1
|
Dou Z, Lu F, Hu J, Li B, Li X. CBX7 silencing promoted liver regeneration by interacting with BMI1 and activating the Nrf2/ARE signaling pathway. Sci Rep 2024; 14:11008. [PMID: 38744845 PMCID: PMC11094083 DOI: 10.1038/s41598-024-58248-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 03/27/2024] [Indexed: 05/16/2024] Open
Abstract
Multiple studies have shown knockdown of chromobox 7 (CBX7) promotes the regenerative capacity of various cells or tissues. We examined the effect of CBX7 on hepatocyte proliferation and liver regeneration after 2/3 hepatectomy in a mouse model. For in vitro experiments, NCTC 1469 and BNL CL.2 hepatocytes were co-transfected with siRNA-CBX7-1 (si-CBX7-1), siRNA-CBX7-2 (si-CBX7-2), pcDNA-CBX7, si-BMI1-1, si-BMI1-2, pcDNA-BMI1, or their negative control. For in vivo experiments, mice were injected intraperitoneally with lentivirus-packaged shRNA and shRNA CBX7 before hepatectomy. Our results showed that CBX7 was rapidly induced in the early stage of liver regeneration. CBX7 regulated hepatocyte proliferation, cell cycle, and apoptosis of NCTC 1469 and BNL CL.2 hepatocytes. CBX7 interacted with BMI1 and inhibited BMI1 expression in hepatocytes. Silencing BMI1 aggregated the inhibitory effect of CBX7 overexpression on hepatocyte viability and the promotion of apoptosis. Furthermore, silencing BMI1 enhanced the regulatory effect of CBX7 on Nrf2/ARE signaling in HGF-induced hepatocytes. In vivo, CBX7 silencing enhanced liver/body weight ratio in PH mice. CBX7 silencing promoted the Ki67-positive cell count and decreased the Tunel-positive cell count after hepatectomy, and also increased the expression of nuclear Nrf2, HO-1, and NQO-1. Our results suggest that CBX7 silencing may increase survival following hepatectomy by promoting liver regeneration.
Collapse
Affiliation(s)
- Zhimin Dou
- The First School of Clinical Medicine, Lanzhou University, No. 199, Donggang West Road, Chengguan District, Lanzhou, 730000, Gansu, China
- Department of Critical Care Medicine, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Fei Lu
- The First School of Clinical Medicine, Lanzhou University, No. 199, Donggang West Road, Chengguan District, Lanzhou, 730000, Gansu, China
| | - Jinjing Hu
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, No. 1 Donggang West Road, Chengguan District, Lanzhou, 730000, Gansu, China
| | - Bin Li
- Department of Critical Care Medicine, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Xun Li
- The First School of Clinical Medicine, Lanzhou University, No. 199, Donggang West Road, Chengguan District, Lanzhou, 730000, Gansu, China.
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, No. 1 Donggang West Road, Chengguan District, Lanzhou, 730000, Gansu, China.
- Department of General Surgery, The First Hospital of Lanzhou University, No. 1 Donggang West Road, Chengguan District, Lanzhou, 730000, Gansu, China.
| |
Collapse
|
2
|
Wang M, Zhao J, Chen J, Long T, Xu M, Luo T, Che Q, He Y, Xu D. The role of sirtuin1 in liver injury: molecular mechanisms and novel therapeutic target. PeerJ 2024; 12:e17094. [PMID: 38563003 PMCID: PMC10984179 DOI: 10.7717/peerj.17094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 02/20/2024] [Indexed: 04/04/2024] Open
Abstract
Liver disease is a common and serious threat to human health. The progression of liver diseases is influenced by many physiologic processes, including oxidative stress, inflammation, bile acid metabolism, and autophagy. Various factors lead to the dysfunction of these processes and basing on the different pathogeny, pathology, clinical manifestation, and pathogenesis, liver diseases are grouped into different categories. Specifically, Sirtuin1 (SIRT1), a member of the sirtuin protein family, has been extensively studied in the context of liver injury in recent years and are confirmed the significant role in liver disease. SIRT1 has been found to play a critical role in regulating key processes in liver injury. Further, SIRT1 seems to cause divers outcomes in different types of liver diseases. Recent studies have showed some therapeutic strategies involving modulating SIRT1, which may bring a novel therapeutic target. To elucidate the mechanisms underlying the role of sirtuin1 in liver injury and its potentiality as a therapeutic target, this review outlines the key signaling pathways associated with sirtuin1 and liver injury, and discusses recent advances in therapeutic strategies targeting sirtuin1 in liver diseases.
Collapse
Affiliation(s)
- Mufei Wang
- Department of Medical Instrumental Analysis, Zunyi Medical University, Zunyi, Guizhou, China
- Department of Infectious Diseases, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Juanjuan Zhao
- Department of Immunology, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jiuxia Chen
- Department of Medical Instrumental Analysis, Zunyi Medical University, Zunyi, Guizhou, China
| | - Teng Long
- Department of Medical Instrumental Analysis, Zunyi Medical University, Zunyi, Guizhou, China
| | - Mengwei Xu
- Department of Medical Instrumental Analysis, Zunyi Medical University, Zunyi, Guizhou, China
| | - Tingting Luo
- Department of Medical Instrumental Analysis, Zunyi Medical University, Zunyi, Guizhou, China
| | - Qingya Che
- Department of Medical Instrumental Analysis, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yihuai He
- Department of Infectious Diseases, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Delin Xu
- Department of Medical Instrumental Analysis, Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
3
|
Mostafa DK, Eissa MM, Ghareeb DA, Abdulmalek S, Hewedy WA. Resveratrol protects against Schistosoma mansoni-induced liver fibrosis by targeting the Sirt-1/NF-κB axis. Inflammopharmacology 2024; 32:763-775. [PMID: 38041753 PMCID: PMC10907480 DOI: 10.1007/s10787-023-01382-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/19/2023] [Indexed: 12/03/2023]
Abstract
Hepatic schistosomiasis is a prevalent form of chronic liver disease that drastically affects human health. Nevertheless, an antifibrotic drug that could suppress the development of hepatic fibrosis does not exist yet. The current study aimed to evaluate the effect of resveratrol, a natural polyphenol with multiple biological activities, on Schistosoma mansoni (S. mansoni)-induced hepatic fibrosis and delineate the underlying molecular mechanism. Swiss male albino mice were randomly assigned into infected and non-infected groups. Hepatic schistosomiasis infection was induced via exposure to S. mansoni cercariae. 6 weeks later, resveratrol was administrated either as 20 mg/kg/day or 100 mg/kg/day for 4 weeks to two infected groups. Another group received vehicle and served as infected control group. At the end of the study, portal hemodynamic, biochemical, and histopathological evaluation of liver tissues were conducted. Remarkably, resveratrol significantly reduced portal pressure, portal and mesenteric flow in a dose-dependent manner. It improved several key features of hepatic injury as evidenced biochemically by a significant reduction of bilirubin and liver enzymes, and histologically by amelioration of the granulomatous and inflammatory reactions. In line, resveratrol reduced the expression of pro-inflammatory markers; TNF-α, IL-1β and MCP-1 mRNA, together with fibrotic markers; collagen-1, TGF-β1 and α-SMA. Moreover, resveratrol restored SIRT1/NF-κB balance in hepatic tissues which is the main switch-off control for all the fibrotic and inflammatory mechanisms. Taken together, it can be inferred that resveratrol possesses a possible anti-fibrotic effect that can halt the progression of hepatic schistosomiasis via targeting SIRT1/ NF-κB signaling.
Collapse
Affiliation(s)
- Dalia Kamal Mostafa
- Clinical Pharmacology Department, Faculty of Medicine, Alexandria University, Al-Moassat Medical Campus, Elhadara, Alexandria, 21561, Egypt
| | - Maha M Eissa
- Medical Parasitology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Doaa A Ghareeb
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Shaymaa Abdulmalek
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Wafaa A Hewedy
- Clinical Pharmacology Department, Faculty of Medicine, Alexandria University, Al-Moassat Medical Campus, Elhadara, Alexandria, 21561, Egypt.
| |
Collapse
|
4
|
Wei L, Zhang W, Li Y, Zhai J. The SIRT1-HMGB1 axis: Therapeutic potential to ameliorate inflammatory responses and tumor occurrence. Front Cell Dev Biol 2022; 10:986511. [PMID: 36081910 PMCID: PMC9448523 DOI: 10.3389/fcell.2022.986511] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
Inflammation is a common complication of many chronic diseases. It includes inflammation of the parenchyma and vascular systems. Sirtuin 1 (SIRT1) is a nicotinamide adenine dinucleotide (NAD)-dependent histone deacetylase, which can directly participate in the suppression of inflammation. It can also regulate the activity of other proteins. Among them, high mobility group box 1 (HMGB1) signaling can be inhibited by deacetylating four lysine residues (55, 88, 90, and 177) in quiescent endothelial cells. HMGB1 is a ubiquitous nuclear protein, once translocated outside the cell, which can interact with various target cell receptors including the receptor for advanced glycation end-products (RAGE), toll-like receptor (TLR) 2, and TLR4 and stimulates the release of pro-inflammatory cyto-/chemokines. And SIRT1 has been reported to inhibit the activity of HMGB1. Both are related to the occurrence and development of inflammation and associated diseases but show an antagonistic relationship in controlling inflammation. Therefore, in this review, we introduce how this signaling axis regulates the emergence of inflammation-related responses and tumor occurrence, providing a new experimental perspective for future inflammation research. In addition, it explores diverse upstream regulators and some natural/synthetic activators of SIRT1 as a possible treatment for inflammatory responses and tumor occurrence which may encourage the development of new anti-inflammatory drugs. Meanwhile, this review also introduces the potential molecular mechanism of the SIRT1-HMGB1 pathway to improve inflammation, suggesting that SIRT1 and HMGB1 proteins may be potential targets for treating inflammation.
Collapse
Affiliation(s)
- Lanyi Wei
- Department of Clinical Pharmacy, The First Hospital of Jilin University, Changchun, Jilin, China
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Wenrui Zhang
- Department of Clinical Pharmacy, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yueyang Li
- Department of Clinical Pharmacy, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Jinghui Zhai
- Department of Clinical Pharmacy, The First Hospital of Jilin University, Changchun, Jilin, China
- *Correspondence: Jinghui Zhai,
| |
Collapse
|
5
|
Andersson U, Yang H. HMGB1 is a critical molecule in the pathogenesis of Gram-negative sepsis. JOURNAL OF INTENSIVE MEDICINE 2022; 2:156-166. [PMID: 36789020 PMCID: PMC9924014 DOI: 10.1016/j.jointm.2022.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/19/2022] [Accepted: 02/06/2022] [Indexed: 04/12/2023]
Abstract
Gram-negative sepsis is a severe clinical syndrome associated with significant morbidity and mortality. Lipopolysaccharide (LPS), expressed on Gram-negative bacteria, is a potent pro-inflammatory toxin that induces inflammation and coagulation via two separate receptor systems. One is Toll-like receptor 4 (TLR4), expressed on cell surfaces and in endosomes, and the other is the cytosolic receptor caspase-11 (caspases-4 and -5 in humans). Extracellular LPS binds to high mobility group box 1 (HMGB1) protein, a cytokine-like molecule. The HMGB1-LPS complex is transported via receptor for advanced glycated end products (RAGE)-endocytosis to the endolysosomal system to reach the cytosolic LPS receptor caspase-11 to induce HMGB1 release, inflammation, and coagulation that may cause multi-organ failure. The insight that LPS needs HMGB1 assistance to generate severe inflammation has led to successful therapeutic results in preclinical Gram-negative sepsis studies targeting HMGB1. However, to date, no clinical studies have been performed based on this strategy. HMGB1 is also actively released by peripheral sensory nerves and this mechanism is fundamental for the initiation and propagation of inflammation during tissue injury. Homeostasis is achieved when other neurons actively restrict the inflammatory response via monitoring by the central nervous system and the vagus nerve through the cholinergic anti-inflammatory pathway. The neuronal control in Gram-negative sepsis needs further studies since a deeper understanding of the interplay between HMGB1 and acetylcholine may have beneficial therapeutic implications. Herein, we review the synergistic overlapping mechanisms of LPS and HMGB1 and discuss future treatment opportunities in Gram-negative sepsis.
Collapse
Affiliation(s)
- Ulf Andersson
- Department of Women's and Children's Health, Karolinska Institute at Karolinska University Hospital, Stockholm 17176, Sweden
- Corresponding author: Ulf Andersson, Department of Women's and Children's Health, Karolinska Institute at Karolinska University Hospital, Stockholm 17176, Sweden.
| | - Huan Yang
- Institute for Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, United States of America
| |
Collapse
|
6
|
Abstract
Sirtuins (SIRT) are unique posttranslational modification enzymes that utilize NAD + as co-substrate to remove acyl groups from lysine residues. SIRT act on variety of substrates and impact major metabolic process. All seven members of SIRT family are unique and targets wide range of cellular proteins in nucleus, cytoplasm, and mitochondria for post-translational modification by acetylation (SIRT1, 2, 3, and 5) or ADP-ribosylation (SIRT4 and 6). Each member of SIRT family is distinct. SIRT2 was first to be discovered that incited research on mammalian SIRT. Enzymatic activities of SIRT 4 are yet to be elucidated while only SIRT7 is localized in nucleoli that govern the transcription of RNA polymerase I. SIRT 5 and 6 exhibit weakest deacetylase activity. Out of all SIRT analogs, SIRT1 is identified as nutrient sensor. Increased expression of only SIRT3 is linked with longevity in humans. Since SIRT is regulated by the bioenergetic state of the cell, nutrition impacts it but very few studies about diet-mediated effect on SIRT are reported. The present review elaborates distribution, specific biological role and prominent effect of all SIRT on vital human tissue along with highlighting need to trace molecular mechanisms and identifying foods that may augment it beneficially.
Collapse
Affiliation(s)
- Shubhra Pande
- Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi, India
| | - Sheikh Raisuddin
- Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi, India
| |
Collapse
|
7
|
Rao YL, Ganaraja B, Murlimanju BV, Joy T, Krishnamurthy A, Agrawal A. Hippocampus and its involvement in Alzheimer's disease: a review. 3 Biotech 2022; 12:55. [PMID: 35116217 PMCID: PMC8807768 DOI: 10.1007/s13205-022-03123-4] [Citation(s) in RCA: 156] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/16/2022] [Indexed: 12/12/2022] Open
Abstract
Hippocampus is the significant component of the limbic lobe, which is further subdivided into the dentate gyrus and parts of Cornu Ammonis. It is the crucial region for learning and memory; its sub-regions aid in the generation of episodic memory. However, the hippocampus is one of the brain areas affected by Alzheimer's (AD). In the early stages of AD, the hippocampus shows rapid loss of its tissue, which is associated with the functional disconnection with other parts of the brain. In the progression of AD, atrophy of medial temporal and hippocampal regions are the structural markers in magnetic resonance imaging (MRI). Lack of sirtuin (SIRT) expression in the hippocampal neurons will impair cognitive function, including recent memory and spatial learning. Proliferation, differentiation, and migrations are the steps involved in adult neurogenesis. The microglia in the hippocampal region are more immunologically active than the other regions of the brain. Intrinsic factors like hormones, glia, and vascular nourishment are instrumental in the neural stem cell (NSC) functions by maintaining the brain's microenvironment. Along with the intrinsic factors, many extrinsic factors like dietary intake and physical activity may also influence the NSCs. Hence, pro-neurogenic lifestyle could delay neurodegeneration.
Collapse
Affiliation(s)
- Y. Lakshmisha Rao
- Department of Anatomy, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka India
| | - B. Ganaraja
- Department of Physiology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka India
| | - B. V. Murlimanju
- Department of Anatomy, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka India
| | - Teresa Joy
- Department of Anatomy, College of Medicine, American University of Antigua, Coolidge, Antigua, Antigua and Barbuda
| | - Ashwin Krishnamurthy
- Department of Anatomy, K.S. Hegde Medical Academy, Deralakatte, Nitte University, Mangalore, Karnataka India
| | - Amit Agrawal
- Department of Neurosurgery, All India Institute of Medical Sciences, Saket Nagar, Bhopal, 462020 Madhya Pradesh India
| |
Collapse
|
8
|
Andersson U, Tracey KJ, Yang H. Post-Translational Modification of HMGB1 Disulfide Bonds in Stimulating and Inhibiting Inflammation. Cells 2021; 10:cells10123323. [PMID: 34943830 PMCID: PMC8699546 DOI: 10.3390/cells10123323] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 12/16/2022] Open
Abstract
High mobility group box 1 protein (HMGB1), a highly conserved nuclear DNA-binding protein, is a “damage-associated molecular pattern” molecule (DAMP) implicated in both stimulating and inhibiting innate immunity. As reviewed here, HMGB1 is an oxidation-reduction sensitive DAMP bearing three cysteines, and the post-translational modification of these residues establishes its proinflammatory and anti-inflammatory activities by binding to different extracellular cell surface receptors. The redox-sensitive signaling mechanisms of HMGB1 also occupy an important niche in innate immunity because HMGB1 may carry other DAMPs and pathogen-associated molecular pattern molecules (PAMPs). HMGB1 with DAMP/PAMP cofactors bind to the receptor for advanced glycation end products (RAGE) which internalizes the HMGB1 complexes by endocytosis for incorporation in lysosomal compartments. Intra-lysosomal HMGB1 disrupts lysosomal membranes thereby releasing the HMGB1-transported molecules to stimulate cytosolic sensors that mediate inflammation. This HMGB1-DAMP/PAMP cofactor pathway slowed the development of HMGB1-binding antagonists for diagnostic or therapeutic use. However, recent discoveries that HMGB1 released from neurons mediates inflammation via the TLR4 receptor system, and that cancer cells express fully oxidized HMGB1 as an immunosuppressive mechanism, offer new paths to targeting HMGB1 for inflammation, pain, and cancer.
Collapse
Affiliation(s)
- Ulf Andersson
- Department of Women’s and Children’s Health, Karolinska Institute, Karolinska University Hospital, 17176 Stockholm, Sweden
- Correspondence: ; Tel.: +46-(70)-7401740
| | - Kevin J. Tracey
- Institute for Bioelectronic Medicine, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY 11030, USA; (K.J.T.); (H.Y.)
| | - Huan Yang
- Institute for Bioelectronic Medicine, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY 11030, USA; (K.J.T.); (H.Y.)
| |
Collapse
|
9
|
Hosny KM, Alhakamy NA, Al Nahyah KS. The relevance of nanotechnology, hepato-protective agents in reducing the toxicity and augmenting the bioavailability of isotretinoin. Drug Deliv 2021; 28:123-133. [PMID: 33355019 PMCID: PMC7758053 DOI: 10.1080/10717544.2020.1862365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Acne Vulgaris is one of the most common chronic inflammatory skin disorders that affect majority of teen-agers worldwide. Isotretinoin (ITT) is the drug of choice in the management of acne, but, it suffers from serious side-effects including hepatotoxicity, and some psychological disturbances following its oral intake. The objective of this study was to develop and optimize ITT loaded nanoemulsions (ITT-SNEDDS) and to incorporate resveratrol (RSV)in optimum formulation to decrease ITT side effects The ITT solubility was first tested in various essential oils, surfactants, and co-surfactants to select the essential nanoemulsion ingredients. Mixture design was applied to study the effect of independent variables and their interactions on the selected dependent responses. The developed ITT-SNEDDS were characterized for their globule size and ex vivo permeation. The optimized batch was further loaded with RSV and evaluated for in vitro and ex vivo permeation and for in vivo hepatotoxicity. The developed ITT-SNEDDS exhibited globule size below 300 nm, up to 272.27 ± 7.12 mcg/cm2.h and 61.27 ± 2.83% of steady-state flux (JSS) and permeability % respectively. Optimum formulation consisted of 0.15 g oil mixture, 0.6 g of surfactant (Labrasol), and 0.250 g co-surfactant (Transcutol). Permeability studies confirmed the enhanced permeation percentage of ITT (40.77 ± 1.18%), and RSV (29.94 ± 2.02%) from optimized formulation, with enhanced steady-state flux (JSS). In vivo studies demonstrated the superior hepatoprotective activity of optimized formulation compared to a different drug formulations and marketed product. Therefore, RVS loaded ITT-SNEDDS might be a successful strategy for acne management with improved action, and minimum side effects.
Collapse
Affiliation(s)
- Khaled M Hosny
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nabil A Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khalid S Al Nahyah
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
10
|
The Role of Resveratrol in Liver Disease: A Comprehensive Review from In Vitro to Clinical Trials. Nutrients 2021; 13:nu13030933. [PMID: 33805795 PMCID: PMC7999728 DOI: 10.3390/nu13030933] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 12/15/2022] Open
Abstract
Many studies have shown that resveratrol has a lot of therapeutic effects on liver disorders. Its administration can significantly increase the survival rate after liver transplantation, reduce fat deposition and ischemia-induced necrosis and apoptosis in Wistar rats. Resveratrol can provide Liver protection against chemical, cholestatic, and alcohol-mediated damage. It can improve glucose metabolism and lipid profile, reduce liver fibrosis, and steatosis. Additionally, it is capable of altering the fatty acid composition of the liver cells. Resveratrol may be a potential treatment option for the management of non-alcoholic fatty liver disease (NAFLD) due to its anti-inflammatory, antioxidant, and calorie-restricting effects. There are also studies that have evaluated the effect of resveratrol on lipid and liver enzyme profiles among patients with metabolic syndrome (MetS) and related disorders. Based on the extent of liver disease worldwide and the need to find new treatment possibilities, this review critically examines current in vitro and in vivo preclinical studies and human clinical studies related to liver protection.
Collapse
|
11
|
Natural Antioxidant Control of Neuropathic Pain-Exploring the Role of Mitochondrial SIRT3 Pathway. Antioxidants (Basel) 2020; 9:antiox9111103. [PMID: 33182469 PMCID: PMC7698145 DOI: 10.3390/antiox9111103] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 02/06/2023] Open
Abstract
Neuropathic pain is a chronic painful disease. Data have shown that reactive oxygen species (ROS) are implicated in chronic pain. Particularly, the enhanced ROS production alters the mitochondrial genome and proteome through the accumulation of lipid peroxidation products, such as 4-hydroxynonenal (4-HNE) and malondialdehyde (MDA). Sirtuin 3 (SIRT3) is a mitochondrial protein and its activity can reduce ROS levels by modulating key antioxidant enzymes, such as manganese superoxide dismutase (MnSOD). Here, we evaluated the role of SIRT3 in the maintenance of basal levels of ROS in a model of chronic constriction injury (CCI) of the sciatic nerve and the protective effects of a natural antioxidant, the bergamot polyphenolic fraction (BPF). Rats were exposed to CCI of the sciatic nerve in the presence or absence of BPF (25–75 mg/kg). Level of acetylation, post-translational modulation on cysteine residues of proteins by HNE and SIRT3 activation, were detected in the spinal cord through western blotting, WES methodology and enzymatic assays. Our results reported that SIRT3 carbonylation and therefore its inactivation contributes to mitochondrial MnSOD hyperacetylation during CCI induced neuropathic pain in rats. In particular, we have demonstrated a close relation between oxidative stress, hyperalgesia, allodynia and sirtuins inactivation reverted by BPF administration.
Collapse
|
12
|
Shu Y, He D, Li W, Wang M, Zhao S, Liu L, Cao Z, Liu R, Huang Y, Li H, Yang X, Lu C, Liu Y. Hepatoprotective Effect of Citrus aurantium L. Against APAP-induced Liver Injury by Regulating Liver Lipid Metabolism and Apoptosis. Int J Biol Sci 2020; 16:752-765. [PMID: 32071546 PMCID: PMC7019131 DOI: 10.7150/ijbs.40612] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/01/2019] [Indexed: 12/11/2022] Open
Abstract
Acetaminophen (APAP) refers to a medication used to manage pain and fever symptoms, but it always causes liver injury when overdosed. Zhishi, dried young fruit of Citrus aurantium L., is a famous Citrus herbal medicine in Asian countries which is rich in dietary phenolic substances. In this study, the mechanism of Zhishi protected against APAP-induced liver injury was studied more deeply by metabolomic strategy and pharmacological study. The metabolomics results demonstrated that Zhishi can prevent the APAP-induced liver injury model by regulating liver metabolic disorders in glycerophospholipid metabolism, fatty acid biosynthesis and glycerolipid metabolism. Moreover, it is confirmed that Zhishi blocked apoptosis of APAP-induced BRL-3A cell by simultaneously regulating p53 up-regulated apoptosis regulator (PUMA), AMPK-SIRT1 and JNK1 signaling pathways. Our findings indicated that Zhishi exhibited a hepaprotective effect against APAP-induced liver necrosis by inhibiting the PUMA and reversing disorder of liver lipid metabolism which could assist in improving the clinical outcomes of chemical-induced liver injury.
Collapse
Affiliation(s)
- Yisong Shu
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Dan He
- Patent Examination Cooperation (Tianjin) Center of the Patent Office, Tianjin, 300304, China
| | - Wen Li
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Menglei Wang
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Siyu Zhao
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Linlin Liu
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zhiwen Cao
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Rui Liu
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yujuan Huang
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Hui Li
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xueqing Yang
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yuanyan Liu
- Beijing University of Chinese Medicine, Beijing, 100029, China
| |
Collapse
|