1
|
Du X, Li H, Zhao H, Cui S, Sun X, Tan X. Causal relationship between gut microbiota and ankylosing spondylitis and potential mediating role of inflammatory cytokines: A mendelian randomization study. PLoS One 2024; 19:e0306792. [PMID: 39083521 PMCID: PMC11290680 DOI: 10.1371/journal.pone.0306792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/24/2024] [Indexed: 08/02/2024] Open
Abstract
Associations between gut microbiota and ankylosing spondylitis have been discovered in previous studies, but whether these associations reflect a causal relationship remains inconclusive. Aiming to reveal the bidirectional causal associations between gut microbiota and ankylosing spondylitis, we utilized publicly available genome wide association study summary data for 211 gut microbiota (GM) taxa and ankylosing spondylitis (AS) to conduct two sample mendelian randomization analyses. Mediation analysis was performed to explore mediating inflammatory cytokines. We found that genetically predicted higher abundance of Lactobacillaceae family, Rikenellaceae family and Howardella genus had suggestive associations with decreased risk of ankylosing spondylitis while genetic proxied higher abundance of Actinobacteria class and Ruminococcaceae_NK4A214_group genus was associated with increased risk of ankylosing spondylitis. IL23 and IFN-γ were potential mediating cytokines for GM dysbiosis, especially for Actinobacteria class, leading to AS. Our study provided a new exploration direction for the treatment of AS. Lactobacillaceae family, Rikenellaceae family, Howardella genus, Actinobacteria class and Ruminococcaceae_NK4A214_group genus are expected to become new therapeutic targets and monitoring indicators for AS.
Collapse
Affiliation(s)
- Xinyu Du
- Orthopedics and Traumatology Department of Integrated Traditional Chinese and Western Medicine, Tianjin Hospital, Tianjin, China
| | - Haibo Li
- Orthopedics and Traumatology Department of Integrated Traditional Chinese and Western Medicine, Tianjin Hospital, Tianjin, China
| | - Hongzhou Zhao
- Orthopedics and Traumatology Department of Integrated Traditional Chinese and Western Medicine, Tianjin Hospital, Tianjin, China
| | - Shuangshuang Cui
- Orthopedics Institute, Tianjin Hospital, Tianjin University, Tianjin, China
| | - Xiaozhuo Sun
- Preventive Treatment of Disease Department, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaochan Tan
- Acupuncture Department, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| |
Collapse
|
2
|
Han B, Xie Q, Liang W, Yin P, Qu X, Hai Y. PLCG2 and IFNAR1: The Potential Biomarkers Mediated by Immune Infiltration and Osteoclast Differentiation of Ankylosing Spondylitis in the Peripheral Blood. Mediators Inflamm 2024; 2024:3358184. [PMID: 38223749 PMCID: PMC10787051 DOI: 10.1155/2024/3358184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/12/2022] [Accepted: 11/28/2023] [Indexed: 01/16/2024] Open
Abstract
Objectives Ankylosing spondylitis (AS) is a chronic inflammatory rheumatic disease characterized by chronic spinal inflammation, arthritis, gut inflammation, and enthesitis. We aimed to identify the key biomarkers related to immune infiltration and osteoclast differentiation in the pathological process of AS by bioinformatic methods. Methods GSE25101 from the Gene Expression Omnibus was used to obtain AS-associated microarray datasets. We performed bioinformatics analysis using R software to validate different expression levels. The purpose of the GO and KEGG enrichment analyses of DEGs was to exclude key genes. Using weighted correlation network analysis (WGCNA), we examined all expression profile data and identified differentially expressed genes. The objective was to investigate the interaction between genetic and clinical features and to identify the essential relationships underlying coexpression modules. The CIBERSORT method was used to make a comparison of the immune infiltration in whole blood between the AS group and the control group. The WGCNA R program from Bioconductor was used to identify hub genes. RNA extraction reverse transcription and quantitative polymerase chain reaction were conducted in the peripheral blood collected from six AS patients and six health volunteers matched by age and sex. Results 125 DEGs were identified, consisting of 36 upregulated and 89 downregulated genes that are involved in the cell cycle and replication processes. In the WGCNA, modules of MCODE with different algorithms were used to find 33 key genes that were related to each other in a strong way. Immune infiltration analysis found that naive CD4+ T cells and monocytes may be involved in the process of AS. PLCG2 and IFNAR1 genes were obtained by screening genes meeting the conditions of immune cell infiltration and osteoclast differentiation in AS patients among IGF2R, GRN, SH2D1A, LILRB3, IFNAR1, PLCG2, and TNFRSF1B. The results demonstrated that the levels of PLCG2 mRNA expression in AS were considerably higher than those in healthy individuals (P=0.003). IFNAR1 mRNA expression levels were considerably lower in AS than in healthy individuals (P < 0.0001). Conclusions Dysregulation of PLCG2 and IFNAR1 are key factors in disease occurrence and development of AS through regulating immune infiltration and osteoclast differentiation. Explaining the differences in immune infiltration and osteoclast differentiation between AS and normal samples will contribute to understanding the development of spondyloarthritis.
Collapse
Affiliation(s)
- Bo Han
- Department of Orthopedics, Beijing Chao-Yang Hospital, Capital Medical University, GongTiNanLu 8#, Chao-Yang District, Beijing 100020, China
- Joint Laboratory for Research and Treatment of Spinal Cord Injury in Spinal Deformity, Capital Medical University, Beijing, China
- Clinical Center for Spinal Deformity, Capital Medical University, Beijing, China
- Department of Orthopaedics, Capital Medical University, Beijing, China
| | - Qiaobo Xie
- Joint Laboratory for Research and Treatment of Spinal Cord Injury in Spinal Deformity, Capital Medical University, Beijing, China
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- Capital Institute of Pediatrics, Beijing 100020, China
| | - Weishi Liang
- Department of Orthopedics, Beijing Chao-Yang Hospital, Capital Medical University, GongTiNanLu 8#, Chao-Yang District, Beijing 100020, China
- Joint Laboratory for Research and Treatment of Spinal Cord Injury in Spinal Deformity, Capital Medical University, Beijing, China
- Clinical Center for Spinal Deformity, Capital Medical University, Beijing, China
- Department of Orthopaedics, Capital Medical University, Beijing, China
| | - Peng Yin
- Department of Orthopedics, Beijing Chao-Yang Hospital, Capital Medical University, GongTiNanLu 8#, Chao-Yang District, Beijing 100020, China
- Joint Laboratory for Research and Treatment of Spinal Cord Injury in Spinal Deformity, Capital Medical University, Beijing, China
- Clinical Center for Spinal Deformity, Capital Medical University, Beijing, China
- Department of Orthopaedics, Capital Medical University, Beijing, China
| | - Xianjun Qu
- Joint Laboratory for Research and Treatment of Spinal Cord Injury in Spinal Deformity, Capital Medical University, Beijing, China
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yong Hai
- Department of Orthopedics, Beijing Chao-Yang Hospital, Capital Medical University, GongTiNanLu 8#, Chao-Yang District, Beijing 100020, China
- Joint Laboratory for Research and Treatment of Spinal Cord Injury in Spinal Deformity, Capital Medical University, Beijing, China
- Clinical Center for Spinal Deformity, Capital Medical University, Beijing, China
- Department of Orthopaedics, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Fang P, Liu X, Qiu Y, Wang Y, Wang D, Zhao J, Ding H, Bao N. Exploring causal correlations between inflammatory cytokines and ankylosing spondylitis: a bidirectional mendelian-randomization study. Front Immunol 2023; 14:1285106. [PMID: 38054001 PMCID: PMC10694192 DOI: 10.3389/fimmu.2023.1285106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/31/2023] [Indexed: 12/07/2023] Open
Abstract
Background The impact of inflammatory factors on the development of Ankylosing Spondylitis (AS) is widely recognized, but the exact causal relationship remains unclear. Methods The bidirectional mendelian-randomization study utilized genetic data from a genome-wide association study (GWAS) of 186 AS cases and 456,162 controls of European ancestry. Inflammatory cytokines were obtained from a GWAS summary of 8,293 healthy participants. Causal associations were primarily investigated using the inverse variance-weighted method, supplemented by MR Egger, weighted median and weighted mode analyses. Heterogeneity in the results was assessed using the Cochrane Q test. Horizontal pleiotropy was evaluated through the MR-Egger intercept test and the MR pleiotropy residual sum and outliers (MR-PRESSO) test. Sensitivity analysis was conducted through leave-one-out analysis. Results The results suggest a genetically predicted potential association between beta-nerve growth factor (βNGF), Interleukin-1-beta (IL-1β), and TNF-related apoptosis inducing ligand (TRAIL) with the risk of AS (OR: 2.17, 95% CI: 1.13-4.16; OR: 0.41, 95% CI: 0.18-0.95,; OR: 1.47, 95% CI: 1.02-2.13).Additionally, Interleukin-12p70 (IL-12p70), Interleukin-17 (IL-17), Interleukin-6 (IL-6), Interleukin-4 (IL-4), Stromal-cell-derived factor 1 alpha (SDF-1α), Macrophage inflammatory protein 1β (MIP1β), Monocyte chemoattractant protein-3 (MCP-3), Platelet-derived growth factor bb (PDGFbb), Granulocyte-colony stimulating factor (GCSF), Fibroblast growth factor basic (bFGF), TNF-related apoptosis inducing ligand (TRAIL), and Interferon-gamma (IFN -γ) are suggested as consequences of AS in genetically prediction.No evidence of horizontal pleiotropy or heterogeneity between the genetic variants was found (P>0.05), and a leave-one-out test confirmed the stability and robustness of this association. Conclusion These findings suggest that βNGF, IL-1β, and TRAIL may play a crucial role in the pathogenesis of AS. Additionally, AS may impact the expression of cytokines such as IL-12p70, IL-17, IL-6, IL-4, SDF-1α, MIP1β, MCP-3, PDGFbb,GCSF, bFGF,TRAIL,and IFN-γ. Further investigations are warranted to determine whether these biomarkers can be utilized for the prevention or treatment of AS.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hao Ding
- Department of Orthopedics, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Nirong Bao
- Department of Orthopedics, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
4
|
Yurt EF, Biçer C, Serdar MA, Akan S, Erten Ş. Accelerated kynurenine pathway downregulates immune activation in patients with axial spondyloarthritis. Cytokine 2023; 169:156247. [PMID: 37295242 DOI: 10.1016/j.cyto.2023.156247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/27/2023] [Accepted: 05/27/2023] [Indexed: 06/12/2023]
Abstract
Various studies reported that the kynurenine (Kyn) pathway plays a pivotal role in regulating the balance between activation and inhibition of the immune system. Proinflammatory cytokines can accelerate the Kyn pathway by altering indoleamine (2, 3)- dioxygenase (IDO) allosteric enzyme activity. Excessive cytokine release and immune system activation have essential roles in the pathogenesis of axial spondyloarthritis (axSpA). We aimed to investigate the relationship of the Kyn pathway with proinflammatory cytokines and with the severity of the disease in patients with axSpA. The study included 104 patients with axSpA and 54 healthy volunteers. The severity of the disease was determined by Bath Ankylosing Spondylitis Disease Activity Index (BASDAI). The Kyn pathway was evaluated by IDO activity calculated with Kyn/Tryptophan (Trp) ratio. Plasma Trp and Kyn concentrations were measured with tandem mass spectrometry. Serum IL 17/23 and IFN-γ concentrations were measured with ELISA. These groups were compared in terms of IDO, IL-17, IL-23, IFN-γ, and BASDAI. Plasma IDO activity was significantly increased, however, serum IL-17, IL-23, and IFN-γ levels were significantly decreased in patients compared to healthy volunteers. While IFN-γ was positively correlated with the severity of the disease (p = 0.02), it also had a significant inverse correlation with IDO activity (p < 0.001). However, these correlations are weak. As a result of this study, the Kyn pathway is accelerated and proinflammatory cytokine levels are decreased in patients with axSpA. All of these results with an indirect weak negative association between high IDO and low disease activity suggest that an accelerated Kyn pathway may limit the immune system activation in axSpA disease.
Collapse
Affiliation(s)
- Emine Feyza Yurt
- Medical Biochemistry, Faculty of Medicine, Ankara Yıldırım Beyazıt University, Ankara, Türkiye.
| | - Cemile Biçer
- Medical Biochemistry, Faculty of Medicine, Ankara Yıldırım Beyazıt University, Ankara, Türkiye
| | - Muhittin A Serdar
- Medical Biochemistry, Faculty of Medicine, Acıbadem University, Türkiye
| | - Selçuk Akan
- Rheumatology, Ankara City Hospital, Ankara, Türkiye
| | - Şükran Erten
- Rheumatology, Ankara City Hospital, Ankara, Türkiye; Rheumatology, Faculty of Medicine, Ankara Yildirim Beyazit University, Ankara, Türkiye
| |
Collapse
|
5
|
Jin Q, Liu Y, Zhang Z, Wen X, Chen Z, Tian H, Kang Z, Wu X, Xu H. MYC promotes fibroblast osteogenesis by regulating ALP and BMP2 to participate in ectopic ossification of ankylosing spondylitis. Arthritis Res Ther 2023; 25:28. [PMID: 36803548 PMCID: PMC9942334 DOI: 10.1186/s13075-023-03011-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 02/09/2023] [Indexed: 02/23/2023] Open
Abstract
BACKGROUND Ectopic ossification is an important cause of disability in patients with ankylosing spondylitis (AS). Whether fibroblasts can transdifferentiate into osteoblasts and contribute to ossification remains unknown. This study aims to investigate the role of stem cell transcription factors (POU5F1, SOX2, KLF4, MYC, etc.) of fibroblasts in ectopic ossification in patients with AS. METHODS Primary fibroblasts were isolated from the ligaments of patients with AS or osteoarthritis (OA). In an in vitro study, primary fibroblasts were cultured in osteogenic differentiation medium (ODM) to induce ossification. The level of mineralization was assessed by mineralization assay. The mRNA and protein levels of stem cell transcription factors were measured by real-time quantitative PCR (q-PCR) and western blotting. MYC was knocked down by infecting primary fibroblasts with lentivirus. The interactions between stem cell transcription factors and osteogenic genes were analysed by chromatin immunoprecipitation (ChIP). Recombinant human cytokines were added to the osteogenic model in vitro to evaluate their role in ossification. RESULTS We found that MYC was elevated significantly in the process of inducing primary fibroblasts to differentiate into osteoblasts. In addition, the level of MYC was remarkably higher in AS ligaments than in OA ligaments. When MYC was knocked down, the expression of the osteogenic genes alkaline phosphatase (ALP) and bone morphogenic protein 2 (BMP2) was decreased, and the level of mineralization was reduced significantly. In addition, the ALP and BMP2 were confirmed to be the direct target genes of MYC. Furthermore, interferon-γ (IFN-γ), which showed high expression in AS ligaments, was found to promote the expression of MYC in fibroblasts in the process of ossification in vitro. CONCLUSIONS This study demonstrates the role of MYC in ectopic ossification. MYC may act as the critical bridge that links inflammation with ossification in AS, thus providing new insights into the molecular mechanisms of ectopic ossification in AS.
Collapse
Affiliation(s)
- Qianmei Jin
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Yaoyang Liu
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Zhiguo Zhang
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Xingzhu Wen
- Department of General Surgery, 72nd Group Army Hospital, Huzhou University, Huzhou, 313000, Zhejiang, China
| | - Ziqiang Chen
- Department of Orthopaedics, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Haijun Tian
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zijian Kang
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Xin Wu
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Huji Xu
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, 200003, China.
- School of Medicine, Tsinghua University, Beijing, 100084, China.
- Peking-Tsinghua Center for Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
6
|
Tang N, Huang J, Chen C, Wu X, Xu H, Chen G, Xue H. Polymorphisms and haplotypes of IL2RA, IL10, IFNG, IRF5, and CCR2 are associated with Epstein-Barr virus-associated hemophagocytic lymphohistiocytosis in children. Pediatr Blood Cancer 2021; 68:e29097. [PMID: 34031980 DOI: 10.1002/pbc.29097] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 04/11/2021] [Accepted: 04/14/2021] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Cytokine storms are central to the development of Epstein-Barr virus-associated hemophagocytic lymphohistiocytosis (EBV-HLH). Previous studies have shown that single-nucleotide polymorphisms (SNPs) of cytokine genes may be associated with the development of EBV-HLH in children. As such, we investigated the association between susceptibility to EBV-HLH in children and SNPs and haplotypes of genes encoding interleukin-2 receptor subunit alpha (IL2RA), interleukin-10 (IL10), interferon gamma (IFNG), interferon regulatory factor 5 (IRF5), and C-C chemokine receptor 2 (CCR2). METHODS Sixty-six children with EBV-HLH and 58 healthy EBV-seropositive controls were enrolled in this study. SNPs of IL2RA rs2104286, rs12722489, and rs11594656; IL10 rs1800896, rs1800871, and rs1800872; IFNG rs2430561, IRF5 rs2004640, and CCR2 rs1799864 were assayed and genotyped using the SNaPshot technique. RESULTS Frequencies of the A allele of IL2RA rs2104286 and IL10 rs1800896, and C allele of IL-10 rs1800872 were significantly higher in the EBV-HLH group than in the control group. The AA genotype of IL2RA rs2104286 and IL10 rs1800896, and the CC genotype of IL10 rs1800872 might be associated with a significantly high risk of EBV-HLH. However, the frequencies of genotypes and alleles of IL2RA rs2104286, IL10 rs1800871, IFNG rs2430561, IRF5 rs2004640, and CCR2 rs1799864 were similar in both groups. Additionally, IL2RA AGT (rs2104286-rs12722489-rs11594656) and IL10 ACC (rs1800896-rs1800871-rs1800872) haplotypes were also associated with an increased risk of EBV-HLH. CONCLUSIONS SNPs of IL2RA rs2104286, IL10 rs1800896 and rs1800872 and the haplotypes of IL2RA AGT and IL10 ACC were highly associated with susceptibility to EBV-HLH in children.
Collapse
Affiliation(s)
- Nannan Tang
- Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Junbin Huang
- Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Chun Chen
- Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Xiaojun Wu
- Department of Pediatrics, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Honggui Xu
- Department of Pediatrics, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Guohua Chen
- Department of Pediatrics, Huizhou First Hospital, Huizhou, China
| | - Hongman Xue
- Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| |
Collapse
|
7
|
Tian ZG, Yao M, Chen J. Micheliolide alleviates ankylosing spondylitis (AS) by suppressing the activation of the NLRP3 inflammasome and maintaining the balance of Th1/Th2 via regulating the NF-κB signaling pathway. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:991. [PMID: 32953791 PMCID: PMC7475468 DOI: 10.21037/atm-20-4987] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Background Ankylosing spondylitis (AS) is a common form of inflammatory arthritis. Micheliolide (MCL), a sesquiterpene lactone, is reportedly involved in the alleviation of inflammatory response. This study aimed to investigate the mechanism of MCL in the treatment of AS. Methods Mice were randomly divided into five groups: the sham group, the MCL (50 mg/kg) group, the AS model group, the AS + MCL (20 mg/kg) group, and the AS + MCL (50 mg/kg) group. After the addition of the inhibitor celastrol, mice were randomly divided into five groups: the sham group, the AS model group, the AS + MCL (50 mg/kg) group, the AS + Celastrol (1 mg/kg) group, and the AS + Celastrol (1 mg/kg) + MCL (50 mg/kg) group. Results Compared with the AS model mice, the protein expression levels of tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, and IL-18 were decreased after MCL treatment. The protein expression levels of capase-1 p10, IL-1β p17, NOD-like receptor family and pyrin domain containing 3 (NLRP3), caspase-1, and apoptosis-associated speck-like protein (ASC) were also reduced. The protein expression levels of Interferon (IFN)-γ were down-regulated, but levels of IL-4 were increased. Western blotting and immunohistochemistry revealed that the levels of p-IκB α were up-regulated, while the levels of phosphorylated-p65 were down-regulated. After the addition of celastrol, MCL treatment significantly reduced the levels of p-p65, NLRP3, caspase-1, and ASC. Meanwhile, the levels of IFN-γ were markedly down-regulated, but the levels of IL-4 were enhanced. Conclusions Our study found that MCL suppressed the activation of NLRP3 inflammasome and maintained the balance of Th1/Th2 via regulating NF-κB signaling. Therefore, MCL could potentially be used to treat AS.
Collapse
Affiliation(s)
- Zhong-Gu Tian
- Department of Orthopedics, Pinggu Hospital, Beijing Hospital of Traditional Chinese Medicine, Beijing, China
| | - Miaomiao Yao
- Drug Clinical Trial Institution, Xi'an Gaoxin Hospital, Xi'an, China
| | - Jie Chen
- Department of Osteoporosis, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, China
| |
Collapse
|
8
|
Liu Y, Zhang G, Guan Y, Zhao X, Wang Q, Li H, Qi J. Association of IFN-γ polymorphisms with ankylosing spondylitis risk. J Cell Mol Med 2020; 24:10615-10620. [PMID: 32729668 PMCID: PMC7521230 DOI: 10.1111/jcmm.15680] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/22/2020] [Accepted: 06/25/2020] [Indexed: 01/14/2023] Open
Abstract
The case‐control study was designed to investigate the genetic effects of interferon‐gamma (IFN‐γ) rs2069727 and rs1861494 polymorphisms on ankylosing spondylitis (AS) susceptibility in a Chinese Han population. Blood samples were collected from 108 AS patients and 110 healthy controls. IFN‐γ polymorphisms were genotyped by polymerase chain reaction‐restriction fragment length polymorphism (PCR‐RFLP). Hardy‐Weinberg equilibrium (HWE) test was performed in control group. Odds ratios (OR) with 95% confidence intervals (95% CI) were calculated using chi‐square test to evaluate the association between AS susceptibility and IFN‐γ polymorphisms, and the results were adjusted by logistic regressive analysis. The frequency of rs2069727 CC genotype was much higher in cases than that in controls, suggested its significant association with increased AS risk (adjusted OR = 5.899, 95% CI = 1.563‐22.261; P = .009). In addition, C allele also showed close association with increased risk of AS (adjusted OR = 2.052, 95% CI = 1.286‐1.704, P = 0 .003). While the genotype and allele frequencies of IFN‐γ rs1861494 polymorphism were not significantly different between patients and controls (P > 0.05 for all), IFN‐γ rs2069727 polymorphism is significantly associated with increased AS risk in a Chinese Han Population.
Collapse
Affiliation(s)
- Yanhui Liu
- Department of Orthopedics, Harrison International Peace Hospital, The People's Hospital of Hengshui City, Hengshui, China
| | - Guohui Zhang
- Department of Orthopedics, Harrison International Peace Hospital, The People's Hospital of Hengshui City, Hengshui, China
| | - Yulong Guan
- Department of Orthopedics, Harrison International Peace Hospital, The People's Hospital of Hengshui City, Hengshui, China
| | - Xiaoliang Zhao
- Department of Orthopedics, Harrison International Peace Hospital, The People's Hospital of Hengshui City, Hengshui, China
| | - Quan Wang
- Department of Orthopedics, Harrison International Peace Hospital, The People's Hospital of Hengshui City, Hengshui, China
| | - Hua Li
- Department of Orthopedics, Harrison International Peace Hospital, The People's Hospital of Hengshui City, Hengshui, China
| | - Jinhong Qi
- Department of Orthopedics, Harrison International Peace Hospital, The People's Hospital of Hengshui City, Hengshui, China
| |
Collapse
|
9
|
Abuga KM, Rockett KA, Muriuki JM, Koch O, Nairz M, Sirugo G, Bejon P, Kwiatkowski DP, Prentice AM, Atkinson SH. Interferon-gamma polymorphisms and risk of iron deficiency and anaemia in Gambian children. Wellcome Open Res 2020; 5:40. [PMID: 32420456 PMCID: PMC7202087 DOI: 10.12688/wellcomeopenres.15750.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2020] [Indexed: 12/15/2022] Open
Abstract
Background: Anaemia is a major public health concern especially in African children living in malaria-endemic regions. Interferon-gamma (IFN-γ) is elevated during malaria infection and is thought to influence erythropoiesis and iron status. Genetic variants in the IFN-γ gene (IFNG) are associated with increased IFN-γ production. We investigated putative functional single nucleotide polymorphisms (SNPs) and haplotypes of IFNG in relation to nutritional iron status and anaemia in Gambian children over a malaria season. Methods: We used previously available data from Gambian family trios to determine informative SNPs and then used the Agena Bioscience MassArray platform to type five SNPs from the IFNG gene in a cohort of 780 Gambian children aged 2-6 years. We also measured haemoglobin and biomarkers of iron status and inflammation at the start and end of a malaria season. Results: We identified five IFNG haplotype-tagging SNPs ( IFNG-1616 [rs2069705], IFNG+874 [rs2430561], IFNG+2200 [rs1861493], IFNG+3234 [rs2069718] and IFNG+5612 [rs2069728]). The IFNG+2200C [rs1861493] allele was associated with reduced haemoglobin concentrations (adjusted β -0.44 [95% CI -0.75, -0.12]; Bonferroni adjusted P = 0.03) and a trend towards iron deficiency compared to wild-type at the end of the malaria season in multivariable models adjusted for potential confounders. A haplotype uniquely identified by IFNG+2200C was similarly associated with reduced haemoglobin levels and trends towards iron deficiency, anaemia and iron deficiency anaemia at the end of the malaria season in models adjusted for age, sex, village, inflammation and malaria parasitaemia. Conclusion: We found limited statistical evidence linking IFNG polymorphisms with a risk of developing iron deficiency and anaemia in Gambian children. More definitive studies are needed to investigate the effects of genetically influenced IFN-γ levels on the risk of iron deficiency and anaemia in children living in malaria-endemic areas.
Collapse
Affiliation(s)
- Kelvin M. Abuga
- Kenya Medical Research Institute (KEMRI) Centre for Geographic Medicine Coast, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Kirk A. Rockett
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - John Muthii Muriuki
- Kenya Medical Research Institute (KEMRI) Centre for Geographic Medicine Coast, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Open University, KEMRI-Wellcome Trust Research Programme – Accredited Research Centre, Kilifi, Kenya
| | - Oliver Koch
- Infection Medicine, The University of Edinburgh, Edinburgh, UK
| | - Manfred Nairz
- Department of Internal Medicine II, Medical University Innsbruck, Innsbruck, Austria
| | - Giorgio Sirugo
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Philip Bejon
- Kenya Medical Research Institute (KEMRI) Centre for Geographic Medicine Coast, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Dominic P. Kwiatkowski
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Wellcome Sanger Institute, Hinxton, Cambridge, UK
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| | - Andrew M. Prentice
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Sarah H. Atkinson
- Kenya Medical Research Institute (KEMRI) Centre for Geographic Medicine Coast, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Department of Paediatrics, University of Oxford, Oxford, UK
| |
Collapse
|
10
|
Abuga KM, Rockett KA, Muriuki JM, Koch O, Nairz M, Sirugo G, Bejon P, Kwiatkowski DP, Prentice AM, Atkinson SH. Interferon-gamma polymorphisms and risk of iron deficiency and anaemia in Gambian children. Wellcome Open Res 2020; 5:40. [PMID: 32420456 PMCID: PMC7202087 DOI: 10.12688/wellcomeopenres.15750.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2020] [Indexed: 11/08/2023] Open
Abstract
Background: Anaemia is a major public health concern especially in African children living in malaria-endemic regions. Interferon-gamma (IFN-γ) is elevated during malaria infection and is thought to influence erythropoiesis and iron status. Genetic variants in the IFN-γ gene (IFNG) are associated with increased IFN-γ production. We investigated putative functional single nucleotide polymorphisms (SNPs) and haplotypes of IFNG in relation to nutritional iron status and anaemia in Gambian children over a malaria season. Methods: We used previously available data from Gambian family trios to determine informative SNPs and then used the Agena Bioscience MassArray platform to type five SNPs from the IFNG gene in a cohort of 780 Gambian children. We also measured haemoglobin and biomarkers of iron status and inflammation at the start and end of a malaria season. Results: We identified five IFNG haplotype-tagging SNPs ( IFNG-1616 [rs2069705], IFNG+874 [rs2430561], IFNG+2200 [rs1861493], IFNG+3234 [rs2069718] and IFNG+5612 [rs2069728]). The IFNG+2200C [rs1861493] allele was associated with reduced haemoglobin concentrations (adjusted β -0.44 [95% CI -0.75, -0.12]; Bonferroni adjusted P = 0.03) and a trend towards iron deficiency compared to wild-type at the end of the malaria season in multivariable models adjusted for potential confounders. A haplotype uniquely identified by IFNG+2200C was similarly associated with reduced haemoglobin levels and trends towards iron deficiency, anaemia and iron deficiency anaemia at the end of the malaria season in models adjusted for age, sex, village, inflammation and malaria parasitaemia. Conclusion: We found limited statistical evidence linking IFNG polymorphisms with a risk of developing iron deficiency and anaemia in Gambian children. More definitive studies are needed to investigate the effects of genetically influenced IFN-γ levels on the risk of iron deficiency and anaemia in children living in malaria-endemic areas.
Collapse
Affiliation(s)
- Kelvin M. Abuga
- Kenya Medical Research Institute (KEMRI) Centre for Geographic Medicine Coast, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Kirk A. Rockett
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - John Muthii Muriuki
- Kenya Medical Research Institute (KEMRI) Centre for Geographic Medicine Coast, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Open University, KEMRI-Wellcome Trust Research Programme – Accredited Research Centre, Kilifi, Kenya
| | - Oliver Koch
- Infection Medicine, The University of Edinburgh, Edinburgh, UK
| | - Manfred Nairz
- Department of Internal Medicine II, Medical University Innsbruck, Innsbruck, Austria
| | - Giorgio Sirugo
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Philip Bejon
- Kenya Medical Research Institute (KEMRI) Centre for Geographic Medicine Coast, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Dominic P. Kwiatkowski
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Wellcome Sanger Institute, Hinxton, Cambridge, UK
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| | - Andrew M. Prentice
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Sarah H. Atkinson
- Kenya Medical Research Institute (KEMRI) Centre for Geographic Medicine Coast, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Department of Paediatrics, University of Oxford, Oxford, UK
| |
Collapse
|