1
|
Huang SM, Ong CT, Huang YC, Chen NH, Leung TK, Shen CY, Kuo LW. Resting-State Network Analysis Reveals Altered Functional Brain Connectivity in Essential Tremor. Brain Connect 2024; 14:382-390. [PMID: 38874971 DOI: 10.1089/brain.2024.0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024] Open
Abstract
Introduction: Essential tremor (ET) comprises motor and non-motor-related features, whereas the current neuro-pathogenetic basis is still insufficient to explain the etiologies of ET. Although cerebellum-associated circuits have been discovered, the large-scale cerebral network connectivity in ET remains unclear. This study aimed to characterize the ET in terms of functional connectivity as well as network. We hypothesized that the resting-state network (RSN) within cerebrum could be altered in patients with ET. Methods: Resting-state functional magnetic resonance imaging (fMRI) was used to evaluate the inter- and intra-network connectivity as well as the functional activity in ET and normal control. Correlation analysis was performed to explore the relationship between RSN metrics and tremor features. Results: Comparison of inter-network connectivity indicated a decreased connectivity between default mode network and ventral attention network in the ET group (p < 0.05). Differences in functional activity (assessed by amplitude of low-frequency fluctuation, ALFF) were found in several brain regions participating in various RSNs (p < 0.05). The ET group generally has higher degree centrality over normal control. Correlation analysis has revealed that tremor features are associated with inter-network connectivity (|r| = 0.135-0.506), ALFF (|r| = 0.313-0.766), and degree centrality (|r| = 0.523-0.710). Conclusion: Alterations in the cerebral network of ET were detected by using resting-state fMRI, demonstrating a potentially useful approach to explore the cerebral alterations in ET.
Collapse
Affiliation(s)
- Sheng-Min Huang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli, Taiwan
| | - Cheung-Ter Ong
- Department of Neurology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chia-Yi, Taiwan
| | - Yu-Ching Huang
- Department of Neurology, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan
- Department of Industrial Engineering and Management, Yuan Ze University, Taoyuan, Taiwan
| | - Nan-Hao Chen
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli, Taiwan
| | - Ting-Kai Leung
- Department of Radiology, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Chun-Ying Shen
- Department of Radiology, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan
| | - Li-Wei Kuo
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli, Taiwan
- Institute of Medical Device and Imaging, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
2
|
Locus coeruleus degeneration and cerebellar gray matter changes in essential tremor. J Neurol 2023; 270:780-787. [PMID: 36194299 DOI: 10.1007/s00415-022-11409-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND The pathophysiology of essential tremor (ET) is not fully understood, and studies suggest pathological changes mainly occur in the cerebellum and locus coeruleus (LC). METHODS Fifty-three ET patients, including 30 patients with head tremor (h-ET), 23 patients without head tremor (nh-ET), 71 age and education matched healthy controls (HCs) were enrolled. All participants underwent Neuromelanin-sensitive magnetic resonance imaging (NM-MRI) and T1 scans on a 3-Tesla MR system. Next, we assessed the relationship between the contrast-to-noise ratio of LC (CNRLC) and the score of The Essential Tremor Rating Assessment Scale (TETRAS) and cerebellum gray matter (GM) volume. RESULTS Significant difference of CNRLC was found between ET and HC groups. The CNRLC of ET groups is lower than the HC group (p = 0.031). Subgroup analysis showed that the CNRLC in nh-ET was significantly lower than HCs (p = 0.016). Compared to HCs, h-ETs showed marked atrophy in the cerebellum: the vermis IV-V and lobule VI (GRF corrected, p < 0.05). A significant negative correlation was found between CNRLC and the vermis lobule IV-V in h-ETs (r = - 0.651, p < 0.001). No significant correlation was found between CNRLC and TETRAS scores. CONCLUSION The LC and the cerebellum might both involve in the pathophysiology of ET. LC evaluation using NM-MRI might be an effective tool for us to explore the pathophysiology of ET further.
Collapse
|
3
|
Cheng F, Duan Y, Jiang H, Zeng Y, Chen X, Qin L, Zhao L, Yi F, Tang Y, Liu C. Identifying and distinguishing of essential tremor and Parkinson's disease with grouped stability analysis based on searchlight-based MVPA. Biomed Eng Online 2022; 21:81. [PMID: 36443843 PMCID: PMC9703788 DOI: 10.1186/s12938-022-01050-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 11/10/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Since both essential tremor (ET) and Parkinson's disease (PD) are movement disorders and share similar clinical symptoms, it is very difficult to recognize the differences in the presentation, course, and treatment of ET and PD, which leads to misdiagnosed commonly. PURPOSE Although neuroimaging biomarker of ET and PD has been investigated based on statistical analysis, it is unable to assist the clinical diagnosis of ET and PD and ensure the efficiency of these biomarkers. The aim of the study was to identify the neuroimaging biomarkers of ET and PD based on structural magnetic resonance imaging (MRI). Moreover, the study also distinguished ET from PD via these biomarkers to validate their classification performance. METHODS This study has developed and implemented a three-level machine learning framework to identify and distinguish ET and PD. First of all, at the model-level assessment, the searchlight-based machine learning method has been used to identify the group differences of patients (ET/PD) with normal controls (NCs). And then, at the feature-level assessment, the stability of group differences has been tested based on structural brain atlas separately using the permutation test to identify the robust neuroimaging biomarkers. Furthermore, the identified biomarkers of ET and PD have been applied to classify ET from PD based on machine learning techniques. Finally, the identified biomarkers have been compared with the previous findings of the biology-level assessment. RESULTS According to the biomarkers identified by machine learning, this study has found widespread alterations of gray matter (GM) for ET and large overlap between ET and PD and achieved superior classification performance (PCA + SVM, accuracy = 100%). CONCLUSIONS This study has demonstrated the significance of a machine learning framework to identify and distinguish ET and PD. Future studies using a large data set are needed to confirm the potential clinical application of machine learning techniques to discern between PD and ET.
Collapse
Affiliation(s)
- FuChao Cheng
- grid.411292.d0000 0004 1798 8975College of Computer, Chengdu University, Chengdu, China
| | - YuMei Duan
- Department of Computer and Software, Chengdu Jincheng College, Chengdu, China
| | - Hong Jiang
- grid.16821.3c0000 0004 0368 8293Department of Neurosurgery, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Zeng
- grid.411292.d0000 0004 1798 8975College of Computer, Chengdu University, Chengdu, China
| | - XiaoDan Chen
- grid.411292.d0000 0004 1798 8975College of Computer, Chengdu University, Chengdu, China
| | - Ling Qin
- grid.411292.d0000 0004 1798 8975College of Computer, Chengdu University, Chengdu, China
| | - LiQin Zhao
- grid.411292.d0000 0004 1798 8975College of Computer, Chengdu University, Chengdu, China
| | - FaSheng Yi
- grid.411292.d0000 0004 1798 8975College of Computer, Chengdu University, Chengdu, China ,Key Laboratory of Pattern Recognition and Intelligent Information Processing, Institutions of Higher Education of Sichuan Province, Chengdu, China
| | - YiQian Tang
- grid.411292.d0000 0004 1798 8975College of Computer, Chengdu University, Chengdu, China
| | - Chang Liu
- grid.411292.d0000 0004 1798 8975College of Computer, Chengdu University, Chengdu, China
| |
Collapse
|
4
|
He R, Qin Y, Zhou X, Liu Z, Xu Q, Guo J, Yan X, Tang B, Zeng S, Sun Q. The effect of regional white matter hyperintensities on essential tremor subtypes and severity. Front Aging Neurosci 2022; 14:933093. [PMID: 36325187 PMCID: PMC9621611 DOI: 10.3389/fnagi.2022.933093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Objectives To investigate the effect of regional white matter hyperintensities (WMHs) on Essential tremor (ET) subtypes and to explore the association between WMHs load and the severity of motor and non-motor symptoms in patients with ET. Methods A cohort of 176 patients with ET (including 86 patients with pure ET and 90 patients with ET plus) and 91 normal controls (NC) was consecutively recruited. Demographic, clinical, and imaging characteristics were compared between individuals with pure ET, ET plus, and NC. The cross-sectional association among regional WMHs and the severity of tremor and non-motor symptoms were assessed within each group. Results Compared with the pure ET subgroup, the ET plus subgroup demonstrated higher TETRAS scores, NMSS scores, and lower MMSE scores (all P < 0.05). Periventricular and lobar WMHs' loads of pure ET subgroup intermediated between NC subjects and ET plus subgroup. WMHs in the frontal horn independently increased the odds of ET (OR = 1.784, P < 0.001). The age (P = 0.021), WMHs in the frontal lobe (P = 0.014), and WMHs in the occipital lobe (P = 0.020) showed a significant impact on TETRAS part II scores in the ET plus subgroup. However, only the disease duration was positively associated with TETRAS part II scores in patients with pure ET (P = 0.028). In terms of non-motor symptoms, NMSS scores of total patients with ET were associated with disease duration (P = 0.029), TETRAS part I scores (P = 0.017), and WMH scores in the frontal lobe (P = 0.033). MMSE scores were associated with age (P = 0.027), body mass index (P = 0.006), education level (P < 0.001), and WMHs in the body of the lateral ventricle (P = 0.005). Conclusion Our results indicated that the WMHs in the frontal horn could lead to an increased risk of developing ET. WMHs may be used to differentiate pure ET and ET plus. Furthermore, WMHs in the frontal and occipital lobes are strong predictors of worse tremor severity in the ET plus subgroup. Regional WMHs are associated with cognitive impairment in patients with ET.
Collapse
Affiliation(s)
- Runcheng He
- Department of Geriatric Neurology, Xiangya Hospital, Central South University, Changsha, China
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yan Qin
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xun Zhou
- Department of Geriatric Neurology, Xiangya Hospital, Central South University, Changsha, China
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhenhua Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Qian Xu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Xinxiang Yan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Sheng Zeng
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, China
- Sheng Zeng
| | - Qiying Sun
- Department of Geriatric Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
- *Correspondence: Qiying Sun
| |
Collapse
|
5
|
Mavroudis I, Kazis D, Petridis F, Chatzikonstantinou S, Karantali E, Njau S, Costa V, Ciobica A, Trus C, Balmus I, Baloyannis S. Morphological and morphometric changes in the Purkinje cells of patients with essential tremor. Exp Ther Med 2021; 23:167. [PMID: 35069848 PMCID: PMC8753961 DOI: 10.3892/etm.2021.11090] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/30/2021] [Indexed: 11/09/2022] Open
Abstract
Essential tremor (ET) is a progressive neurological syndrome characterised by involuntary tremors of the hands or arms, head, jaw and voice. The pathophysiology of ET is not clearly understood yet. However, previous studies have reported several changes in the brain of patients with ET. One of the brain areas extensively investigated is the cerebellum. In the present study, a morphometric analysis of Purkinje cells in patients with ET and ET-plus was performed, and subsequently compared with normal controls using the Golgi silver staining method and 3D neuronal reconstruction. Substantial morphological changes were uncovered in the Purkinje cells of patients with ET compared with normal controls, including a decreased dendritic length and field density, an overall loss of terminal branches and a decreased density of dendritic spines.
Collapse
Affiliation(s)
- Ioannis Mavroudis
- Department of Neurology, Leeds Teaching Hospitals, NHS Trust, Leeds, LS1 3EX, United Kingdom
| | - Dimitrios Kazis
- Third Department of Neurology, Aristotle University of Thessaloniki, Thessaloniki 54636, Greece
| | - Foivos Petridis
- Third Department of Neurology, Aristotle University of Thessaloniki, Thessaloniki 54636, Greece
| | | | - Eleni Karantali
- Third Department of Neurology, Aristotle University of Thessaloniki, Thessaloniki 54636, Greece
| | - Samuel Njau
- Department of Forensic Medicine and Toxicology, Aristotle University of Thessaloniki, Thessaloniki 54636, Greece
| | - Vasiliki Costa
- Laboratory of Neuropathology and Electron Microscopy, Aristotle University of Thessaloniki, Thessaloniki 54636, Greece
| | - Alin Ciobica
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University, Iasi 700506, Romania
| | - Constantin Trus
- Department of Morphological and Functional Sciences, Faculty of Medicine, Dunarea de Jos University, Galati 800008, Romania
| | - Ioana Balmus
- Department of Exact Sciences and Natural Sciences, Institute of Interdisciplinary Research, Alexandru Ioan Cuza University of Iași, Iași 700057, Romania
| | - Stavros Baloyannis
- Laboratory of Neuropathology and Electron Microscopy, Aristotle University of Thessaloniki, Thessaloniki 54636, Greece
| |
Collapse
|
6
|
van den Berg KRE, Helmich RC. The Role of the Cerebellum in Tremor - Evidence from Neuroimaging. Tremor Other Hyperkinet Mov (N Y) 2021; 11:49. [PMID: 34820148 PMCID: PMC8603856 DOI: 10.5334/tohm.660] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 10/28/2021] [Indexed: 01/04/2023] Open
Abstract
Background Neuroimaging research has played a key role in identifying which cerebral changes are associated with tremor. Here we will focus on the cerebellum, which may drive tremor oscillations, process tremor-related afferents, modulate activity in remote brain regions, or a combination. Methods On the 6th of October 2021, we conducted a PubMed search to select articles providing neuroimaging evidence for cerebellar involvement in essential tremor (ET), Parkinson's disease (PD) tremor, and dystonic tremor (DT). Results In ET, tremor-related activity is found in motor areas of the bilateral cerebellum, and altered functional connectivity within and outside the cerebellum correlates with tremor severity. Furthermore, ET is associated with cerebellar atrophy, but also with compensatory structural changes outside the cerebellum (e.g. supplementary motor area). In PD, tremor-related cerebellar activity and increased cerebello-thalamic coupling has been found. Emerging evidence suggests that the cerebellum plays a key role in dopamine-resistant rest tremor and in postural tremor. Cerebellar structural alterations have been identified in PD, but only some relate to tremor. DT is associated with more widespread cerebral networks than other tremor types. Discussion In ET, the cerebellum likely acts as an oscillator, potentially due to loss of inhibitory mechanisms. In contrast, in PD the cerebellum may be a modulator, which contributes to tremor oscillations by influencing the thalamo-cortical system. The precise role of the cerebellum in DT remains unclear. We recommend that future research measures tremor-related activity directly by combining electrophysiology with neuroimaging, while brain stimulation techniques may be used to establish causality. Highlights This review of neuroimaging studies has provided convincing evidence that the cerebellum plays a key role in the pathophysiology of ET, PD tremor, and dystonic tremor syndromes. This contribution may consist of driving tremor oscillations, processing tremor-related afferents, modulating activity in remote brain regions, or all the above.
Collapse
Affiliation(s)
- Kevin R. E. van den Berg
- Centre of Expertise for Parkinson and Movement Disorders, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Rick C. Helmich
- Centre of Expertise for Parkinson and Movement Disorders, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands
| |
Collapse
|
7
|
Holtbernd F, Shah NJ. Imaging the Pathophysiology of Essential Tremor-A Systematic Review. Front Neurol 2021; 12:680254. [PMID: 34220687 PMCID: PMC8244929 DOI: 10.3389/fneur.2021.680254] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 05/04/2021] [Indexed: 11/28/2022] Open
Abstract
Background: The pathophysiology underlying essential tremor (ET) still is poorly understood. Recent research suggests a pivotal role of the cerebellum in tremor genesis, and an ongoing controversy remains as to whether ET constitutes a neurodegenerative disorder. In addition, mounting evidence indicates that alterations in the gamma-aminobutyric acid neurotransmitter system are involved in ET pathophysiology. Here, we systematically review structural, functional, and metabolic neuroimaging studies and discuss current concepts of ET pathophysiology from an imaging perspective. Methods: We conducted a PubMed and Scopus search from 1966 up to December 2020, entering essential tremor in combination with any of the following search terms and their corresponding abbreviations: positron emission tomography (PET), single-photon emission computed tomography (SPECT), magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS), and gamma-aminobutyric acid (GABA). Results: Altered functional connectivity in the cerebellum and cerebello-thalamico-cortical circuitry is a prevalent finding in functional imaging studies. Reports from structural imaging studies are less consistent, and there is no clear evidence for cerebellar neurodegeneration. However, diffusion tensor imaging robustly points toward microstructural cerebellar changes. Radiotracer imaging suggests that the dopaminergic axis is largely preserved in ET. Similarly, measurements of nigral iron content and neuromelanin are unremarkable in most studies; this is in contrast to Parkinson's disease (PD). PET and MRS studies provide limited evidence for cerebellar and thalamic GABAergic dysfunction. Conclusions: There is robust evidence indicating that the cerebellum plays a key role within a multiple oscillator tremor network which underlies tremor genesis. However, whether cerebellar dysfunction relies on a neurodegenerative process remains unclear. Dopaminergic and iron imaging do not suggest a substantial overlap of ET with PD pathophysiology. There is limited evidence for alterations of the GABAergic neurotransmitter system in ET. The clinical, demographical, and genetic heterogeneity of ET translates into neuroimaging and likely explains the various inconsistencies reported.
Collapse
Affiliation(s)
- Florian Holtbernd
- Institute of Neuroscience and Medicine (INM-4/INM-11), Forschungszentrum Juelich GmbH, Juelich, Germany
- JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Juelich GmbH, Rheinisch-Westfaelische Technische Hochschule Aachen University, Aachen, Germany
- Department of Neurology, Rheinisch-Westfaelische Technische Hochschule Aachen University, Aachen, Germany
| | - N. Jon Shah
- Institute of Neuroscience and Medicine (INM-4/INM-11), Forschungszentrum Juelich GmbH, Juelich, Germany
- JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Juelich GmbH, Rheinisch-Westfaelische Technische Hochschule Aachen University, Aachen, Germany
- Department of Neurology, Rheinisch-Westfaelische Technische Hochschule Aachen University, Aachen, Germany
| |
Collapse
|
8
|
Zhuo C, Xiao B, Chen C, Jiang D, Li G, Ma X, Li R, Wang L, Xu Y, Zhou C, Lin X. Abberant inverted U-shaped brain pattern and trait-related retinal impairment in schizophrenia patients with combined auditory and visual hallucinations: a pilot study. Brain Imaging Behav 2021; 15:738-747. [PMID: 32304019 PMCID: PMC8032576 DOI: 10.1007/s11682-020-00281-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Schizophrenic patients often experience auditory hallucinations (AHs) and visual hallucinations (VHs). However, brain and retinal alterations associated with combined AHs and VHs in schizophrenic patients are unknown. This study aimed o investigate brain and retinal alterations in first episode un-treated schizophrenic patients with combined AHs and VHs (FUSCHAV). FUSCHAV patients (n = 120), divided into four groups according to severity of AH and VH symptoms, were compared to healthy controls (n = 30). Gray matter volume (GMV) and global functional connectivity density (gFCD) were recorded to reflect brain structure and functional alterations. Total retinal thickness was acquired by optical coherence tomography to assess retinal impairment. The majority of FUSCHAV patients (85.8%) demonstrated both GMV reduction and gFCD increases along with retinal thinning compared to healthy controls. The severity of GMV reduction and gFCD increase differed between patient groups, ranked from highest to lowest severity as follows: severe AHs combined with severe VHs (FUSCHSASV, 20 patients), moderate AHs combined with severe VHs (FUSCHMASV, 23 patients), severe AHs combined with moderate VHs (FUSCHSAMV, 28 patients), and moderate AHs combined with moderate VHs (FUSCHMAMV, 26). Retinal impairment was similar among the four FUSCHAV groups. GMV reduction and gFCD increases in the frontal-parietal lobule show an inverted U-shaped pattern among FUSCHAV patients according to AH and VH severity, while retinal impairment remains stable among FUSCHAV groups. These findings indicate a reciprocal deterioration in auditory and visual disturbances among FUSCHAV patients.
Collapse
Affiliation(s)
- Chuanjun Zhuo
- Department of Psychiatry Pattern Recognition, Department of Genetics Laboratory of Schizophrenia, School of Mental Health, Jining Medical University, Jining, 272119, Shandong Province, China.
- Department of Psychiatry, Wenzhou Seventh People's Hospital, Wenzhou, 325000, China.
- Department of Psychiatric-Neuroimaging-Genetics and Co-morbidity Laboratory(PNGC_Lab), Tianjin Anding Hospital, Tianjin Mental Health Center, Tianjin Medical University Mental Heath Teaching Hospital, Tianjin, 300222, China.
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China.
- MDT Center for Cognitive Impairment and Sleep Disorders, First Hospital of Shanxi Medical University, Taiyuan, 030001, China.
- Department of Psychiatry, Tianjin Medical University, Tianjin, 300074, China.
- Department of Medical Big Data Centre, Shanxi Medical University, Taiyuan, China.
| | - Bo Xiao
- Department of OCT, Tianjin Eye Hospital, Tianjin, 300274, China
| | - Ce Chen
- Department of Psychiatry, Wenzhou Seventh People's Hospital, Wenzhou, 325000, China
| | - Deguo Jiang
- Department of Psychiatry, Wenzhou Seventh People's Hospital, Wenzhou, 325000, China
| | - Gongying Li
- Department of Psychiatry Pattern Recognition, Department of Genetics Laboratory of Schizophrenia, School of Mental Health, Jining Medical University, Jining, 272119, Shandong Province, China
| | - Xiaoyan Ma
- Department of Psychiatric-Neuroimaging-Genetics and Co-morbidity Laboratory(PNGC_Lab), Tianjin Anding Hospital, Tianjin Mental Health Center, Tianjin Medical University Mental Heath Teaching Hospital, Tianjin, 300222, China
| | - Ranli Li
- Department of Psychiatric-Neuroimaging-Genetics and Co-morbidity Laboratory(PNGC_Lab), Tianjin Anding Hospital, Tianjin Mental Health Center, Tianjin Medical University Mental Heath Teaching Hospital, Tianjin, 300222, China
| | - Lina Wang
- Department of Psychiatric-Neuroimaging-Genetics and Co-morbidity Laboratory(PNGC_Lab), Tianjin Anding Hospital, Tianjin Mental Health Center, Tianjin Medical University Mental Heath Teaching Hospital, Tianjin, 300222, China
| | - Yong Xu
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Chunhua Zhou
- Department of Pharmacoloy, The First Hospital of Hebei Medical Universtiy, Shijiazhuang, 05000, Hebei Province, China.
| | - Xiaodong Lin
- Department of Psychiatry, Wenzhou Seventh People's Hospital, Wenzhou, 325000, China.
| |
Collapse
|
9
|
Mavroudis I, Petrides F, Karantali E, Chatzikonstantinou S, McKenna J, Ciobica A, Iordache AC, Dobrin R, Trus C, Kazis D. A Voxel-Wise Meta-Analysis on the Cerebellum in Essential Tremor. ACTA ACUST UNITED AC 2021; 57:medicina57030264. [PMID: 33799368 PMCID: PMC8000215 DOI: 10.3390/medicina57030264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/19/2021] [Accepted: 03/11/2021] [Indexed: 01/04/2023]
Abstract
Background and Objectives: Essential tremor is a chronic progressive neurological condition. The clinical presentation of essential tremor is heterogeneous and includes involuntary tremor on hands or arms and progressively on head, jaw, and voice. More extensive and complex symptoms may also be noticed in several patients. Many studies have been carried out to identify biomarkers to help the diagnosis, however, all the efforts have not shown any substantial results yet. Materials and Methods: Here, we aimed to perform a voxel-based meta-analysis using a dedicated cerebellar mask to clarify whether the results from the previous studies are robust and have any clinical significance. We included studies with a total of 377 essential tremor patients and 338 healthy control individuals. Results: A significant regional decrease in the volume of the gray matter was detected in the right cerebellar hemispheric lobule IV/V, and in the cerebellar vermic lobule IV/V. Conclusions: This is the first study focused on the cerebellum and using a specific cerebellar mask, which increases the sensitivity. It showed regional statistically significant changes that could not be seen in the whole-brain analysis.
Collapse
Affiliation(s)
- Ioannis Mavroudis
- Laboratory of Neuropathology, Electron Microscopy First Department of Neurology, Aristotle University, 54124 Thessaloniki, Greece; (I.M.); (F.P.)
- Leeds Teaching Hospitals, Leeds LS97TF, UK;
- Institute for Research of Alzheimer’s Disease, Other Neurodegenerative Diseases and Normal Aging, Heraklion Langada, 54123 Thessaloniki, Greece
- Third Department of Neurology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.K.); (S.C.); (D.K.)
| | - Foivos Petrides
- Laboratory of Neuropathology, Electron Microscopy First Department of Neurology, Aristotle University, 54124 Thessaloniki, Greece; (I.M.); (F.P.)
- Third Department of Neurology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.K.); (S.C.); (D.K.)
| | - Eleni Karantali
- Third Department of Neurology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.K.); (S.C.); (D.K.)
| | - Symela Chatzikonstantinou
- Third Department of Neurology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.K.); (S.C.); (D.K.)
| | | | - Alin Ciobica
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University, B dul Carol I, No 11, 700506 Iasi, Romania;
- Center of Biomedical Research, Romanian Academy, B dul Carol I, No 8, 700506 Iasi, Romania
| | - Alin-Constantin Iordache
- Faculty of Medicine, “Grigore T. Popa”, University of Medicine and Pharmacy, Strada Universitatii 16, 700115 Iasi, Romania;
- Correspondence: authors: (A.-C.I.); (C.T.)
| | - Romeo Dobrin
- Faculty of Medicine, “Grigore T. Popa”, University of Medicine and Pharmacy, Strada Universitatii 16, 700115 Iasi, Romania;
| | - Constantin Trus
- Department of Morphological and Functional Sciences, Faculty of Medicine, Dunarea de Jos University, 800008 Galati, Romania
- Correspondence: authors: (A.-C.I.); (C.T.)
| | - Dimitrios Kazis
- Third Department of Neurology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.K.); (S.C.); (D.K.)
| |
Collapse
|
10
|
Tantik Pak A, Şengül Y, Otcu Temur H, Alkan A. Impaired integrity of commissural and association fibers in essential tremor patients: Evidence from a diffusion tensor imaging study. Turk J Med Sci 2021; 51:328-334. [PMID: 33021759 PMCID: PMC7991855 DOI: 10.3906/sag-2004-305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 10/06/2020] [Indexed: 12/17/2022] Open
Abstract
Background/aim The evolving understanding of essential tremors (ET) has led to a new definition of neurodegenerative disease, pointing to diffuse brain network involvement with a wide spectrum of associated motor and nonmotor symptoms. Considering the fact that white matter should also be affected by the nature of the disease, our study aimed to evaluate the integrity of white matter and its clinical correlations in ET patients. Materials and methods Approximately 40 patients diagnosed with ET and 40 age-and sex-matched control subjects (ranging between 18–80 years old) were included in the study. The sociodemographic characteristics and clinical features of the patients were recorded. Tremors were assessed using the Fahn-Tolosa-Marin Tremor Rating Scale (FTM-TRS). Diffusion Tensor Imaging (DTI) was performed to evaluate the integrity of white matter. The selected white matter regions used for DTI assessment were the corpus callosum (CC) (i.e., the largest commissural tract in the human brain), the superior longitudinal fasciculus (SLF), and the inferior longitudinal fasciculus (ILF) (i.e., the largest association fiber bundles). Results The mean age of the ET patients and control subjects was 44.23 ± 18.91 and 37.45 ± 10.95 years old (P = 0.542). The fractional anisotropy (FA) values of the CC body (P = 0.003), ILF (p = 0.016), average diffusion coefficient (ADC) values of the CC body (p = 0.001), genu (P = 0.049), SLF (V < 0.001), and ILF (P < 0.001) differed between groups. After controlling for age and sex, there was no correlation between tremor severity and DTI parameters, but impaired integrity in the genu of CC FA (P = 0.035, r = 0.442) and the splenium of CC ADC (P = 0.007, r = 0.543) were related with a longer duration of tremor. Finally, positive family history was correlated with the splenium of CC FA and ADC (P = 0.008, r = 0.536; P = 0.027, r = 0.461) and ILF ADC (P = 0.011, r = –0.519). Conclusion In our study, major white matter structure changes were found in the ET patients. The results suggest that possible neurodegeneration also affects white matter structures in ET patients and that the duration of the tremor and family history are related with impaired integrity of white matter.
Collapse
Affiliation(s)
- Aygül Tantik Pak
- Department of Neurology, University of Health Sciences, Gaziosmanpaşa Research and Training Hospital, İstanbul, Turkey
| | - Yildizhan Şengül
- Department of Neurology, Bezmiâlem Foundation University Hospital, İstanbul, Turkey
| | - Hafize Otcu Temur
- Department of Radiology, Bezmiâlem Foundation University Hospital, İstanbul, Turkey
| | - Alpay Alkan
- Department of Radiology, Bezmiâlem Foundation University Hospital, İstanbul, Turkey
| |
Collapse
|
11
|
Boscolo Galazzo I, Magrinelli F, Pizzini FB, Storti SF, Agosta F, Filippi M, Marotta A, Mansueto G, Menegaz G, Tinazzi M. Voxel-based morphometry and task functional magnetic resonance imaging in essential tremor: evidence for a disrupted brain network. Sci Rep 2020; 10:15061. [PMID: 32934259 PMCID: PMC7493988 DOI: 10.1038/s41598-020-69514-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 07/13/2020] [Indexed: 11/09/2022] Open
Abstract
The pathophysiology of essential tremor (ET) is controversial and might be further elucidated by advanced neuroimaging. Focusing on homogenous ET patients diagnosed according to the 2018 consensus criteria, this study aimed to: (1) investigate whether task functional MRI (fMRI) can identify networks of activated and deactivated brain areas, (2) characterize morphometric and functional modulations, relative to healthy controls (HC). Ten ET patients and ten HC underwent fMRI while performing two motor tasks with their upper limb: (1) maintaining a posture (both groups); (2) simulating tremor (HC only). Activations/deactivations were obtained from General Linear Model and compared across groups/tasks. Voxel-based morphometry and linear regressions between clinical and fMRI data were also performed. Few cerebellar clusters of gray matter loss were found in ET. Conversely, widespread fMRI alterations were shown. Tremor in ET (task 1) was associated with extensive deactivations mainly involving the cerebellum, sensory-motor cortex, and basal ganglia compared to both tasks in HC, and was negatively correlated with clinical tremor scales. Homogeneous ET patients demonstrated deactivation patterns during tasks triggering tremor, encompassing a network of cortical and subcortical regions. Our results point towards a marked cerebellar involvement in ET pathophysiology and the presence of an impaired cerebello-thalamo-cortical tremor network.
Collapse
Affiliation(s)
- Ilaria Boscolo Galazzo
- Department of Computer Science, University of Verona, Strada Le Grazie 15, Ca' Vignal 2, 37134, Verona, Italy.
| | - Francesca Magrinelli
- Department of Neurosciences, Biomedicine and Movement Sciences, Neurology Section, University of Verona, Piazzale L.A. Scuro 10, 37134, Verona, Italy.
| | | | - Silvia Francesca Storti
- Department of Computer Science, University of Verona, Strada Le Grazie 15, Ca' Vignal 2, 37134, Verona, Italy
| | - Federica Agosta
- Neuroimaging Research Unit, Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Angela Marotta
- Department of Neurosciences, Biomedicine and Movement Sciences, Neurology Section, University of Verona, Piazzale L.A. Scuro 10, 37134, Verona, Italy
| | - Giancarlo Mansueto
- Department of Diagnostics and Pathology, University of Verona, Verona, Italy
| | - Gloria Menegaz
- Department of Computer Science, University of Verona, Strada Le Grazie 15, Ca' Vignal 2, 37134, Verona, Italy
| | - Michele Tinazzi
- Department of Neurosciences, Biomedicine and Movement Sciences, Neurology Section, University of Verona, Piazzale L.A. Scuro 10, 37134, Verona, Italy
| |
Collapse
|
12
|
Tapper S, Göransson N, Lundberg P, Tisell A, Zsigmond P. A pilot study of essential tremor: cerebellar GABA+/Glx ratio is correlated with tremor severity. CEREBELLUM & ATAXIAS 2020; 7:8. [PMID: 32607248 PMCID: PMC7318770 DOI: 10.1186/s40673-020-00116-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/29/2020] [Indexed: 12/16/2022]
Abstract
Objective Essential tremor is a common movement disorder with an unclear origin. Emerging evidence suggests the role of the cerebellum and the thalamus in tremor pathophysiology. We examined the two main neurotransmitters acting inhibitory (GABA+) and excitatory (Glx) respectively, in the thalamus and cerebellum, in patients diagnosed with severe essential tremor. Furthermore, we also investigated the relationship between determined neurotransmitter concentrations and tremor severity in the essential tremor patients. Methods Ten essential tremor patients (prior to deep brain stimulation surgery) and six healthy controls, were scanned using a 3 T MR system. GABA+ and Glx concentrations were measured using magnetic resonance spectroscopy (MRS) performed using single voxel MEGA-PRESS. For the purpose of assessing the tremor severity, the essential tremor rating scale (ETRS) was used in accordance with Fahn, Tolosa, and Marin. Results We demonstrated that the cerebellar GABA+/Glx ratio was positively correlated to the ETRS (r = 0.70, p = 0.03) in essential tremor. Cerebellar and thalamic GABA+ and Glx concentrations did not show any significant difference when comparing essential tremor patients with healthy controls, at the group level. Conclusion We demonstrated a positive correlation between increasing tremor disability and the ratio of GABA+/ Glx in the cerebellum of essential tremor patients. This highlights the impact of an altered balance of the excitatory and inhibitory neurotransmitters in tremor severity. Rather than a change in GABA+, which was constant, we attribute this finding to an overall decrease of Glx.
Collapse
Affiliation(s)
- Sofie Tapper
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden.,Department of Medical Radiation Physics and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Nathanael Göransson
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
| | - Peter Lundberg
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden.,Department of Medical Radiation Physics and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Anders Tisell
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden.,Department of Medical Radiation Physics and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Peter Zsigmond
- Department of Neurosurgery and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
13
|
De Groote S, Goudman L, Linderoth B, Buyck F, Rigoard P, De Jaeger M, Van Schuerbeek P, Peeters R, Sunaert S, Moens M. A Regions of Interest Voxel-Based Morphometry Study of the Human Brain During High-Frequency Spinal Cord Stimulation in Patients With Failed Back Surgery Syndrome. Pain Pract 2020; 20:878-888. [PMID: 32470180 DOI: 10.1111/papr.12922] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/14/2020] [Accepted: 05/22/2020] [Indexed: 12/13/2022]
Abstract
INTRODUCTION The effectiveness of spinal cord stimulation (SCS) as pain-relieving treatment for failed back surgery syndrome (FBSS) has already been demonstrated. However, potential structural and functional brain alterations resulting from subsensory SCS are less clear. The aim of this study was to test structural volumetric changes in a priori chosen regions of interest related to chronic pain after 1 month and 3 months of high-frequency SCS in patients with FBSS. METHODS Eleven patients with FBSS who were scheduled for SCS device implantation were included in this study. All patients underwent a magnetic resonance imaging protocol before SCS device implantation 1 and 3 months after high-frequency SCS. Pain intensity, pain catastrophizing, and sleep quality were also measured. Regions-of-interest voxel-based morphometry was used to explore grey matter volumetric changes over time. Additionally, volumetric changes were correlated with changes in pain intensity, catastrophizing, and sleep quality. RESULTS Significant decreases were found in volume in the left and right hippocampus over time. More specifically, a significant difference was revealed between volumes before SCS implantation and after 3 months of SCS. Repeated-measures correlations revealed a significant positive correlation between volumetric changes in the left hippocampus and changes in back pain score over time and between volumetric changes in the right hippocampus and changes in back pain score over time. CONCLUSION In patients with FBSS, high-frequency SCS influences structural brain regions over time. The volume of the hippocampus was decreased bilaterally after 3 months of high-frequency SCS with a positive correlation with back pain intensity.
Collapse
Affiliation(s)
- Sander De Groote
- Department of Neurosurgery, Universitair Ziekenhuis Brussel, Jette, Belgium
| | - Lisa Goudman
- Department of Neurosurgery, Universitair Ziekenhuis Brussel, Jette, Belgium.,Center for Neurosciences (C4N), Vrije Universiteit Brussel, Jette, Belgium.,Pain in Motion International Research Group, Vrije Universiteit Brussel, Jette, Belgium
| | - Bengt Linderoth
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Félix Buyck
- Department of Neurosurgery, Universitair Ziekenhuis Brussel, Jette, Belgium
| | - Philippe Rigoard
- Spine & Neuromodulation Functional Unit, Poitiers University Hospital, Poitiers, France.,Institut Prime UPR 3346, CNRS, ISAE-ENSMA, University of Poitiers, Poitiers, France.,PRISMATICS Lab (Predictive Research in Spine/Neuromodulation Management and Thoracic Innovation/Cardiac Surgery), Poitiers University Hospital, Poitiers, France
| | - Mats De Jaeger
- Department of Neurosurgery, Universitair Ziekenhuis Brussel, Jette, Belgium
| | | | - Ronald Peeters
- Department of Radiology, Universitair Ziekenhuis Leuven, Leuven, Belgium
| | - Stefan Sunaert
- Department of Radiology, Universitair Ziekenhuis Leuven, Leuven, Belgium
| | - Maarten Moens
- Department of Neurosurgery, Universitair Ziekenhuis Brussel, Jette, Belgium.,Center for Neurosciences (C4N), Vrije Universiteit Brussel, Jette, Belgium.,Department of Radiology, Universitair Ziekenhuis Brussel, Jette, Belgium
| |
Collapse
|
14
|
Zhuo C, Xiao B, Chen C, Jiang D, Li G, Ma X, Li R, Wang L, Xu Y, Zhou C, Lin X. Antipsychotic agents deteriorate brain and retinal function in schizophrenia patients with combined auditory and visual hallucinations: A pilot study and secondary follow-up study. Brain Behav 2020; 10:e01611. [PMID: 32285647 PMCID: PMC7303384 DOI: 10.1002/brb3.1611] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/13/2020] [Accepted: 03/10/2020] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION Schizophrenia patients often experience auditory hallucinations (AHs) and visual hallucinations (VHs). However, the degree and type of brain and retinal alterations associated with combined AHs and VHs in schizophrenia patients remain unknown. There is an urgent need for a study that investigates the trajectory of brain and retinal alterations in patients with first-episode untreated schizophrenia accompanied by combined AHs and VHs (FUSCHAV). METHODS FUSCHAV patients (n = 120), divided into four groups according to AH and VH symptom severity (severe AHs combined with severe VHs [FUSCHSASV, 20 patients]; middle-to-moderate AHs combined with severe VHs [FUSCHMASV, 23 patients]; severe AHs combined with middle-to-moderate VHs [FUSCHSAMV, 28 patients]; and middle-to-moderate AHs combined with middle-to-moderate VHs [FUSCHMAMV, 26 patients]), were compared to healthy controls (n = 30). Gray matter volume (GMV) was adopted for brain structural alteration assessment. Total retinal thickness was adopted as a measure of retinal thickness impairment. RESULTS In the pilot study, the rate of GMV reduction showed an inverted U-shaped pattern across the different FUSCHAV patient groups according to AH and VH severity. The degree of retinal impairment remained stable across the groups. More notably, in the secondary follow-up study, we observed that, after 6 months of treatment with antipsychotic agents, all the GMV reduction-related differences across the different patient groups disappeared, and both GMV and retinal thickness demonstrated a tendency to deteriorate. CONCLUSIONS These findings indicate the need for heightened alertness on brain and retinal impairments in patients with FUSCHAV. Further deteriorations induced by antipsychotic agent treatment should be monitored in clinical practice.
Collapse
Affiliation(s)
- Chuanjun Zhuo
- Department of Psychiatry Pattern Recognition, Laboratory of Schizophrenia, School of Mental Health, Jining Medical University, Jining, China.,Department of Genetics, Laboratory of Schizophrenia, School of Mental Health, Jining Medical University, Jining, China.,Department of Psychiatry, Wenzhou Seventh People's Hospital, Wenzhou, China.,Department of Psychiatric-Neuroimaging-Genetics and Co-morbidity Laboratory (PNGC_Lab), Tianjin Anding Hospital, Tianjin Mental Health Center, Tianjin Medical University Mental Health Teaching Hospital, Tianjin Medical University, Tianjin, China.,Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China.,MDT Center for Cognitive Impairment and Sleep Disorders, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Bo Xiao
- Department of OCT, Tianjin Eye Hospital, Tianjin, China
| | - Ce Chen
- Department of Psychiatry, Wenzhou Seventh People's Hospital, Wenzhou, China
| | - Deguo Jiang
- Department of Psychiatry, Wenzhou Seventh People's Hospital, Wenzhou, China
| | - Gongying Li
- Department of Psychiatry Pattern Recognition, Laboratory of Schizophrenia, School of Mental Health, Jining Medical University, Jining, China.,Department of Genetics, Laboratory of Schizophrenia, School of Mental Health, Jining Medical University, Jining, China
| | - Xiaoyan Ma
- Department of Psychiatric-Neuroimaging-Genetics and Co-morbidity Laboratory (PNGC_Lab), Tianjin Anding Hospital, Tianjin Mental Health Center, Tianjin Medical University Mental Health Teaching Hospital, Tianjin Medical University, Tianjin, China
| | - Ranli Li
- Department of Psychiatric-Neuroimaging-Genetics and Co-morbidity Laboratory (PNGC_Lab), Tianjin Anding Hospital, Tianjin Mental Health Center, Tianjin Medical University Mental Health Teaching Hospital, Tianjin Medical University, Tianjin, China
| | - Lina Wang
- Department of Psychiatric-Neuroimaging-Genetics and Co-morbidity Laboratory (PNGC_Lab), Tianjin Anding Hospital, Tianjin Mental Health Center, Tianjin Medical University Mental Health Teaching Hospital, Tianjin Medical University, Tianjin, China
| | - Yong Xu
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China.,MDT Center for Cognitive Impairment and Sleep Disorders, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Chunhua Zhou
- Department of Pharmacology, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaodong Lin
- Department of Psychiatry, Wenzhou Seventh People's Hospital, Wenzhou, China
| |
Collapse
|
15
|
Essential tremor: New advances. Clin Park Relat Disord 2019; 3:100031. [PMID: 34316617 PMCID: PMC8298793 DOI: 10.1016/j.prdoa.2019.100031] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/30/2019] [Accepted: 12/18/2019] [Indexed: 01/15/2023] Open
Abstract
Background Essential Tremor (ET) is one of the most common movement disorders but many controversies still exist in regards to its definition and pathophysiology. In view of the recent published criteria by the Tremor Task Force of the International Parkinson's and Movement Disorders Society (IPMDS), we intended to analyze if this has changed our view of ET and if new developments have arisen since. Methods A Medline search for English-written articles was done on June 15, 2019 using the keyword "Essential Tremor". Publications from November 2017 (publication date of the new tremor classification) were taken into account. Reviews, letters and original studies relevant to the subject were selected and reviewed according to the following themes: clinical characteristics, epidemiology, genetics, pathology, biomarkers and treatment. Results Out of 132 publications the most relevant articles were selected and reviewed (total of 65 articles). The great majority of these studies focused on surgical treatments (new targets, new technologies) while relatively few articles addressed epidemiology, pathology and pathophysiology. Conclusions The use of the new classification is not commonly used still, excepting more recent studies on therapeutics. This is in keeping with diverse opinions and criticisms reported by the IPMDS task force members themselves. One important change has been validating ET as a heterogeneous condition and defining the ET-plus category. We propose a further sub-group classification derived from the new definition of ET-plus.
Collapse
|
16
|
Mavroudis I, Petridis F, Kazis D. Neuroimaging and neuropathological findings in essential tremor. Acta Neurol Scand 2019; 139:491-496. [PMID: 30977113 DOI: 10.1111/ane.13101] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/14/2019] [Accepted: 04/05/2019] [Indexed: 12/21/2022]
Abstract
Essential tremor is a chronic neurological syndrome of heterogenous clinical phenotypes and multiple etiologies. Numerous studies have been done in order to investigate the pathological, neuroimaging, physiological, and clinical features of essential tremor; however, a clear pathophysiological mechanism has not been identified. One of the brain structures has been extensively investigated at the macroscopic and the microscopic level in the cerebellum. In the present study, we aim to discuss the main neuroimaging and neuropathological changes of the cerebellum in essential tremor.
Collapse
Affiliation(s)
- Ioannis Mavroudis
- Department of Neurology Leeds Teaching Hospitals Leeds UK
- Third Department of Neurology Aristotle University of Thessaloniki Thessaloniki Greece
| | - Foivos Petridis
- Third Department of Neurology Aristotle University of Thessaloniki Thessaloniki Greece
| | - Dimitrios Kazis
- Third Department of Neurology Aristotle University of Thessaloniki Thessaloniki Greece
| |
Collapse
|
17
|
Pietracupa S, Bologna M, Bharti K, Pasqua G, Tommasin S, Elifani F, Paparella G, Petsas N, Grillea G, Berardelli A, Pantano P. White matter rather than gray matter damage characterizes essential tremor. Eur Radiol 2019; 29:6634-6642. [PMID: 31139970 DOI: 10.1007/s00330-019-06267-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/09/2019] [Accepted: 05/06/2019] [Indexed: 12/14/2022]
Abstract
OBJECTIVES We investigated changes in gray matter (GM) and white matter (WM) in the whole brain, including both cortical and subcortical structures, and their relationship with tremor severity, psychiatric symptoms, and cognitive impairment in patients affected by essential tremor (ET). METHODS We studied 19 ET patients and 15 healthy subjects (HS). All the subjects underwent a 3-T MRI study based on 3D-T1 and diffusion tensor images. For the GM analysis, cortical thickness was assessed by using the Computational Anatomy Tool, basal ganglia and thalamus volumes by using the FMRIB software library, and cerebellum lobular volumes by using the spatial unbiased atlas template. For the WM assessment, we performed a voxel-wise analysis by means of tract-based spatial statistics. Patients' tremor severity and psychiatric and cognitive disorders were evaluated by means of standard clinical scales. Neuroimaging data were correlated with clinical scores. RESULTS We found significantly smaller right and left thalamic volumes in ET patients than in HS, which correlated with cognitive scores. We did not observe any significant differences either in cortical thickness or in cerebellar lobular volumes between patients and HS. WM abnormalities were detected in most hemisphere bundles, particularly in the corticospinal tract, cerebellar peduncles, and corpus callosum. The WM abnormalities significantly correlated with tremor severity, cognitive profile, and depression. CONCLUSION Our study indicates that ET is characterized by several GM and WM changes of both infra- and supratentorial brain structures. The results may help to better understand mechanisms underlying tremor severity and psychiatric and cognitive impairment in ET. KEY POINTS • We performed a comprehensive evaluation of gray and white matter in the same sample of patients with essential tremor using recently developed data analysis methods. • Essential tremor is characterized by widespread gray and white matter changes in both infra- and supratentorial brain structures. The results may help to better understand motor and non-motor symptoms in patients with essential tremor.
Collapse
Affiliation(s)
| | - Matteo Bologna
- IRCCS Neuromed, Pozzilli (IS), Italy.,Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università, 30, 00185, Rome, Italy
| | - Komal Bharti
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università, 30, 00185, Rome, Italy
| | - Gabriele Pasqua
- IRCCS Neuromed, Pozzilli (IS), Italy.,Department of Medicine and Health Science, University of Molise, Campobasso, Italy
| | - Silvia Tommasin
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università, 30, 00185, Rome, Italy
| | | | | | | | | | - Alfredo Berardelli
- IRCCS Neuromed, Pozzilli (IS), Italy.,Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università, 30, 00185, Rome, Italy
| | - Patrizia Pantano
- IRCCS Neuromed, Pozzilli (IS), Italy. .,Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università, 30, 00185, Rome, Italy.
| |
Collapse
|
18
|
No reliable gray matter changes in essential tremor. Neurol Sci 2019; 40:2051-2063. [PMID: 31115799 DOI: 10.1007/s10072-019-03933-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 05/09/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Voxel-based morphometry (VBM) has been used to study human brain gray matter (GM) alterations in essential tremor (ET) for over one decade. However, the literature revealed heterogeneous findings. METHODS We therefore conducted a coordinate-based meta-analysis to synthesize the VBM studies to examine which brain regions show the most reliable GM alterations in patients with ET relative to healthy controls. RESULTS A total of 16 original VBM studies, comprising 387 patients with ET and 355 healthy controls, were included in this meta-analysis. This quantitative meta-analysis revealed no evidence of robust and reliable alterations in regional brain GM structures in ET. Meta-regression analyses indicate that many moderators (e.g., MR field strength, statistical methodology, age, onset age, gender, illness severity, illness duration, and family history) account for some of the heterogeneity in GM across studies. CONCLUSIONS High heterogeneity in GM alterations across studies may reflect true heterogeneity in ET regarding the clinic, etiology, and pathology, as well as possibly the VBM methodological variations. Currently, this heterogeneity limits the use of VBM as a reliable tool to distinguish ET from healthy controls. In order to improve reproducibility of VBM results in ET, future research may benefit from increasing the sample size, comprehensively subtyping ET phenotypes, and using well-designed and standardized imaging acquisition and analytical protocols. Furthermore, data sharing should be considered as a high priority.
Collapse
|