down syndrome (DS), the most common human genetic disorder and the leading genetic cause of intellectual disability. The alteration of one-carbon metabolism was described as the possible metabolic cause of the intellectual disability development in subjects with DS. One of the biochemical pathways involved in the one-carbon group transfer is the folate cycle. The cytotoxic drug methotrexate (MTX) is a folic acid (FA) analogue which inhibits the activity of dihydrofolate reductase enzyme involved in the one-carbon metabolic cycle. Trisomy 21 cells are more sensitive to the MTX effect than euploid cells, and in 1986 Jérôme Lejeune and Coll. demonstrated that MTX was twice as toxic in trisomy 21 lymphocytes than in control cells. In the present work, the rescue effect on MTX toxicity mediated by FA and some of its derivatives, tetrahydrofolate (THF), 5-formyl-THF, and 5-methyl-THF, in both normal and trisomy 21 skin fibroblast cells, was evaluated. A statistically significant rescue effect was obtained by 5-formyl-THF, 5-methyl-THF, and their combination, administered together with MTX. In conclusion, trisomy 21 fibroblast cell lines showed a good response to the rescue effects of 5-formyl-THF and 5-methyl-THF on the MTX toxicity almost as normal cell lines.
Collapse
Affiliation(s)
- Lorenza Vitale
- Unit of Histology, Embryology and Applied Biology, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Valentina Serpieri
- Unit of Genetics and Applied Biology, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Mattia Lauriola
- Unit of Histology, Embryology and Applied Biology, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Allison Piovesan
- Unit of Histology, Embryology and Applied Biology, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Francesca Antonaros
- Unit of Histology, Embryology and Applied Biology, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Elena Cicchini
- Unit of Histology, Embryology and Applied Biology, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Chiara Locatelli
- Neonatology Unit, St. Orsola-Malpighi Polyclinic, Bologna, Italy
| | - Guido Cocchi
- Neonatology Unit, St. Orsola-Malpighi Polyclinic, Bologna, Italy.,Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Pierluigi Strippoli
- Unit of Histology, Embryology and Applied Biology, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Maria Caracausi
- Unit of Histology, Embryology and Applied Biology, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| |
Collapse
|
11
|
Gervasini G, Mota-Zamorano S. Clinical Implications of Methotrexate Pharmacogenetics in Childhood Acute Lymphoblastic Leukaemia. Curr Drug Metab 2019; 20:313-330. [DOI: 10.2174/1389200220666190130161758] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/11/2019] [Accepted: 01/19/2019] [Indexed: 12/14/2022]
Abstract
Background:In the past two decades, a great body of research has been published regarding the effects of genetic polymorphisms on methotrexate (MTX)-induced toxicity and efficacy. Of particular interest is the role of this compound in childhood acute lymphoblastic leukaemia (ALL), where it is a pivotal drug in the different treatment protocols, both at low and high doses. MTX acts on a variety of target enzymes in the folates cycle, as well as being transported out and into of the cell by several transmembrane proteins.Methods:We undertook a structured search of bibliographic databases for peer-reviewed research literature using a focused review question.Results:This review has intended to summarize the current knowledge concerning the clinical impact of polymorphisms in enzymes and transporters involved in MTX disposition and mechanism of action on paediatric patients with ALL.Conclusion:In this work, we describe why, in spite of the significant research efforts, pharmacogenetics findings in this setting have not yet found their way into routine clinical practice.
Collapse
Affiliation(s)
- Guillermo Gervasini
- Department of Medical & Surgical Therapeutics, Medical School, University of Extremadura, Av. Elvas s/n 06006, Badajoz, Spain
| | - Sonia Mota-Zamorano
- Department of Medical & Surgical Therapeutics, Medical School, University of Extremadura, Av. Elvas s/n 06006, Badajoz, Spain
| |
Collapse
|
12
|
Pang Z, Wang G, Ran N, Lin H, Wang Z, Guan X, Yuan Y, Fang K, Liu J, Wang F. Inhibitory Effect of Methotrexate on Rheumatoid Arthritis Inflammation and Comprehensive Metabolomics Analysis Using Ultra-Performance Liquid Chromatography-Quadrupole Time of Flight-Mass Spectrometry (UPLC-Q/TOF-MS). Int J Mol Sci 2018; 19:ijms19102894. [PMID: 30249062 PMCID: PMC6212996 DOI: 10.3390/ijms19102894] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 09/20/2018] [Accepted: 09/21/2018] [Indexed: 12/13/2022] Open
Abstract
Rheumatoid arthritis (RA) is a common autoimmune disease. The inflammation in joint tissue and system endanger the human health seriously. Methotrexate have exhibited a satisfactory therapeutic effect in clinical practice. The aim of this research was to establish the pharmacological mechanism of methotrexate on RA therapy. Collagen induced arthritic rats were used to identify how methotrexate alleviates inflammation in vivo. Lipopolysaccharide-induced inflammatory proliferation in macrophages was also be detected in vitro. The activation level of Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and Nucleotide binding domain and leucine-rich repeat pyrin 3 domain (NLRP3)/Caspase-1 and related cytokines were examined by real-time PCR and western blotting or quantified with the enzyme-linked immunosorbent assay. Comprehensive metabolomics analysis was performed to identify the alteration of metabolites. Results showed that treating with methotrexate could alleviate the inflammatory condition, downregulate the activation of NF-κB and NLRP3/Caspase-1 inflammatory pathways and reduce the level of related cytokines. Docking interaction between methotrexate and caspase-1 was visualized as six H-bonds indicating a potential inhibitory effect. Metabolomics analysis reported three perturbed metabolic inflammation related pathways including arachidonic acid, linoleic acid and sphingolipid metabolism. These findings indicated that methotrexate could inhibit the onset of inflammation in joint tissue by suppressing the activation of NF-κB and NLRP3/Caspase-1 pathways and regulating the inflammation related metabolic networks.
Collapse
MESH Headings
- Animals
- Antirheumatic Agents/pharmacology
- Arthritis, Experimental/drug therapy
- Arthritis, Experimental/metabolism
- Arthritis, Experimental/pathology
- Arthritis, Rheumatoid/drug therapy
- Arthritis, Rheumatoid/metabolism
- Arthritis, Rheumatoid/pathology
- Biomarkers/metabolism
- Chromatography, Liquid/methods
- Cytokines/metabolism
- Inflammation/drug therapy
- Inflammation/metabolism
- Inflammation/pathology
- Male
- Metabolomics
- Methotrexate/pharmacology
- Rats
- Rats, Wistar
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
Collapse
Affiliation(s)
- Zhiqiang Pang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Guoqiang Wang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Nan Ran
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Hongqiang Lin
- Research Center of Natural Drug, School of Pharmaceutical Sciences, Jilin University, Changchun 130012, China.
| | - Ziyan Wang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Xuewa Guan
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Yuze Yuan
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Keyong Fang
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130012, China.
| | - Jinping Liu
- Research Center of Natural Drug, School of Pharmaceutical Sciences, Jilin University, Changchun 130012, China.
| | - Fang Wang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| |
Collapse
|
13
|
Genetic markers in methotrexate treatments. THE PHARMACOGENOMICS JOURNAL 2018; 18:689-703. [DOI: 10.1038/s41397-018-0047-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 07/06/2018] [Accepted: 08/10/2018] [Indexed: 12/20/2022]
|
14
|
Kodidela S, Pradhan SC, Dubashi B, Basu D. Interethnic Differences in Single and Haplotype Structures of Folylpolyglutamate Synthase and Gamma-glutamyl Hydrolase Variants and Their Influence on Disease Susceptibility to Acute Lymphoblastic Leukemia in the Indian Population: An Exploratory Study. Indian J Med Paediatr Oncol 2018. [DOI: 10.4103/ijmpo.ijmpo_32_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
AbstractAim: We aim to establish the genotype and haplotype frequencies of folylpolyglutamate synthase (FPGS rs10106 and rs1544105) and gamma-glutamyl hydrolase (GGH rs3758149 and rs11545078) variants in the South Indian population (SI) and to study the association of these variants with susceptibility to acute lymphoblastic leukemia (ALL). We also aim to compare the genotype and haplotype frequencies of studied variants with those of superpopulations from the 1000 Genomes Project collected in phase-3 and other published studies in the literature. Materials and Methods: A total of 220 unrelated healthy volunteers and 151 patients with ALL of both sexes were recruited for the study. Extracted DNA was subjected to genotyping by allelic discrimination using quantitative real-time-polymerase chain reaction. Genotype details of the studied variants in other ethnicities were obtained from 1000 genomes project Phase 3 data. Haploview software was used to construct haplotypes. Results:: In our study, the frequencies of FPGS rs1006'G' and rs1544105'A' alleles were found to be 37% and 37.2%, respectively, and the frequencies of GGH rs3758149'T' and GGH rs11545078'T' alleles were found to be 29.8% and 16.7%, respectively. Among the studied variants, FPGS rs1544105'AA' genotype carriers were found to be susceptible to the risk of ALL (odds ratio: 2.16; 95% confidence interval [CI]: 1.15–4.07; P = 0.02). Haplotype structures of FPGS and GGH variants in SI population were significantly different from other ethnicities (P < 0.05), except the South Asian superpopulation. Conclusion: FPGS rs1544105'AA' genotype was found to influence the risk for ALL. Intra and interethnic differences exist in the distribution of studied variants. Therefore, the impact of each variant on the susceptibility and outcome of diseases may differ between populations.
Collapse
Affiliation(s)
- Sunitha Kodidela
- Department of Pharmacology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Suresh Chandra Pradhan
- Department of Pharmacology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Biswajit Dubashi
- Department of Medical Oncology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Debdatta Basu
- Department of Pathology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| |
Collapse
|
15
|
Effects of methotrexate on the quality of oocyte maturation in vitro. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2017; 47:249-260. [DOI: 10.1007/s00249-017-1254-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 09/02/2017] [Accepted: 09/11/2017] [Indexed: 10/18/2022]
|