1
|
Wu X, Zhi X, Liu K, Jiang H, Zhao X, Li Y. Prevention and control of cardiac arrhythmic by using therapeutic foods: A review. J Cardiovasc Electrophysiol 2024. [PMID: 39363395 DOI: 10.1111/jce.16428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/22/2024] [Accepted: 08/29/2024] [Indexed: 10/05/2024]
Abstract
INTRODUCTION Arrhythmia occurs as a common heart vascular disease. Functional food is a rich source of natural compounds with significant pharmacological, The aim of this paper is to explore its effect on arrhythmia. METHODS By reviewing the literature and summarising the findings, we described the role of functional foods in the alleviation of cardiac arrhythmias from different perspectives. RESULTS Our study shows that functional foods have anti-arrhythmic effects through modulation of ion channels, oxidative stress, and Calmodulin-dependent protein kinase II. CONCLUSIONS We summarize the mechanism of arrhythmia inhibition by the active ingredients of medicinal diets in this review article, intending to provide research ideas for dietary therapy to regulate arrhythmia.
Collapse
Affiliation(s)
- Xue Wu
- College of Integrated Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Department of Cardiology, The Second Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory of Prevention and Treatment for Chronic Diseases by Traditional Chinese Medicine, University Hospital of Gansu Traditional Chinese Medicine, Lanzhou, China
- The Second Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Xiaodong Zhi
- College of Integrated Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Prevention and Treatment for Chronic Diseases by Traditional Chinese Medicine, University Hospital of Gansu Traditional Chinese Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - Kai Liu
- College of Integrated Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Prevention and Treatment for Chronic Diseases by Traditional Chinese Medicine, University Hospital of Gansu Traditional Chinese Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - HuGang Jiang
- College of Integrated Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Prevention and Treatment for Chronic Diseases by Traditional Chinese Medicine, University Hospital of Gansu Traditional Chinese Medicine, Lanzhou, China
| | - Xinke Zhao
- College of Integrated Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Prevention and Treatment for Chronic Diseases by Traditional Chinese Medicine, University Hospital of Gansu Traditional Chinese Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - Yingdong Li
- College of Integrated Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Prevention and Treatment for Chronic Diseases by Traditional Chinese Medicine, University Hospital of Gansu Traditional Chinese Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| |
Collapse
|
2
|
Herring N, Ajijola OA, Foreman RD, Gourine AV, Green AL, Osborn J, Paterson DJ, Paton JFR, Ripplinger CM, Smith C, Vrabec TL, Wang HJ, Zucker IH, Ardell JL. Neurocardiology: translational advancements and potential. J Physiol 2024. [PMID: 39340173 DOI: 10.1113/jp284740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
In our original white paper published in the The Journal of Physiology in 2016, we set out our knowledge of the structural and functional organization of cardiac autonomic control, how it remodels during disease, and approaches to exploit such knowledge for autonomic regulation therapy. The aim of this update is to build on this original blueprint, highlighting the significant progress which has been made in the field since and major challenges and opportunities that exist with regard to translation. Imbalances in autonomic responses, while beneficial in the short term, ultimately contribute to the evolution of cardiac pathology. As our understanding emerges of where and how to target in terms of actuators (including the heart and intracardiac nervous system (ICNS), stellate ganglia, dorsal root ganglia (DRG), vagus nerve, brainstem, and even higher centres), there is also a need to develop sensor technology to respond to appropriate biomarkers (electrophysiological, mechanical, and molecular) such that closed-loop autonomic regulation therapies can evolve. The goal is to work with endogenous control systems, rather than in opposition to them, to improve outcomes.
Collapse
Affiliation(s)
- N Herring
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - O A Ajijola
- UCLA Neurocardiology Research Center of Excellence, David Geffen School of Medicine, Los Angeles, CA, USA
| | - R D Foreman
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - A V Gourine
- Centre for Cardiovascular and Metabolic Neuroscience, University College London, London, UK
| | - A L Green
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - J Osborn
- Department of Surgery, University of Minnesota, Minneapolis, MN, USA
| | - D J Paterson
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - J F R Paton
- Manaaki Manawa - The Centre for Heart Research, Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - C M Ripplinger
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - C Smith
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, USA
| | - T L Vrabec
- Department of Physical Medicine and Rehabilitation, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - H J Wang
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - I H Zucker
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - J L Ardell
- UCLA Neurocardiology Research Center of Excellence, David Geffen School of Medicine, Los Angeles, CA, USA
| |
Collapse
|
3
|
Rai R, Singh V, Ahmad Z, Jain A, Jat D, Mishra SK. Autonomic neuronal modulations in cardiac arrhythmias: Current concepts and emerging therapies. Physiol Behav 2024; 279:114527. [PMID: 38527577 DOI: 10.1016/j.physbeh.2024.114527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 03/27/2024]
Abstract
The pathophysiology of atrial fibrillation and ventricular tachycardia that result in cardiac arrhythmias is related to the sustained complicated mechanisms of the autonomic nervous system. Atrial fibrillation is when the heart beats irregularly, and ventricular arrhythmias are rapid and inconsistent heart rhythms, which involves many factors including the autonomic nervous system. It's a complex topic that requires careful exploration. Cultivation of speculative knowledge on atrial fibrillation; the irregular rhythm of the heart and ventricular arrhythmias; rapid oscillating waves resulting from mistakenly inconsistent P waves, and the inclusion of an autonomic nervous system is an inconceivable approach toward clinical intricacies. Autonomic modulation, therefore, acquires new expansions and conceptions of appealing therapeutic intelligence to prevent cardiac arrhythmia. Notably, autonomic modulation uses the neural tissue's flexibility to cause remodeling and, hence, provide therapeutic effects. In addition, autonomic modulation techniques included stimulation of the vagus nerve and tragus, renal denervation, cardiac sympathetic denervation, and baroreceptor activation treatment. Strong preclinical evidence and early human studies support the annihilation of cardiac arrhythmias by sympathetic and parasympathetic systems to transmigrate the cardiac myocytes and myocardium as efficient determinants at the cellular and physiological levels. However, the goal of this study is to draw attention to these promising early pre-clinical and clinical arrhythmia treatment options that use autonomic modulation as a therapeutic modality to conquer the troublesome process of irregular heart movements. Additionally, we provide a summary of the numerous techniques for measuring autonomic tone such as heart rate oscillations and its association with cutaneous sympathetic nerve activity appear to be substitute indicators and predictors of the outcome of treatment.
Collapse
Affiliation(s)
- Ravina Rai
- Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar 470003 MP, India
| | - Virendra Singh
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 UP, India
| | - Zaved Ahmad
- Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar 470003 MP, India
| | - Abhishek Jain
- Sanjeevani Diabetes and Heart Care Centre, Shri Chaitanya Hospital, Sagar, 470002, MP, India
| | - Deepali Jat
- Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar 470003 MP, India.
| | | |
Collapse
|
4
|
Joshi P, Estes S, DeMazumder D, Knollmann BC, Dey S. Ryanodine receptor 2 inhibition reduces dispersion of cardiac repolarization, improves contractile function, and prevents sudden arrhythmic death in failing hearts. eLife 2023; 12:RP88638. [PMID: 38078905 PMCID: PMC10712946 DOI: 10.7554/elife.88638] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023] Open
Abstract
Sudden cardiac death (SCD) from ventricular tachycardia/fibrillation (VT/VF) is a leading cause of death, but current therapies are limited. Despite extensive research on drugs targeting sarcolemmal ion channels, none have proven sufficiently effective for preventing SCD. Sarcoplasmic ryanodine receptor 2 (RyR2) Ca2+ release channels, the downstream effectors of sarcolemmal ion channels, are underexplored in this context. Recent evidence implicates reactive oxygen species (ROS)-mediated oxidation and hyperactivity of RyR2s in the pathophysiology of SCD. We tested the hypothesis that RyR2 inhibition of failing arrhythmogenic hearts reduces sarcoplasmic Ca2+ leak and repolarization lability, mitigates VT/VF/SCD and improves contractile function. We used a guinea pig model that replicates key clinical aspects of human nonischemic HF, such as a prolonged QT interval, a high prevalence of spontaneous arrhythmic SCD, and profound Ca2+ leak via a hyperactive RyR2. HF animals were randomized to receive dantrolene (DS) or placebo in early or chronic HF. We assessed the incidence of VT/VF and SCD (primary outcome), ECG heart rate and QT variability, echocardiographic left ventricular (LV) structure and function, immunohistochemical LV fibrosis, and sarcoplasmic RyR2 oxidation. DS treatment prevented VT/VF and SCD by decreasing dispersion of repolarization and ventricular arrhythmias. Compared to placebo, DS lowered resting heart rate, preserved chronotropic competency during transient β-adrenergic challenge, and improved heart rate variability and cardiac function. Inhibition of RyR2 hyperactivity with dantrolene mitigates the vicious cycle of sarcoplasmic Ca2+ leak-induced increases in diastolic Ca2+ and ROS-mediated RyR2 oxidation, thereby reducing repolarization lability and protecting against VT/VF/SCD. Moreover, the consequent increase in sarcoplasmic Ca2+ load improves contractile function. These potentially life-saving effects of RyR2 inhibition warrant further investigation, such as clinical studies of repurposing dantrolene as a potential new therapy for heart failure and/or SCD.
Collapse
Affiliation(s)
- Pooja Joshi
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical CenterNashvilleUnited States
| | - Shanea Estes
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical CenterNashvilleUnited States
| | - Deeptankar DeMazumder
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Internal Medicine, Veterans Affairs Pittsburgh Health SystemPittsburghUnited States
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Internal Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical CenterPittsburghUnited States
- Department of Surgery, University of Pittsburgh School of MedicinePittsburghUnited States
- McGowan Institute for Regenerative Medicine, University of Pittsburgh School of MedicinePittsburghUnited States
| | - Bjorn C Knollmann
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical CenterNashvilleUnited States
| | - Swati Dey
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical CenterNashvilleUnited States
| |
Collapse
|
5
|
Dey S, Joshi P, O'Rourke B, Estes S, DeMazumder D. Cardiac sympathetic denervation prevents sudden cardiac arrest and improves cardiac function by enhancing mitochondrial-antioxidant capacity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.29.526082. [PMID: 36778270 PMCID: PMC9915471 DOI: 10.1101/2023.01.29.526082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
RATIONALE Sudden cardiac arrest (SCA) and heart failure (HF) are leading causes of death. The underlying mechanisms are incompletely understood, limiting the design of new therapies. Whereas most autonomic modulation therapies have not shown clear benefit in HF patients, growing evidence indicates cardiac sympathetic denervation (CSD) exerts cardioprotective effects. The underlying molecular and cellular mechanisms remain unexplored. OBJECTIVE Based on the hypothesis that mitochondrial reactive oxygen species (mROS) drive the pathogenesis of HF and SCA, we investigated whether CSD prevents SCA and HF by improving mitochondrial antioxidant capacity and redox balance, to correct impaired Ca2+ handling and repolarization reserve. METHODS AND RESULTS We interrogated CSD-specific responses in pressure-overload HF models with spontaneous SCA using in vivo echocardiographic and electrocardiographic studies and in vitro biochemical and functional studies including ratiometric measures of mROS, Ca2+ and sarcomere dynamics in left ventricular myocytes. Pressure-overloaded HF reduced mitochondrial antioxidant capacity and increased mROS, which impaired β-adrenergic signaling and caused SR Ca2+ leak, reducing SR Ca2+ and increasing diastolic Ca2+, impaired myofilament contraction and further increased the sympathetic stress response. CSD improved contractile function and mitigated mROS-mediated diastolic Ca2+ overload, dispersion of repolarization, triggered activity and SCA by upregulating mitochondrial antioxidant and NADPH-producing enzymes. CONCLUSIONS Our findings support a fundamental role of sympathetic stress-induced downregulation of mROS scavenging enzymes and RyR-leak mediated diastolic Ca2+ overload in HF and SCA pathogenesis that are mitigated by CSD. This first report on the molecular and cellular mechanisms of CSD supports its evaluation in additional high-risk patient groups.
Collapse
|
6
|
Joshi P, Estes S, DeMazumder D, Knollmann BC, Dey S. Ryanodine receptor 2 inhibition reduces dispersion of cardiac repolarization, improves contractile function and prevents sudden arrhythmic death in failing hearts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.29.526151. [PMID: 37662391 PMCID: PMC10473608 DOI: 10.1101/2023.01.29.526151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Introduction Sudden cardiac death (SCD) from ventricular tachycardia/fibrillation (VT/VF) are a leading cause of death, but current therapies are limited. Despite extensive research on drugs targeting sarcolemmal ion channels, none have proven sufficiently effective for preventing SCD. Sarcoplasmic ryanodine receptor 2 (RyR2) Ca 2+ release channels, the downstream effectors of sarcolemmal ion channels, are underexplored in this context. Recent evidence implicates reactive oxygen species (ROS)- mediated oxidation and hyperactivity of RyR2s in the pathophysiology of SCD. Objective To test the hypothesis that RyR2 inhibition of failing arrhythmogenic hearts reduces sarcoplasmic Ca 2+ leak and repolarization lability, mitigates VT/VF/SCD and improves contractile function. Methods We used a guinea pig model that replicates key clinical aspects of human nonischemic HF, such as a prolonged QT interval, a high prevalence of spontaneous arrhythmic SCD, and profound Ca 2+ leak via a hyperactive RyR2. HF animals were randomized to receive dantrolene (DS) or placebo in early or chronic HF. We assessed the incidence of VT/VF and SCD (primary outcome), ECG heart rate and QT variability, echocardiographic left ventricular (LV) structure and function, immunohistochemical LV fibrosis, and sarcoplasmic RyR2 oxidation. Results DS treatment prevented VT/VF and SCD by decreasing dispersion of repolarization and ventricular arrhythmias. Compared to placebo, DS lowered resting heart rate, preserved chronotropic competency during transient β-adrenergic challenge, and improved heart rate variability and cardiac function. Conclusion Inhibition of RyR2 hyperactivity with dantrolene mitigates the vicious cycle of sarcoplasmic Ca 2+ leak-induced increases in diastolic Ca 2+ and ROS-mediated RyR2 oxidation, thereby increasing repolarization lability and protecting against VT/VF/SCD. Moreover, the consequent increase in sarcoplasmic Ca 2+ load improves contractile function. These potentially life-saving effects of RyR2 inhibition warrant further investigation, such as clinical studies of repurposing dantrolene as a potential new therapy for heart failure and/or SCD.
Collapse
|
7
|
Ye J, Xiao R, Wang X, He R, Liu Z, Gao J. Effects and mechanism of renal denervation on ventricular arrhythmia after acute myocardial infarction in rats. BMC Cardiovasc Disord 2022; 22:544. [PMID: 36510123 PMCID: PMC9743565 DOI: 10.1186/s12872-022-02980-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 11/25/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Renal denervation (RDN) can reduce ventricular arrhythmia after acute myocardial infarction (AMI), but the mechanism is not clear. The purpose of this study is to study its mechanism. METHODS Thirty-two Sprague-Dawley rats were divided into four groups: control group, AMI group, RDN-1d + AMI group, RDN-2w + AMI group. The AMI model was established 1 day after RDN in the RDN-1d + AMI group and 2 weeks after RDN in the RDN-2w + AMI group. At the same time, 8 normal rats were subjected to AMI modelling (the AMI group). The control group consisted of 8 rats without RDN intervention or AMI modelling. RESULTS The study confirmed that RDN can reduce the occurrence of ventricular tachycardia in AMI rats, reduce renal sympathetic nerve discharge, and inhibit the activity of local sympathetic nerves and cell growth factor (NGF) protein expression in the heart after AMI. In addition, RDN decreased the expression of norepinephrine (NE) and glutamate in the hypothalamus,and NE in cerebrospinal fluid, and increased the expression level of γ aminobutyric acid (GABA) in the hypothalamus after AMI. CONCLUSION RDN can effectively reduce the occurrence of ventricular arrhythmia after AMI, and its main mechanism may be via the inhibition of central sympathetic nerve discharge.
Collapse
Affiliation(s)
- Jian Ye
- grid.412540.60000 0001 2372 7462Department of Cardiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062 People’s Republic of China
| | - Rongxue Xiao
- grid.186775.a0000 0000 9490 772XShanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Shanghai, 200062 People’s Republic of China ,grid.186775.a0000 0000 9490 772XThe Fifth School of Clinical Medicine, Anhui Medical University, Shanghai, 200062 People’s Republic of China ,grid.412540.60000 0001 2372 7462Department of Cardiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062 People’s Republic of China
| | - Xu Wang
- grid.412540.60000 0001 2372 7462Department of Cardiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062 People’s Republic of China
| | - Ruiqing He
- grid.412540.60000 0001 2372 7462Department of Cardiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062 People’s Republic of China
| | - Zongjun Liu
- grid.186775.a0000 0000 9490 772XShanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Shanghai, 200062 People’s Republic of China ,grid.186775.a0000 0000 9490 772XThe Fifth School of Clinical Medicine, Anhui Medical University, Shanghai, 200062 People’s Republic of China ,grid.412540.60000 0001 2372 7462Department of Cardiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062 People’s Republic of China
| | - Junqing Gao
- grid.412540.60000 0001 2372 7462Department of Cardiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062 People’s Republic of China
| |
Collapse
|
8
|
Wu YJ, Wang SB, Wang LS. SGLT2 Inhibitors: New Hope for the Treatment of Acute Myocardial Infarction? Am J Cardiovasc Drugs 2022; 22:601-613. [PMID: 35947249 DOI: 10.1007/s40256-022-00545-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/19/2022] [Indexed: 11/01/2022]
Abstract
Among all of the new antidiabetic drugs, an increasing number of studies have evaluated the relationship between the sodium-glucose cotransporter 2 inhibitors (SGLT2i) and acute myocardial infarction (AMI). Since SGLT2i like empagliflozin, canagliflozin, and recently, dapagliflozin have shown impressive positive effects in patients with chronic heart failure with reduced ejection fraction (HFrEF), it has increased research interest to explore the cardiac molecular mechanisms underlying the clinical benefits and attracted more attention to the effects of SGLT2i on a series of cardiovascular events. Experimental and clinical data on SGLT2i treatment after AMI is limited. This is a review of the clinical and preclinical effects of SGLT2i, focusing on available data on the effects of SGLT2i in AMI patients with a brief overview of ongoing trials.
Collapse
Affiliation(s)
- Yu-Jie Wu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Si-Bo Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Lian-Sheng Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
9
|
Khan MH, Gerson MC. Use of mineralocorticoid receptor antagonist in ST elevation myocardial infarction. J Nucl Cardiol 2022; 29:2336-2339. [PMID: 34519013 DOI: 10.1007/s12350-021-02801-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 11/28/2022]
Affiliation(s)
- Muhammad H Khan
- University of Cincinnati Department of Internal Medicine, Cincinnati, USA
| | - Myron C Gerson
- University of Cincinnati Department of Cardiovascular Medicine, Cincinnati, USA.
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH, 45267, USA.
| |
Collapse
|
10
|
Chen J, Chu Y, Gao M, Dai X, Li B, Qu X, Yin D. Cardiac sympathetic afferent ablation to prevent ventricular arrhythmia complicating acute myocardial infarction by inhibiting activated astrocytes. J Cell Mol Med 2022; 26:4805-4813. [PMID: 35934775 PMCID: PMC9465199 DOI: 10.1111/jcmm.17508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 05/30/2022] [Accepted: 07/08/2022] [Indexed: 11/29/2022] Open
Abstract
Enhanced cardiac sympathetic afferent reflex (CSAR) contributes to ventricular arrhythmia (VA) after acute myocardial infarction (AMI). However, central regulation mechanisms remain unknown. The aim of this study was to investigate whether local cardiac sympathetic afferent ablation (LCSAA) could reduce VA by inhibiting activated astrocytes in the hypothalamus paraventricular (PVN) in an AMI rat model. The rats were randomly divided into AMI, AMI + BD (baroreceptor denervation), AMI + LCSAA and AMI + BD+ LCSAA groups. Before the generation of AMI, BD and (or) LCSAA were performed. At 24 h after AMI, the incidence and duration of VA in AMI + LCSAA group and AMI + BD + LCSAA group were significantly reduced than AMI group (P < 0.05). Furthermore, LCSAA significantly reduced GFAP (a marker for activated astrocytes) positive cells and their projections as well as the level of TNF‐α and IL‐6 in the PVN of AMI + LCSAA group and AMI + BD+ LCSAA group, along with the decrease of neuronal activation in PVN and sympathetic nerve activity (P < 0.05). but BD had no obvious difference between AMI + LCSAA and AMI + BD + LCSAA group (P > 0.05). Therefore, LCSAA could decrease sympathoexcitation and VA occurrence in AMI rats by inhibiting astrocyte and neuronal activation in the PVN. Our study demonstrates that activated astrocytes may play an important role on CSAR in AMI.
Collapse
Affiliation(s)
- Jugang Chen
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Department of Cardiology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Yingjie Chu
- Department of Cardiology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Meng Gao
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xin Dai
- Department of Oncology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bin Li
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiufen Qu
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dechun Yin
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
11
|
Li L, Gao J, Gao L, Li L, Zhang H, Zhao W, Xu S. Bilateral Superior Cervical Sympathectomy Activates Signal Transducer and Activator of Transcription 3 Signal to Alleviate Myocardial Ischemia-Reperfusion Injury. Front Cardiovasc Med 2022; 9:807298. [PMID: 35433880 PMCID: PMC9010611 DOI: 10.3389/fcvm.2022.807298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/10/2022] [Indexed: 11/23/2022] Open
Abstract
Background There is growing evidence about the effect of bilateral superior cervical sympathectomy on myocardial ischemia-reperfusion (I/R) injury. Studies have increasingly found that the signal transducer and activator of transcription 3 (STAT3) plays a protective role in myocardial I/R injury. However, the precise mechanism is unknown. The present study explored the bilateral superior cervical sympathectomy’s effect and potential mechanism in mice myocardial I/R injury. Methods The left heart I/R injury model was created by ligating the anterior descending branch of the coronary artery for 30 min followed by reperfusion. Bilateral superior cervical sympathectomy was performed before myocardial I/R injury. To evaluate the effect of bilateral superior cervical sympathectomy on the myocardium, we examined the myocardial infarct size and cardiac function. Then, myocardial apoptosis, inflammation, and oxidative stress were detected on the myocardium. Furthermore, the expression of STAT3 signal in myocardial tissue was measured by western blotting. To further examine the cardioprotective effect of STAT3 after bilateral superior cervical sympathectomy, the STAT3 inhibitor (static) was utilized to inhibit the phosphorylation of STAT3. Results The results showed that the myocardial I/R injury decreased and the cardiac function recovered in the myocardial I/R injury after cervical sympathectomy. Meanwhile, cervical sympathectomy reduced the myocardial distribution of the sympathetic marker tyrosine hydroxylase (TH) and systemic sympathetic tone. And levels of oxidative stress, inflammatory markers, and apoptosis were reduced in myocardial tissue. We also found that the STAT3 signal was activated in myocardial tissue after cervical sympathectomy. STAT3 inhibitor can partially reverse the myocardial protective effect of cervical sympathectomy. Conclusion Bilateral superior cervical sympathectomy significantly alleviated myocardial I/R injury in mice. And activation of the STAT3 signal may play an essential role in this.
Collapse
|
12
|
Li Z, Li Z, Xu W, Li Y, Wang Q, Xu H, Manyande A, Wu D, Feng M, Xiang H. The connectome from the cerebral cortex to the viscera using viral transneuronal tracers. Am J Transl Res 2021; 13:12152-12167. [PMID: 34956443 PMCID: PMC8661218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/12/2021] [Indexed: 06/14/2023]
Abstract
As an emerging framework in neuroscience, brain connectomics is well suited for investigating key questions on brain complexity by combining viral transneuronal tracing and whole brain graphic methodologies using analytical tools of network science. Transsynaptic viral tract-tracing in the toolbox of neural labeling methods has been a significant development in the connectomics field to decipher the circuit-level architecture of the cerebral cortex. In the present work, we reviewed the current methods enabling structural connectivity from the viscera to the cerebral cortex mapping with viral transneuronal tracers and showed how such neuroanatomic connectomic data could be used to infer new structural and functional information in viscera-cerebral cortex circuits.
Collapse
Affiliation(s)
- Zhixiao Li
- Department of Anesthesiology and Pain Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, China
| | - Zhen Li
- Department of Anesthesiology and Pain Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, China
| | - Weiguo Xu
- Department of Orthopedics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
| | - Yujuan Li
- Department of Anesthesiology and Pain Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, China
| | - Qian Wang
- Department of Anesthesiology and Pain Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, China
| | - Hui Xu
- Department of Anesthesiology and Pain Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, China
| | - Anne Manyande
- School of Human and Social Sciences, University of West LondonLondon W5 2NU, UK
| | - Duozhi Wu
- Department of Anesthesiology, People’s Hospital of Hainan ProvinceHaikou 570311, Hainan, China
| | - Maohui Feng
- Department of Gastrointestinal Surgery, Wuhan Peritoneal Cancer Clinical Medical Research Center, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Tumor Biological Behaviors and Hubei Cancer Clinical Study CenterWuhan 430071, Hubei, China
| | - Hongbing Xiang
- Department of Anesthesiology and Pain Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, China
| |
Collapse
|
13
|
Bian R, Gong J, Li J, Li P. Relaxin increased blood pressure and sympathetic activity in paraventricular nucleus of hypertensive rats via enhancing oxidative stress. Peptides 2021; 141:170550. [PMID: 33839220 DOI: 10.1016/j.peptides.2021.170550] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 04/05/2021] [Accepted: 04/06/2021] [Indexed: 02/08/2023]
Abstract
Relaxin, an ovarian polypeptide hormone, is found in the hypothalamic paraventricular nucleus (PVN) which is an important central integrative site for the control of blood pressure and sympathetic outflow. The aim of this study was to determine if superoxide anions modulate the effects of relaxin in the PVN. Experiments were performed in normotensive Wistar-Kyoto (WKY) rats and spontaneously hypertensive rats (SHRs). Relaxin mRNA and protein, and its receptor, relaxin family peptide receptor 1 (RXFP1) levels in PVN were 3.24, 3.17, and 3.64 times higher in SHRs than in WKY rats, respectively. Microinjection of relaxin-2 into the PVN dose-dependently increased mean arterial pressure (MAP), renal sympathetic nerve activity (RSNA) and heart rate (HR) in both WKY rats and SHRs, although the effects on MAP (16.87 ± 1.99 vs. 8.97 ± 1.48 mm Hg in 100 nmol), RSNA (22.60 ± 2.15 vs. 11.77 ± 1.43 % in 100 nmol) and HR (22.85 ± 3.13 vs. 12.62 ± 2.83 beats/min in 100 nmol) were greater in SHRs. Oxidative stress level was enhanced after relaxin-2 microinjection into the PVN. Pretreatment with superoxide anion scavengers or NADPH oxidase inhibitor blocked, and superoxide dismutase inhibitor potentiated the effects of relaxin-2 on MAP, RSNA and HR. RXFP1 knockdown significantly attenuated the blood pressure of SHRs, and inhibited the increases of atrial natriuretic peptide, brain natriuretic peptide, collagen I, collagen III and fibronectin in the heart of SHRs. These results demonstrated that relaxin is expressed in the PVN, and contributes to hypertension and sympathetic overdrive via oxidative stress. Down-regulation of RXFP1 in the PVN could attenuate hypertension and cardiac remodeling.
Collapse
Affiliation(s)
- Rong Bian
- Center of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Juexiao Gong
- Department of Cardiology, the Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jianan Li
- Center of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Peng Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
14
|
Kermorgant M, Ben Salem J, Iacovoni JS, Calise D, Dahan L, Guiard BP, Lopez S, Lairez O, Lasbories A, Nasr N, Pavy Le‐Traon A, Beaudry F, Senard J, Arvanitis DN. Cardiac sensory afferents modulate susceptibility to anxio-depressive behaviour in a mouse model of chronic heart failure. Acta Physiol (Oxf) 2021; 231:e13601. [PMID: 33316126 DOI: 10.1111/apha.13601] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 11/23/2020] [Accepted: 12/09/2020] [Indexed: 12/20/2022]
Abstract
AIM Impairments in cerebral structure and cognitive performance in chronic heart failure (CHF) are critical components of its comorbidity spectrum. Autonomic afferents that arise from cardiac sensory fibres show enhanced activity with CHF. Desensitization of these fibres by local application of resiniferatoxin (RTX) during myocardial infarction (MI) is known to prevent cardiac hypertrophy, sympathetic hyperactivity and CHF. Whether these afferents mediate cerebral allostasis is unknown. METHODS CHF was induced by myocardial infarction. To evaluate if cardiac afferents contribute to cerebral allostasis, RTX was acutely applied to the pericardial space in controls (RTX) and in MI treated animals (MI/RTX). Subjects were then evaluated in a series of behavioural tests recapitulating different symptoms of depressive disorders. Proteomics of the frontal cortices (FC) was performed to identify contributing proteins and pathways responsible for behavioural allostasis. RESULTS Desensitization of cardiac afferents relieves hallmarks of an anxio/depressive-like state in mice. Unique protein signatures and regulatory pathways in FCs isolated from each treatment reveal the degree of complexity inherent in the FC response to stresses originating in the heart. While cortices from the combined treatment (MI/RTX) did not retain protein signatures from the individual treatment groups, all three groups suffer dysregulation in circadian entrainment. CONCLUSION CHF is comorbid with an anxio/depressive-like state and ablation of cardiac afferents relieves the despair phenotype. The strikingly different proteomic profiles observed in FCs suggest that MI and RTX lead to unique brain-signalling patterns and that the combined treatment, potentially through destructive interference mechanisms, most closely resembles controls.
Collapse
Affiliation(s)
- Marc Kermorgant
- INSERM DR Midi‐Pyrénées LimousinInstitut des Maladies Métaboliques et Cardiovasculaires (I2MC) UMR1048Université de Toulouse III Toulouse France
| | - Jennifer Ben Salem
- INSERM DR Midi‐Pyrénées LimousinInstitut des Maladies Métaboliques et Cardiovasculaires (I2MC) UMR1048Université de Toulouse III Toulouse France
- Groupe de Recherche en Pharmacologie Animale du Québec (GREPAQ) Département de Biomédecine Vétérinaire Faculté de Médecine Vétérinaire Université de Montréal Saint Hyacinthe QC Canada
- Centre de recherche sur le cerveau et l’apprentissage (CIRCA) Université de Montréal Montréal QC Canada
| | - Jason S. Iacovoni
- INSERM DR Midi‐Pyrénées LimousinInstitut des Maladies Métaboliques et Cardiovasculaires (I2MC) UMR1048Université de Toulouse III Toulouse France
| | - Denis Calise
- INSERM DR Midi‐Pyrénées LimousinCentre Régional d’Exploration Fonctionnelle et Ressources Expérimentales Service Microchirurgie, (CREFRE‐US06, Rangueil) Toulouse France
| | - Lionel Dahan
- Centre de Recherches sur la Cognition Animale Centre de Biologie Intégrative Université de Toulouse Toulouse France
- CNRSUniversité de Toulouse III Toulouse France
| | - Bruno P. Guiard
- Centre de Recherches sur la Cognition Animale Centre de Biologie Intégrative Université de Toulouse Toulouse France
- CNRSUniversité de Toulouse III Toulouse France
| | - Sébastien Lopez
- Centre de Recherches sur la Cognition Animale Centre de Biologie Intégrative Université de Toulouse Toulouse France
- CNRSUniversité de Toulouse III Toulouse France
| | - Olivier Lairez
- INSERM DR Midi‐Pyrénées LimousinInstitut des Maladies Métaboliques et Cardiovasculaires (I2MC) UMR1048Université de Toulouse III Toulouse France
- Fédération des services de cardiologie Hôpital RangueilUniversité de Toulouse III Toulouse France
| | - Antoine Lasbories
- INSERM DR Midi‐Pyrénées LimousinInstitut des Maladies Métaboliques et Cardiovasculaires (I2MC) UMR1048Université de Toulouse III Toulouse France
| | - Nathalie Nasr
- INSERM DR Midi‐Pyrénées LimousinInstitut des Maladies Métaboliques et Cardiovasculaires (I2MC) UMR1048Université de Toulouse III Toulouse France
- Département de Neurologie et Institut des Neurosciences CHU de ToulouseUniversité de Toulouse III Toulouse France
| | - Anne Pavy Le‐Traon
- INSERM DR Midi‐Pyrénées LimousinInstitut des Maladies Métaboliques et Cardiovasculaires (I2MC) UMR1048Université de Toulouse III Toulouse France
- Département de Neurologie et Institut des Neurosciences CHU de ToulouseUniversité de Toulouse III Toulouse France
| | - Francis Beaudry
- Groupe de Recherche en Pharmacologie Animale du Québec (GREPAQ) Département de Biomédecine Vétérinaire Faculté de Médecine Vétérinaire Université de Montréal Saint Hyacinthe QC Canada
- Centre de recherche sur le cerveau et l’apprentissage (CIRCA) Université de Montréal Montréal QC Canada
| | - Jean‐Michel Senard
- INSERM DR Midi‐Pyrénées LimousinInstitut des Maladies Métaboliques et Cardiovasculaires (I2MC) UMR1048Université de Toulouse III Toulouse France
- Département de Neurologie et Institut des Neurosciences CHU de ToulouseUniversité de Toulouse III Toulouse France
- Service de Pharmacologie Clinique CHU de ToulouseUniversité de Toulouse III Toulouse France
| | - Dina N Arvanitis
- INSERM DR Midi‐Pyrénées LimousinInstitut des Maladies Métaboliques et Cardiovasculaires (I2MC) UMR1048Université de Toulouse III Toulouse France
- CNRSUniversité de Toulouse III Toulouse France
| |
Collapse
|
15
|
Feng M, Xiang B, Fan L, Wang Q, Xu W, Xiang H. Interrogating autonomic peripheral nervous system neurons with viruses - A literature review. J Neurosci Methods 2020; 346:108958. [PMID: 32979424 DOI: 10.1016/j.jneumeth.2020.108958] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 09/19/2020] [Accepted: 09/19/2020] [Indexed: 12/11/2022]
Abstract
How rich functionality emerges from the rather invariant structural architecture of the peripheral autonomic nervous system remains one of the major mysteries in neuroscience. The high incidence of patients with neural circuit-related autonomic nervous system diseases highlights the importance of fundamental research, among others with neurotracing methods, into autonomic neuron functionality. Due to the emergence of neurotropic virus-based tracing techniques in recent years the access to neuronal connectivity in the peripheral autonomic nervous system has greatly been improved. This review is devoted to the anatomical distribution of neural circuits in the periphery of the autonomous nervous system and to the interaction between the autonomic nervous system and vital peripheral organs or tissues. The experimental evidence available at present has greatly expanded our understanding of autonomic peripheral nervous system neurons.
Collapse
Affiliation(s)
- Maohui Feng
- Department of Oncology, Wuhan Peritoneal Cancer Clinical Medical Research Center, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Tumor Biological Behaviors and Hubei Cancer Clinical Study Center, Wuhan 430071, PR China
| | - Boqi Xiang
- University of California-Davis, Davis, CA 95616, USA
| | - Li Fan
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China
| | - Qian Wang
- Department Anesthesiology and Pain Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Weiguo Xu
- Department of Orthopedics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - HongBing Xiang
- Department Anesthesiology and Pain Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China.
| |
Collapse
|
16
|
Zhang Y, Bian Y. Long Non-Coding RNA SNHG8 Plays a Key Role in Myocardial Infarction Through Affecting Hypoxia-Induced Cardiomyocyte Injury. Med Sci Monit 2020; 26:e924016. [PMID: 32772038 PMCID: PMC7437243 DOI: 10.12659/msm.924016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background The objective of the study was to explore the role of long non-coding RNA SNHG8 (lncRNA SNHG8) in myocardial infarction (MI) and the related mechanism of action. Material/Methods In vitro model of MI was established by hypoxia induction in cardiomyocyte line H9c2 cells. H9c2 cells were transfected with control-plasmid, SNHG8-plasmid, control-shRNA and SNHG8-shRNA. Quantitative real-time polymerase chain reaction (qRT-PCR) assay was performed to measure transfection efficiency. Creatine kinase-muscle/brain (CK-MB) release, cardiac troponin 1 (cTnI) release and mitochondria viability were detected by using related detection kits. MTT (3-(45)-dimethylthiahiazo (-z-y 1)-35-diphenytetrazoliumromide) assay was used to detect cell viability and flow cytometry analysis was used to detect cell apoptosis. Western blot assay was performed to measure protein expression of cleaved-Caspase3, p-p65 and p65. Enzyme-linked immunosorbent assay (ELISA) and qRT-PCR assay were performed to detect expression of interleukin (IL)-1β, tumor necrosis factor (TNF)-α and IL-6. Results LncRNA SNHG8 was overexpressed in hypoxia-induced cardiomyocytes. SNHG8-plasmid increased lncRNA SNHG8 expression, CK-MB release, cTnI release, and mitochondria viability in hypoxia-induced H9c2 cells. In addition, SNHG8-plasmid reduced cell viability, induced cell apoptosis, and increased expression of cleaved-caspase3, IL-1β, TNF-α, IL-6, and p-p65 in hypoxia-induced H9c2 cells, while the effects of SNHG8-shRNA were opposite. Conclusions We demonstrated that lncRNA SNHG8 affected myocardial infarction by affecting hypoxia-induced cardiomyocyte injury via regulation of the NF-κB pathway.
Collapse
Affiliation(s)
- Yue Zhang
- Shanxi Medical University, Taiyuan, Shanxi, China (mainland)
| | - Yunfei Bian
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China (mainland)
| |
Collapse
|
17
|
Renal denervation restrains the inflammatory response in myocardial ischemia-reperfusion injury. Basic Res Cardiol 2020; 115:15. [PMID: 31932910 DOI: 10.1007/s00395-020-0776-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 01/02/2020] [Indexed: 12/19/2022]
Abstract
Myocardial ischemia-reperfusion (I/R) injury leads to intensive sympathetic nervous system (SNS) activation and inflammatory reactions. Whether renal sympathetic denervation (RDN) could be a new therapeutic strategy to modulate I/R inflammation and reduce infarct size after myocardial I/R injury needs to be explored. First, we investigated the correlation between plasma norepinephrine concentrations and circulating myeloid cell numbers in patients with acute myocardial infarction. And then, C57BL/6 mice underwent a "two-hit" operation, with 10% phenol applied to bilateral renal nerves to abrogate sympathoexcitation, and a 45-min ligation of the left coronary artery to induce myocardial I/R injury. The effects of RDN on the mobilization of immune cells in mice following myocardial I/R injury were explored. We observed a strong association between SNS overactivation and myeloid cell excessive accumulation in patients. In animal experiments, there was a significant reduction in infarct size per area at risk in the denervated-I/R group when compared to that of the innervated-I/R group (39.2% versus 49.8%; p < 0.005), and RDN also improved the left ventricular ejection fraction by 20% after 1 week. Furthermore, the denervated-I/R group showed a decrease in the number of neutrophils and macrophages in the blood and the myocardium as reflected by immunohistochemical staining and flow cytometry analysis (p < 0.05); the decrease was associated with a significant reduction in the circulating production of IL-1, IL-6 and TNF-α (p < 0.05). In summary, our study reveals a novel link between the SNS activity and inflammatory response undergoing myocardium I/R injury and identifies RDN as a potential therapeutic strategy against myocardium I/R injury via preserving the spleen immune cells mobilization.
Collapse
|