1
|
Baxter MA, Spender LC, Cairns D, Walsh S, Oparka R, Porter RJ, Bray S, Skinner G, King S, Turbitt J, Collinson D, Miedzybrodzka ZH, Jellema G, Logan G, Kennedy RD, Turkington RC, McLean MH, Swinson D, Grabsch HI, Lord S, Seymour MJ, Hall PS, Petty RD. An investigation of the clinical impact and therapeutic relevance of a DNA damage immune response (DDIR) signature in patients with advanced gastroesophageal adenocarcinoma. ESMO Open 2024; 9:103450. [PMID: 38744099 PMCID: PMC11108838 DOI: 10.1016/j.esmoop.2024.103450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/05/2024] [Accepted: 04/05/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND An improved understanding of which gastroesophageal adenocarcinoma (GOA) patients respond to both chemotherapy and immune checkpoint inhibitors (ICI) is needed. We investigated the predictive role and underlying biology of a 44-gene DNA damage immune response (DDIR) signature in patients with advanced GOA. MATERIALS AND METHODS Transcriptional profiling was carried out on pretreatment tissue from 252 GOA patients treated with platinum-based chemotherapy (three dose levels) within the randomized phase III GO2 trial. Cross-validation was carried out in two independent GOA cohorts with transcriptional profiling, immune cell immunohistochemistry and epidermal growth factor receptor (EGFR) fluorescent in situ hybridization (FISH) (n = 430). RESULTS In the GO2 trial, DDIR-positive tumours had a greater radiological response (51.7% versus 28.5%, P = 0.022) and improved overall survival in a dose-dependent manner (P = 0.028). DDIR positivity was associated with a pretreatment inflamed tumour microenvironment (TME) and increased expression of biomarkers associated with ICI response such as CD274 (programmed death-ligand 1, PD-L1) and a microsatellite instability RNA signature. Consensus pathway analysis identified EGFR as a potential key determinant of the DDIR signature. EGFR amplification was associated with DDIR negativity and an immune cold TME. CONCLUSIONS Our results indicate the importance of the GOA TME in chemotherapy response, its relationship to DNA damage repair and EGFR as a targetable driver of an immune cold TME. Chemotherapy-sensitive inflamed GOAs could benefit from ICI delivered in combination with standard chemotherapy. Combining EGFR inhibitors and ICIs warrants further investigation in patients with EGFR-amplified tumours.
Collapse
Affiliation(s)
- M A Baxter
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee; Tayside Cancer Centre, Ninewells Hospital and Medical School, NHS Tayside, Dundee.
| | - L C Spender
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee
| | - D Cairns
- Leeds Cancer Research UK Clinical Trials Unit, Leeds Institute of Clinical Trials Research, University of Leeds, Leeds
| | - S Walsh
- Department of Pathology, Ninewells Hospital and Medical School, NHS Tayside, Dundee
| | - R Oparka
- Department of Pathology, Ninewells Hospital and Medical School, NHS Tayside, Dundee
| | - R J Porter
- Department of Pathology, CRUK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh
| | - S Bray
- Tayside Biorepository, University of Dundee, Dundee
| | - G Skinner
- Tayside Biorepository, University of Dundee, Dundee
| | - S King
- Tayside Biorepository, University of Dundee, Dundee
| | - J Turbitt
- Genetics and Molecular Pathology Laboratory Services, NHS Grampian, Aberdeen
| | - D Collinson
- Genetics and Molecular Pathology Laboratory Services, NHS Grampian, Aberdeen
| | - Z H Miedzybrodzka
- Genetics and Molecular Pathology Laboratory Services, NHS Grampian, Aberdeen; School of Medicine, Medical Sciences, Nutrition and Dentistry, Polwarth Building, University of Aberdeen, Aberdeen
| | - G Jellema
- Almac Diagnostic Services, Craigavon
| | - G Logan
- Almac Diagnostic Services, Craigavon
| | - R D Kennedy
- Almac Diagnostic Services, Craigavon; Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast
| | - R C Turkington
- Almac Diagnostic Services, Craigavon; Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast
| | - M H McLean
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee; Tayside Cancer Centre, Ninewells Hospital and Medical School, NHS Tayside, Dundee
| | - D Swinson
- St James's University Hospital, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - H I Grabsch
- Department of Pathology, GROW School for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, The Netherlands; Division of Pathology and Data Analytics, Leeds Institute of Medical Research at St James's University, University of Leeds, Leeds
| | - S Lord
- Department of Oncology, University of Oxford, Oxford
| | - M J Seymour
- Leeds Cancer Research UK Clinical Trials Unit, Leeds Institute of Clinical Trials Research, University of Leeds, Leeds; St James's University Hospital, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - P S Hall
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics & Molecular Medicine, The University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh, UK
| | - R D Petty
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee; Tayside Cancer Centre, Ninewells Hospital and Medical School, NHS Tayside, Dundee.
| |
Collapse
|
2
|
Cao X, Song Y, Wu H, Ren X, Sun Q, Liang Z. C-X-C Motif Chemokine Ligand 9 Correlates with Favorable Prognosis in Triple-Negative Breast Cancer by Promoting Immune Cell Infiltration. Mol Cancer Ther 2023; 22:1493-1502. [PMID: 37669562 DOI: 10.1158/1535-7163.mct-23-0281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/14/2023] [Accepted: 08/30/2023] [Indexed: 09/07/2023]
Abstract
C-X-C motif chemokine ligand 9 (CXCL9) plays an important role in antitumor immunity through the recruitment, proliferation, and activation of immune cells (IC). Here, we evaluated the expression patterns of CXCL9 and programmed death-ligand 1 (PD-L1) in a cohort of 268 patients with triple-negative breast cancer (TNBC) by tissue microarray (TMA). The correlations between CXCL9 expression in ICs or tumor cells (TC) and clinicopathologic parameters, PD-L1 expression, tumor-infiltrating lymphocytes (TIL) and survival were analyzed in this cohort (n = 268). In addition, we analyzed a TNBC dataset (n = 138) from The Cancer Genome Atlas (TCGA) to identify correlation between CXCL9 expression and other immune gene expression, immune infiltration, and prognosis. The results of the TMA cohort (n = 268) showed that CXCL9 was expressed in 80.6% cases, with elevated expression levels in ICs relative to in TCs (median: 1% vs. 0%). CXCL9 expressed in ≥1% of ICs was categorized as the CXCL9-IC-positive group. CXCL9-IC expression was strongly and positively correlated with the PD-L1 expression, CD3+ TILs, CD4+ TILs, CD8+ TILs, and CD19+ TILs (all P < 0.0001). Survival analyses showed that the CXCL9-IC-positive group demonstrated prolonged disease-free survival (P = 0.038) and overall survival (P = 0.023) compared with the negative group. The analyses from TCGA cohort (n = 138) showed that elevated CXCL9 expression correlated with increased infiltration of B cells, macrophages, natural killer cells, monocytes and increased expression of immune checkpoint molecules and other CXCL family members, including CXCL10 and CXCL11. These findings confirm the regulatory role of CXCL9 in antitumor immunity and suggest a potential role in treatments involving immune checkpoint blockade.
Collapse
Affiliation(s)
- Xi Cao
- Department of Breast Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yu Song
- Department of Breast Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Huanwen Wu
- Department of Pathology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xinyu Ren
- Department of Pathology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Qiang Sun
- Department of Breast Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhiyong Liang
- Department of Pathology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
3
|
Khatri VA, Paul S, Patel NJ, Thippani S, Sawant JY, Durkee KL, Murphy CL, Aleman GO, Valentino JA, Jathan J, Melillo A, Sapi E. Global transcriptomic analysis of breast cancer and normal mammary epithelial cells infected with Borrelia burgdorferi. Eur J Microbiol Immunol (Bp) 2023; 13:63-76. [PMID: 37856211 PMCID: PMC10668924 DOI: 10.1556/1886.2023.00031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 09/26/2023] [Indexed: 10/21/2023] Open
Abstract
The bacterial spirochete Borrelia burgdorferi, the causative agent of Lyme Disease, can disseminate and colonize various tissues and organs, orchestrating severe clinical symptoms including arthritis, carditis, and neuroborreliosis. Previous research has demonstrated that breast cancer tissues could provide an ideal habitat for diverse populations of bacteria, including B. burgdorferi, which is associated with a poor prognosis. Recently, we demonstrated that infection with B. burgdorferi enhances the invasion and migration of triple-negative MDA-MB-231 cells which represent a type of breast tumor with more aggressive cancer traits. In this study, we hypothesized that infection by B. burgdorferi affects the expression of cancer-associated genes to effectuate breast cancer phenotypes. We applied the high-throughput technique of RNA-sequencing on B. burgdorferi-infected MDA-MB-231 breast cancer and normal-like MCF10A cells to determine the most differentially expressed genes (DEG) upon infection. Overall, 142 DEGs were identified between uninfected and infected samples in MDA-MB-231 while 95 DEGs were found in MCF10A cells. A major trend of the upregulation of C-X-C and C-C motif chemokine family members as well as genes and pathways was associated with infection, inflammation, and cancer. These genes could serve as potential biomarkers for pathogen-related tumorigenesis and cancer progression which could lead to new therapeutic opportunities.
Collapse
Affiliation(s)
- Vishwa A. Khatri
- Lyme Disease Research Group, Department of Biology and Environmental Science, University of New Haven, 300 Boston Post Road, West Haven, CT 06516, USA
| | - Sambuddha Paul
- Lyme Disease Research Group, Department of Biology and Environmental Science, University of New Haven, 300 Boston Post Road, West Haven, CT 06516, USA
| | - Niraj Jatin Patel
- Lyme Disease Research Group, Department of Biology and Environmental Science, University of New Haven, 300 Boston Post Road, West Haven, CT 06516, USA
| | - Sahaja Thippani
- Lyme Disease Research Group, Department of Biology and Environmental Science, University of New Haven, 300 Boston Post Road, West Haven, CT 06516, USA
| | - Janhavi Y. Sawant
- Lyme Disease Research Group, Department of Biology and Environmental Science, University of New Haven, 300 Boston Post Road, West Haven, CT 06516, USA
| | - Katie L. Durkee
- Lyme Disease Research Group, Department of Biology and Environmental Science, University of New Haven, 300 Boston Post Road, West Haven, CT 06516, USA
| | - Cassandra L. Murphy
- Lyme Disease Research Group, Department of Biology and Environmental Science, University of New Haven, 300 Boston Post Road, West Haven, CT 06516, USA
| | - Geneve Ortiz Aleman
- Lyme Disease Research Group, Department of Biology and Environmental Science, University of New Haven, 300 Boston Post Road, West Haven, CT 06516, USA
| | - Justine A. Valentino
- Lyme Disease Research Group, Department of Biology and Environmental Science, University of New Haven, 300 Boston Post Road, West Haven, CT 06516, USA
| | - Jasmine Jathan
- Lyme Disease Research Group, Department of Biology and Environmental Science, University of New Haven, 300 Boston Post Road, West Haven, CT 06516, USA
| | - Anthony Melillo
- Lyme Disease Research Group, Department of Biology and Environmental Science, University of New Haven, 300 Boston Post Road, West Haven, CT 06516, USA
| | - Eva Sapi
- Lyme Disease Research Group, Department of Biology and Environmental Science, University of New Haven, 300 Boston Post Road, West Haven, CT 06516, USA
| |
Collapse
|
4
|
Tuly KF, Hossen MB, Islam MA, Kibria MK, Alam MS, Harun-Or-Roshid M, Begum AA, Hasan S, Mahumud RA, Mollah MNH. Robust Identification of Differential Gene Expression Patterns from Multiple Transcriptomics Datasets for Early Diagnosis, Prognosis, and Therapies for Breast Cancer. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1705. [PMID: 37893423 PMCID: PMC10608013 DOI: 10.3390/medicina59101705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/07/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023]
Abstract
Background and Objectives: Breast cancer (BC) is one of the major causes of cancer-related death in women globally. Proper identification of BC-causing hub genes (HubGs) for prognosis, diagnosis, and therapies at an earlier stage may reduce such death rates. However, most of the previous studies detected HubGs through non-robust statistical approaches that are sensitive to outlying observations. Therefore, the main objectives of this study were to explore BC-causing potential HubGs from robustness viewpoints, highlighting their early prognostic, diagnostic, and therapeutic performance. Materials and Methods: Integrated robust statistics and bioinformatics methods and databases were used to obtain the required results. Results: We robustly identified 46 common differentially expressed genes (cDEGs) between BC and control samples from three microarrays (GSE26910, GSE42568, and GSE65194) and one scRNA-seq (GSE235168) dataset. Then, we identified eight cDEGs (COL11A1, COL10A1, CD36, ACACB, CD24, PLK1, UBE2C, and PDK4) as the BC-causing HubGs by the protein-protein interaction (PPI) network analysis of cDEGs. The performance of BC and survival probability prediction models with the expressions of HubGs from two independent datasets (GSE45827 and GSE54002) and the TCGA (The Cancer Genome Atlas) database showed that our proposed HubGs might be considered as diagnostic and prognostic biomarkers, where two genes, COL11A1 and CD24, exhibit better performance. The expression analysis of HubGs by Box plots with the TCGA database in different stages of BC progression indicated their early diagnosis and prognosis ability. The HubGs set enrichment analysis with GO (Gene ontology) terms and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways disclosed some BC-causing biological processes, molecular functions, and pathways. Finally, we suggested the top-ranked six drug molecules (Suramin, Rifaximin, Telmisartan, Tukysa Tucatinib, Lynparza Olaparib, and TG.02) for the treatment of BC by molecular docking analysis with the proposed HubGs-mediated receptors. Molecular docking analysis results also showed that these drug molecules may inhibit cancer-related post-translational modification (PTM) sites (Succinylation, phosphorylation, and ubiquitination) of hub proteins. Conclusions: This study's findings might be valuable resources for diagnosis, prognosis, and therapies at an earlier stage of BC.
Collapse
Affiliation(s)
- Khanis Farhana Tuly
- Bioinformatics Lab, Department of Statistics, University of Rajshahi, Rajshahi 6205, Bangladesh; (K.F.T.); (M.B.H.); (M.A.I.); (M.K.K.); (M.S.A.); (M.H.-O.-R.); (A.A.B.)
| | - Md. Bayazid Hossen
- Bioinformatics Lab, Department of Statistics, University of Rajshahi, Rajshahi 6205, Bangladesh; (K.F.T.); (M.B.H.); (M.A.I.); (M.K.K.); (M.S.A.); (M.H.-O.-R.); (A.A.B.)
| | - Md. Ariful Islam
- Bioinformatics Lab, Department of Statistics, University of Rajshahi, Rajshahi 6205, Bangladesh; (K.F.T.); (M.B.H.); (M.A.I.); (M.K.K.); (M.S.A.); (M.H.-O.-R.); (A.A.B.)
| | - Md. Kaderi Kibria
- Bioinformatics Lab, Department of Statistics, University of Rajshahi, Rajshahi 6205, Bangladesh; (K.F.T.); (M.B.H.); (M.A.I.); (M.K.K.); (M.S.A.); (M.H.-O.-R.); (A.A.B.)
- Department of Statistics, Hajee Mohammad Danesh Science & Technology University, Dinajpur 5200, Bangladesh
| | - Md. Shahin Alam
- Bioinformatics Lab, Department of Statistics, University of Rajshahi, Rajshahi 6205, Bangladesh; (K.F.T.); (M.B.H.); (M.A.I.); (M.K.K.); (M.S.A.); (M.H.-O.-R.); (A.A.B.)
| | - Md. Harun-Or-Roshid
- Bioinformatics Lab, Department of Statistics, University of Rajshahi, Rajshahi 6205, Bangladesh; (K.F.T.); (M.B.H.); (M.A.I.); (M.K.K.); (M.S.A.); (M.H.-O.-R.); (A.A.B.)
| | - Anjuman Ara Begum
- Bioinformatics Lab, Department of Statistics, University of Rajshahi, Rajshahi 6205, Bangladesh; (K.F.T.); (M.B.H.); (M.A.I.); (M.K.K.); (M.S.A.); (M.H.-O.-R.); (A.A.B.)
| | - Sohel Hasan
- Molecular and Biomedical Health Science Lab, Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh;
| | - Rashidul Alam Mahumud
- NHMRC Clinical Trials Centre, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia;
| | - Md. Nurul Haque Mollah
- Bioinformatics Lab, Department of Statistics, University of Rajshahi, Rajshahi 6205, Bangladesh; (K.F.T.); (M.B.H.); (M.A.I.); (M.K.K.); (M.S.A.); (M.H.-O.-R.); (A.A.B.)
| |
Collapse
|
5
|
Motyka J, Gacuta E, Kicman A, Kulesza M, Malinowski P, Ławicki S. CXCL12 and CXCR4 as Potential Early Biomarkers for Luminal A and Luminal B Subtypes of Breast Cancer. Cancer Manag Res 2023; 15:573-589. [PMID: 37426394 PMCID: PMC10329441 DOI: 10.2147/cmar.s416382] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 06/15/2023] [Indexed: 07/11/2023] Open
Abstract
Purpose Breast cancer is the most common type of malignancy in women. Factors that increase the risk of occurrence include chronic inflammation, with chemokines as its mediators. Therefore, the purpose of the present study was to determine the diagnostic utility of CXCL12 and CXCR4 as modern tumor markers in patients with early-stage luminal A and luminal B subtype of breast cancer and also to compare the results with the routinely used marker - CA 15-3. Patients and Methods The study included 100 patients with early breast cancer of luminal A and B subtypes, 50 women with benign breast lesion and 50 healthy women. The levels of CXCL12 and CXCR4 concentrations were determined by enzyme-linked immunosorbent assay (ELISA), comparative marker CA 15-3 - by electrochemiluminescence method (ECLIA). Results Concentrations of CXCL12 were significantly lower, while CXCR4 and CA 15-3 - significantly higher among patients with early-stage breast cancer than healthy women. CXCL12 also showed lower concentrations among fibroadenoma patients in comparison to healthy women, while CXCR4 - lower concentrations among fibroadenoma patients than cancer group. CXCL12 showed significantly higher values of sensitivity (79%), specificity (82%), positive predictive value (89.72%), negative predictive value (80%), diagnostic accuracy (80%) and diagnostic power (AUC = 0.8196) in the whole breast cancer group compared to the CA 15-3 marker (58%; 72%; 80.56%; 46.15%, 62.67%, 0.6434, resp.). Analysis of combined parameters resulted in increased sensitivity, negative predictive value and power of the test with a slight decrease in positive predictive value and a more significant decrease in specificity, reaching the best values for the three-parameter test CXCL12+CXCR4+CA15-3 (96%; 85.71%; AUC = 0.8812; 78.69%; 48%, resp.). Conclusion The results indicate the preliminary usefulness of CXCL12 and CXCR4 as early biomarkers in the diagnosis of breast cancer, especially in the combined panel with CA 15-3.
Collapse
Affiliation(s)
- Joanna Motyka
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, Bialystok, Poland
| | - Ewa Gacuta
- Department of Perinatology, University Clinical Hospital of Bialystok, Bialystok, Poland
| | - Aleksandra Kicman
- Department of Aesthetic Medicine, Medical University of Bialystok, Bialystok, Poland
| | - Monika Kulesza
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, Bialystok, Poland
| | - Paweł Malinowski
- Department of Oncological Surgery, Bialystok Oncology Center, Bialystok, Poland
| | - Sławomir Ławicki
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
6
|
Akhouayri L, Ostano P, Mello-Grand M, Gregnanin I, Crivelli F, Laurora S, Liscia D, Leone F, Santoro A, Mulè A, Guarino D, Maggiore C, Carlino A, Magno S, Scatolini M, Di Leone A, Masetti R, Chiorino G. Identification of a minimum number of genes to predict triple-negative breast cancer subgroups from gene expression profiles. Hum Genomics 2022; 16:70. [PMID: 36536459 PMCID: PMC9764480 DOI: 10.1186/s40246-022-00436-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/21/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is a very heterogeneous disease. Several gene expression and mutation profiling approaches were used to classify it, and all converged to the identification of distinct molecular subtypes, with some overlapping across different approaches. However, a standardised tool to routinely classify TNBC in the clinics and guide personalised treatment is lacking. We aimed at defining a specific gene signature for each of the six TNBC subtypes proposed by Lehman et al. in 2011 (basal-like 1 (BL1); basal-like 2 (BL2); mesenchymal (M); immunomodulatory (IM); mesenchymal stem-like (MSL); and luminal androgen receptor (LAR)), to be able to accurately predict them. METHODS Lehman's TNBCtype subtyping tool was applied to RNA-sequencing data from 482 TNBC (GSE164458), and a minimal subtype-specific gene signature was defined by combining two class comparison techniques with seven attribute selection methods. Several machine learning algorithms for subtype prediction were used, and the best classifier was applied on microarray data from 72 Italian TNBC and on the TNBC subset of the BRCA-TCGA data set. RESULTS We identified two signatures with the 120 and 81 top up- and downregulated genes that define the six TNBC subtypes, with prediction accuracy ranging from 88.6 to 89.4%, and even improving after removal of the least important genes. Network analysis was used to identify highly interconnected genes within each subgroup. Two druggable matrix metalloproteinases were found in the BL1 and BL2 subsets, and several druggable targets were complementary to androgen receptor or aromatase in the LAR subset. Several secondary drug-target interactions were found among the upregulated genes in the M, IM and MSL subsets. CONCLUSIONS Our study took full advantage of available TNBC data sets to stratify samples and genes into distinct subtypes, according to gene expression profiles. The development of a data mining approach to acquire a large amount of information from several data sets has allowed us to identify a well-determined minimal number of genes that may help in the recognition of TNBC subtypes. These genes, most of which have been previously found to be associated with breast cancer, have the potential to become novel diagnostic markers and/or therapeutic targets for specific TNBC subsets.
Collapse
Affiliation(s)
- Laila Akhouayri
- Department of Biomedical Sciences, Genetics and Molecular Biology Laboratory, Faculty of Medicine and Pharmacy, Hassan II-Casablanca University, Casablanca, Morocco
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Paola Ostano
- Cancer Genomics Lab, Fondazione Edo ed Elvo Tempia, Biella, Italy
| | | | - Ilaria Gregnanin
- Cancer Genomics Lab, Fondazione Edo ed Elvo Tempia, Biella, Italy
| | - Francesca Crivelli
- Cancer Genomics Lab, Fondazione Edo ed Elvo Tempia, Biella, Italy
- Clinical Research Division, “Degli Infermi” Hospital, Ponderano, BI Italy
| | - Sara Laurora
- Molecular Oncology Lab, Fondazione Edo ed Elvo Tempia, Biella, Italy
| | - Daniele Liscia
- Pathology Department, “Degli Infermi” Hospital, Ponderano, BI Italy
| | - Francesco Leone
- Oncology Department, “Degli Infermi” Hospital, Ponderano, BI Italy
| | - Angela Santoro
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Antonino Mulè
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | | | - Claudia Maggiore
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Angela Carlino
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Stefano Magno
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Maria Scatolini
- Molecular Oncology Lab, Fondazione Edo ed Elvo Tempia, Biella, Italy
| | - Alba Di Leone
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Riccardo Masetti
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | | |
Collapse
|
7
|
Zhou R, Zhao D, Beeraka NM, Wang X, Lu P, Song R, Chen K, Liu J. Novel Implications of Nanoparticle-Enhanced Radiotherapy and Brachytherapy: Z-Effect and Tumor Hypoxia. Metabolites 2022; 12:943. [PMID: 36295845 PMCID: PMC9612299 DOI: 10.3390/metabo12100943] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 10/29/2023] Open
Abstract
Radiotherapy and internal radioisotope therapy (brachytherapy) induce tumor cell death through different molecular signaling pathways. However, these therapies in cancer patients are constrained by dose-related adverse effects and local discomfort due to the prolonged exposure to the surrounding tissues. Technological advancements in nanotechnology have resulted in synthesis of high atomic elements such as nanomaterials, which can be used as radiosensitizers due to their photoelectric characteristics. The aim of this review is to elucidate the effects of novel nanomaterials in the field of radiation oncology to ameliorate dose-related toxicity through the application of ideal nanoparticle-based radiosensitizers such as Au (gold), Bi (bismuth), and Lu (Lutetium-177) for enhancing cytotoxic effects of radiotherapy via the high-Z effect. In addition, we discuss the role of nanoparticle-enhanced radiotherapy in alleviating tumor hypoxia through the nanodelivery of genes/drugs and other functional anticancer molecules. The implications of engineered nanoparticles in preclinical and clinical studies still need to be studied in order to explore potential mechanisms for radiosensitization by minimizing tumor hypoxia, operational/logistic complications and by overcoming tumor heterogeneity in radiotherapy/brachytherapy.
Collapse
Affiliation(s)
- Runze Zhou
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Di Zhao
- Endocrinology Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Narasimha M. Beeraka
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
- Department of Pharmaceutical Chemistry, Jagadguru Sri Shivarathreeswara Academy of Higher Education and Research (JSS AHER), Jagadguru Sri Shivarathreeswara College of Pharmacy, Mysuru 570015, India
- Department of Human Anatomy, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119991 Moscow, Russia
| | - Xiaoyan Wang
- Endocrinology Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Pengwei Lu
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Ruixia Song
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Kuo Chen
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Junqi Liu
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| |
Collapse
|
8
|
Lee S, Osmanbeyoglu HU. Chromatin accessibility landscape and active transcription factors in primary human invasive lobular and ductal breast carcinomas. BREAST CANCER RESEARCH : BCR 2022; 24:54. [PMID: 35906698 PMCID: PMC9338552 DOI: 10.1186/s13058-022-01550-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/25/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND Invasive lobular breast carcinoma (ILC), the second most prevalent histological subtype of breast cancer, exhibits unique molecular features compared with the more common invasive ductal carcinoma (IDC). While genomic and transcriptomic features of ILC and IDC have been characterized, genome-wide chromatin accessibility pattern differences between ILC and IDC remain largely unexplored. METHODS Here, we characterized tumor-intrinsic chromatin accessibility differences between ILC and IDC using primary tumors from The Cancer Genome Atlas (TCGA) breast cancer assay for transposase-accessible chromatin with sequencing (ATAC-seq) dataset. RESULTS We identified distinct patterns of genome-wide chromatin accessibility in ILC and IDC. Inferred patient-specific transcription factor (TF) motif activities revealed regulatory differences between and within ILC and IDC tumors. EGR1, RUNX3, TP63, STAT6, SOX family, and TEAD family TFs were higher in ILC, while ATF4, PBX3, SPDEF, PITX family, and FOX family TFs were higher in IDC. CONCLUSIONS This study reveals the distinct epigenomic features of ILC and IDC and the active TFs driving cancer progression that may provide valuable information on patient prognosis.
Collapse
Affiliation(s)
- Sanghoon Lee
- Department of Biomedical Informatics, School of Medicine, University of Pittsburgh, Pittsburgh, USA.,UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, USA
| | - Hatice Ulku Osmanbeyoglu
- Department of Biomedical Informatics, School of Medicine, University of Pittsburgh, Pittsburgh, USA. .,Department of Bioengineering, School of Engineering, University of Pittsburgh, Pittsburgh, USA. .,UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, USA. .,Department of Biostatistics, School of Public Health, University of Pittsburgh, Pittsburgh, USA.
| |
Collapse
|
9
|
Rutckeviski R, Corso CR, Román-Ochoa Y, Cipriani TR, Centa A, Smiderle FR. Agaricus bisporus β-(1 → 6)-d-glucan induces M1 phenotype on macrophages and increases sensitivity to doxorubicin of triple negative breast cancer cells. Carbohydr Polym 2022; 278:118917. [PMID: 34973736 DOI: 10.1016/j.carbpol.2021.118917] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/30/2021] [Accepted: 11/16/2021] [Indexed: 12/31/2022]
Abstract
Mushroom β-d-glucans have demonstrated immunomodulatory activity, which is initiated by their recognition by specific receptors on immune system cells surfaces. Studies indicated that β-d-glucans may present a synergistic effect with chemotherapy drugs. In this study, a linear β-(1 → 6)-d-glucan (B16), isolated from A. bisporus and previously characterized (Mw: 8.26 × 104 g/mol), was evaluated about its capacity to modulate THP-1 macrophages towards an M1 phenotype and induce an antitumoral activity. This was evidenced by the production of pro-inflammatory markers upon B16 treatment (30; 100 μg/mL). The breast tumor cells (MDA-MB-231) viability was not affected by treatment with B16, however, their viability markedly decreased upon treatment with the drug doxorubicin. The results showed a synergic effect of B16 and doxorubicin, which reduced the viability of MDA-MB-231 cells by 31%. Furthermore, B16 treatment provided a sustainable M1 state environment and contributed to increase the sensitivity of breast cancer cells to the doxorubicin treatment.
Collapse
Affiliation(s)
- Renata Rutckeviski
- Faculdades Pequeno Príncipe, 80230-020 Curitiba, PR, Brazil; Instituto de Pesquisa Pelé Pequeno Príncipe, 80240-020 Curitiba, PR, Brazil
| | - Claudia Rita Corso
- Faculdades Pequeno Príncipe, 80230-020 Curitiba, PR, Brazil; Instituto de Pesquisa Pelé Pequeno Príncipe, 80240-020 Curitiba, PR, Brazil
| | - Yony Román-Ochoa
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, PR 81531-980, Brazil
| | - Thales Ricardo Cipriani
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, PR 81531-980, Brazil
| | - Ariana Centa
- Faculdades Pequeno Príncipe, 80230-020 Curitiba, PR, Brazil; Instituto de Pesquisa Pelé Pequeno Príncipe, 80240-020 Curitiba, PR, Brazil
| | - Fhernanda Ribeiro Smiderle
- Faculdades Pequeno Príncipe, 80230-020 Curitiba, PR, Brazil; Instituto de Pesquisa Pelé Pequeno Príncipe, 80240-020 Curitiba, PR, Brazil.
| |
Collapse
|
10
|
Dholakia J, Scalise CB, Katre AA, Goldsberry WN, Meza-Perez S, Randall TD, Norian LA, Novak L, Arend RC. Sequential modulation of the Wnt/β-catenin signaling pathway enhances tumor-intrinsic MHC I expression and tumor clearance. Gynecol Oncol 2021; 164:170-180. [PMID: 34844776 DOI: 10.1016/j.ygyno.2021.09.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/01/2021] [Accepted: 09/07/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND Progress in immunotherapy use for gynecologic malignancies is hampered by poor tumor antigenicity and weak T cell infiltration of the tumor microenvironment (TME). Wnt/β-catenin pathway modulation demonstrated patient benefit in clinical trials as well as enhanced immune cell recruitment in preclinical studies. The purpose of this study was to characterize the pathways by which Wnt/β-catenin modulation facilitates a more immunotherapy-favorable TME. METHODS Human tumor samples and in vivo patient-derived xenograft and syngeneic murine models were administered Wnt/β-catenin modulating agents DKN-01 and CGX-1321 individually or in sequence. Analytical methods included immunohistochemistry, flow cytometry, multiplex cytokine/chemokine array, and RNA sequencing. RESULTS DKK1 blockade via DKN-01 increased HLA/MHC expression in human and murine tissues, correlating with heightened expression of known MHC I regulators: NFkB, IL-1, LPS, and IFNy. PORCN inhibition via CGX-1321 increased production of T cell chemoattractant CXCL10, providing a mechanism for observed increases in intra-tumoral T cells. Diverse leukocyte recruitment was noted with elevations in B cells and macrophages, with increased tumor expression of population-specific chemokines. Sequential DKK1 blockade and PORCN inhibition decreased tumor burden as evidenced by reduced omental weights. CONCLUSIONS Wnt/β-catenin pathway modulation increases MHC I expression and promotes tumor leukocytic infiltration, facilitating a pro-immune TME associated with decreased tumor burden. This intervention overcomes common tumor immune-evasion mechanisms and may render ovarian tumors susceptible to immunotherapy.
Collapse
Affiliation(s)
- Jhalak Dholakia
- University of Alabama in Birmingham, Division of Gynecologic Oncology, Birmingham, AL, United States of America
| | - Carly B Scalise
- University of Alabama in Birmingham, Division of Gynecologic Oncology, Birmingham, AL, United States of America
| | - Ashwini A Katre
- University of Alabama in Birmingham, Division of Gynecologic Oncology, Birmingham, AL, United States of America
| | - Whitney N Goldsberry
- University of Alabama in Birmingham, Division of Gynecologic Oncology, Birmingham, AL, United States of America
| | - Selene Meza-Perez
- University of Alabama at Birmingham, Division of Immunology & Rheumatology, Birmingham, AL, United States of America
| | - Troy D Randall
- University of Alabama at Birmingham, Division of Immunology & Rheumatology, Birmingham, AL, United States of America; University of Alabama at Birmingham, O'Neal Comprehensive Cancer Center, Birmingham, AL, United States of America
| | - Lyse A Norian
- University of Alabama at Birmingham, O'Neal Comprehensive Cancer Center, Birmingham, AL, United States of America; University of Alabama at Birmingham, Department of Nutrition Sciences, Birmingham, AL, United States of America
| | - Lea Novak
- University of Alabama at Birmingham, Department of Anatomic Pathology, Birmingham, AL, United States of America
| | - Rebecca C Arend
- University of Alabama in Birmingham, Division of Gynecologic Oncology, Birmingham, AL, United States of America; University of Alabama at Birmingham, O'Neal Comprehensive Cancer Center, Birmingham, AL, United States of America.
| |
Collapse
|
11
|
Abstract
To identify regulators of triple-negative breast cancer (TNBC), gene expression profiles of malignant parts of TNBC (mTNBC) and normal adjacent (nadj) parts of the same breasts have been compared. We are interested in the roles of estrogen receptor β (ERβ) and the cytochrome P450 family (CYPs) as drivers of TNBC. We examined by RNA sequencing the mTNBC and nadj parts of five women. We found more than a fivefold elevation in mTNBC of genes already known to be expressed in TNBC: BIRC5/survivin, Wnt-10A and -7B, matrix metalloproteinases (MMPs), chemokines, anterior gradient proteins, and lysophosphatidic acid receptor and the known basal characteristics of TNBC, sox10, ROPN1B, and Col9a3. There were two unexpected findings: 1) a strong induction of CYPs involved in activation of fatty acids (CYP4), and in inactivation of calcitriol (CYP24A1) and retinoic acid (CYP26A1); and 2) a marked down-regulation of FOS, FRA1, and JUN, known tethering partners of ERβ. ERβ is expressed in 20 to 30% of TNBCs and is being evaluated as a target for treating TNBC. We used ERβ+ TNBC patient-derived xenografts in mice and found that the ERβ agonist LY500703 had no effect on growth or proliferation. Expression of CYPs was confirmed by immunohistochemistry in formalin-fixed and paraffin-embedded (FFPE) TNBC. In TNBC cell lines, the CYP4Z1-catalyzed fatty acid metabolite 20-hydroxyeicosatetraenoic acid (20-HETE) increased proliferation, while calcitriol decreased proliferation but only after inhibition of CYP24A1. We conclude that CYP-mediated pathways can be drivers of TNBC but that ERβ is unlikely to be a tumor suppressor because the absence of its main tethering partners renders ERβ functionless on genes involved in proliferation and inflammation.
Collapse
|
12
|
Liu Y, Teng L, Fu S, Wang G, Li Z, Ding C, Wang H, Bi L. Highly heterogeneous-related genes of triple-negative breast cancer: potential diagnostic and prognostic biomarkers. BMC Cancer 2021; 21:644. [PMID: 34053447 PMCID: PMC8165798 DOI: 10.1186/s12885-021-08318-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 05/04/2021] [Indexed: 02/07/2023] Open
Abstract
Background Triple-negative breast cancer (TNBC) is a highly heterogeneous subtype of breast cancer, showing aggressive clinical behaviors and poor outcomes. It urgently needs new therapeutic strategies to improve the prognosis of TNBC. Bioinformatics analyses have been widely used to identify potential biomarkers for facilitating TNBC diagnosis and management. Methods We identified potential biomarkers and analyzed their diagnostic and prognostic values using bioinformatics approaches. Including differential expression gene (DEG) analysis, Receiver Operating Characteristic (ROC) curve analysis, functional enrichment analysis, Protein-Protein Interaction (PPI) network construction, survival analysis, multivariate Cox regression analysis, and Non-negative Matrix Factorization (NMF). Results A total of 105 DEGs were identified between TNBC and other breast cancer subtypes, which were regarded as heterogeneous-related genes. Subsequently, the KEGG enrichment analysis showed that these genes were significantly enriched in ‘cell cycle’ and ‘oocyte meiosis’ related pathways. Four (FAM83B, KITLG, CFD and RBM24) of 105 genes were identified as prognostic signatures in the disease-free interval (DFI) of TNBC patients, as for progression-free interval (PFI), five genes (FAM83B, EXO1, S100B, TYMS and CFD) were obtained. Time-dependent ROC analysis indicated that the multivariate Cox regression models, which were constructed based on these genes, had great predictive performances. Finally, the survival analysis of TNBC subtypes (mesenchymal stem-like [MSL] and mesenchymal [MES]) suggested that FAM83B significantly affected the prognosis of patients. Conclusions The multivariate Cox regression models constructed from four heterogeneous-related genes (FAM83B, KITLG, RBM24 and S100B) showed great prediction performance for TNBC patients’ prognostic. Moreover, FAM83B was an important prognostic feature in several TNBC subtypes (MSL and MES). Our findings provided new biomarkers to facilitate the targeted therapies of TNBC and TNBC subtypes. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08318-1.
Collapse
Affiliation(s)
- Yiduo Liu
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, Jiangsu, China
| | - Linxin Teng
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, Jiangsu, China
| | - Shiyi Fu
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, Jiangsu, China
| | - Guiyang Wang
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, Jiangsu, China
| | - Zhengjun Li
- College of Health Economics Management, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, Jiangsu, China
| | - Chao Ding
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, Jiangsu, China
| | - Haodi Wang
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, Jiangsu, China
| | - Lei Bi
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, Jiangsu, China.
| |
Collapse
|
13
|
Shi Z, Shen J, Qiu J, Zhao Q, Hua K, Wang H. CXCL10 potentiates immune checkpoint blockade therapy in homologous recombination-deficient tumors. Theranostics 2021; 11:7175-7187. [PMID: 34158843 PMCID: PMC8210593 DOI: 10.7150/thno.59056] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/12/2021] [Indexed: 12/13/2022] Open
Abstract
Background: Homologous recombination deficiency (HRD) is a common molecular characteristic of genomic instability, and has been proven to be a biomarker for target therapy. However, until now, no research has explored the changes in the transcriptomics landscape of HRD tumors. Methods: The HRD score was established from SNP array data of breast cancer patients from the cancer genome atlas (TCGA) database. The transcriptome data of patients with different HRD scores were analyzed to identify biomarkers associated with HRD. The candidate biomarkers were validated in the gene expression omnibus (GEO) database and immunotherapy cohorts. Results: Based on data from the gene expression profile and clinical characteristics from 1310 breast cancer patients, including TCGA database and GEO database, we found that downstream targets of the cGAS-STING pathway, such as CXCL10, were upregulated in HRD tumors and could be used as a predictor of survival outcome in triple-negative breast cancer (TNBC) patients. Further comprehensive analysis of the tumor immune microenvironment (TIME) revealed that the expression of CXCL10 was positively correlated with neoantigen load and infiltrating immune cells. Finally, in vivo experimental data and clinical trial data confirmed that the expression of CXCL10 could be used as a biomarker for anti-PD-1/PD-L1 therapy. Conclusions: Together, our study not only revealed that CXCL10 is associated with HRD but also introduced a potential new perspective for identifying prognostic biomarkers of immunotherapy.
Collapse
Affiliation(s)
- Zhiwen Shi
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regualtion, Shanghai Institute of Planned Parenthood Research, State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Reproduction and Development, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Institute of Metabolism and Integrative Biology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| | - Jianfeng Shen
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China
| | - Junjun Qiu
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regualtion, Shanghai Institute of Planned Parenthood Research, State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Reproduction and Development, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Institute of Metabolism and Integrative Biology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| | - Qingguo Zhao
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regualtion, Shanghai Institute of Planned Parenthood Research, State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Reproduction and Development, Fudan University, Shanghai 200032, China
| | - Keqin Hua
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regualtion, Shanghai Institute of Planned Parenthood Research, State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Reproduction and Development, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Institute of Metabolism and Integrative Biology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| | - Hongyan Wang
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regualtion, Shanghai Institute of Planned Parenthood Research, State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Reproduction and Development, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Institute of Metabolism and Integrative Biology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
- Children's Hospital of Fudan University, Shanghai 201100, China
| |
Collapse
|
14
|
Shuai C, Yang X, Pan H, Han W. Estrogen Receptor Downregulates Expression of PD-1/PD-L1 and Infiltration of CD8 + T Cells by Inhibiting IL-17 Signaling Transduction in Breast Cancer. Front Oncol 2020; 10:582863. [PMID: 33102239 PMCID: PMC7545792 DOI: 10.3389/fonc.2020.582863] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 08/25/2020] [Indexed: 12/22/2022] Open
Abstract
Background: The relationship between the interleukin 17 (IL-17) family of cytokines and breast cancer has been widely studied in recent years. Many studies have revealed increased levels of the cytokine IL-17A in estrogen receptor (ER)-negative or triple-negative breast cancer. Upregulation of IL-17A signaling is associated with increased expression of programmed cell death protein 1 (PD-1) and programmed death-ligand 1 (PD-L1) in breast cancer with low ER expression and may elevate the infiltration of CD8+ T cells in tumor tissue. This study aims to determine whether ER downregulates the expression of PD-1/PD-L1, reduces the infiltration of CD8+ T cells, and affects the immune microenvironment by decreasing T-helper 17 (Th17) cell infiltration and inhibiting IL-17 signaling in breast cancer. Methods: Samples in The Cancer Genome Atlas Breast Cancer dataset were grouped by ER status and the PAM50 intrinsic subtype. The expression of IL-17 family cytokines and Th17 cell signature cytokines were compared between groups. IL-17 signaling pathway-related genes that were differentially expressed according to the ER level were identified. The PD-1 and PD-L1 levels were compared between breast cancer samples with different ER statuses and IL-17A/IL-17F expression levels. Correlation analyses of the expression of PD-1/PD-L1 and IL-17 signaling pathway-related genes were performed. The associations of the expression of IL-17 signaling pathway-related genes with the immune microenvironment were investigated. Results: High levels of ER decreased the expression of IL-17A, IL-17C, and IL-17F but increased the expression of IL-17E (IL25), which acts as a suppressor of IL-17 signaling. The expression levels of Th17 cell signature cytokines were significantly increased in ER-negative breast cancer. The expression levels of genes encoding downstream products of IL-17A/IL-17F signaling were downregulated in breast cancer with high ER expression. Increased expression of PD-1/PD-L1 was associated with ER-negative status, IL-17A-positive status, IL-17F-positive status, and upregulation of IL-17 signaling pathway-related genes in breast cancer. Enhanced IL-17 signal transduction was associated with the elevation of CD8+ T cell infiltration and variation of the immune microenvironment of breast cancer. Conclusion: High estrogen receptor levels decrease PD-1/PD-L1 expression and CD8+ T cell infiltration by suppressing Th17 cell infiltration and IL-17 signal transduction in breast cancer.
Collapse
Affiliation(s)
- Chong Shuai
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xinmei Yang
- Department of Oncology, The First Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Hongming Pan
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Weidong Han
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|