1
|
Yuan PP, Hua XY. Preoperative early-stage lung cancer patients and local brain area changes: a cross-sectional observational descriptive study. Front Psychol 2024; 15:1417668. [PMID: 39205990 PMCID: PMC11349653 DOI: 10.3389/fpsyg.2024.1417668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024] Open
Abstract
Introduction Lung cancer is a major global health concern. Patients undergo a substantial process of emotional transformation following a lung cancer diagnosis, during which subtle changes in brain function and/or structure may occur. As such, the present study aimed to investigate the neuroplastic changes induced by negative emotions in patients with early-stage lung cancer. Methods This cross-sectional study recruited 35 patients with early-stage lung cancer and 33 age- and sex-matched healthy control patients. All participants completed the Hamilton Anxiety Rating Scale (HAMA), Hamilton Depression Rating Scale (HAMD), and functional magnetic resonance imaging (fMRI). Amplitude of low-frequency fluctuations (ALFF) and regional homogeneity (ReHo) were used as the fMRI indices. Correlations between the clinical assessments and ALFF and ReHo values were calculated. Results Our analysis revealed no significant differences in HAMD and HAMA scores between patients and control patients (p > 0.05). However, significant alterations in ALFF and ReHo were observed in multiple brain regions in patients with early-stage lung cancer compared to healthy controls (P FalseDiscoveryRate < 0.05). Specifically, ALFF values were decreased in the right postcentral gyrus, calcarine, and left middle cingulate, while ReHo values increased in the right angular gyrus and decreased in the bilateral postcentral gyrus, insula, left calcarine, putamen, superior temporal gyrus, middle cingulate, and right Rolandic gyrus. The HAMD score was significantly correlated with the ALFF value in the right postcentral gyrus (P = 0.007). Conclusion This study provides valuable insights into the adaptive responses of the brain following the early diagnosis of lung cancer, revealing potential disturbances in negative emotional processing. Harnessing neuroplasticity may open new avenues for the establishment of personalized treatment strategies and targeted interventions to support the emotional and mental health of patients with lung cancer.
Collapse
Affiliation(s)
- Pei-Pei Yuan
- Department of Nursing, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xu-Yun Hua
- Department of Orthopedics, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
2
|
Zhang Q, Zhang W, Zhang P, Zhao Z, Yang L, Zheng F, Zhang L, Huang G, Zhang J, Zheng W, Ma R, Yao Z, Hu B. Altered dynamic functional connectivity in rectal cancer patients with and without chemotherapy: a resting-state fMRI study. Int J Neurosci 2024; 134:584-594. [PMID: 36178032 DOI: 10.1080/00207454.2022.2130295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/11/2022] [Accepted: 09/01/2022] [Indexed: 10/17/2022]
Abstract
Purpose: Understanding the mechanism of brain functional alterations in rectal cancer (RC) patients is of great significance to improve the prognosis and quality of life of patients. Additionally, the influence of chemotherapy on brain function in RC patients is still unclear. In this study, we aimed to investigate the alterations of brain functional network dynamics in RC patients and explore the effects of chemotherapy on temporal dynamics of dynamic functional connectivity (DFC). Methods: The group independent component analysis (GICA) and sliding window method were applied to investigate abnormalities of DFC based on resting-state functional magnetic resonance imaging (rs-fMRI) of 18 RC patients without chemotherapy (RC_NC), 21 RC patients with chemotherapy (RC_C) and 33 healthy controls (HC). Then, the Spearman correlation between aberrant properties and clinical measures was calculated. Results: Two discrete states were identified. Compared to HC, RC_NC exhibited increased mean dwell time (MDT) and fractional windows (FW) in state 2 and decreased transition numbers between the two states. Notably, three temporal properties in RC_C showed an intermediate trend in comparison with RC_NC and HC. Furthermore, RC_C also demonstrated abnormal intra- and inter-network connections, involving the visual (VIS), default mode (DM), and cognitive control (CC) networks, and most connections related to VIS were correlated with the severity of anxiety and depression. Conclusions: Our study suggested that abnormal DFC patterns could be manifested in RC patients and chemotherapy would further correct abnormalities of network dynamics, which may provide new insights into the brain functional alterations in patients with RC from the time-varying connectivity perspective.
Collapse
Affiliation(s)
- Qin Zhang
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, PR China
| | - Wenwen Zhang
- Department of Radiology, Gansu Provincial Hospital, Lanzhou, PRChina
| | - Pengfei Zhang
- Second Clinical School, Lanzhou University, Lanzhou, PRChina
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, PRChina
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou, PRChina
| | - Ziyang Zhao
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, PR China
| | - Lin Yang
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, PR China
| | - Fang Zheng
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, PR China
| | - Lingyu Zhang
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, PR China
| | - Gang Huang
- Department of Radiology, Gansu Provincial Hospital, Lanzhou, PRChina
| | - Jing Zhang
- Second Clinical School, Lanzhou University, Lanzhou, PRChina
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, PRChina
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou, PRChina
| | - Weihao Zheng
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, PR China
| | - Rong Ma
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, PR China
| | - Zhijun Yao
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, PR China
| | - Bin Hu
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, PR China
- Joint Research Center for Cognitive Neurosensor Technology of Lanzhou University & Institute of Semiconductors, Chinese Academy of Sciences, Lanzhou, PR China
- Engineering Research Center of Open Source Software and Real-Time System (Lanzhou University), Ministry of Education, Lanzhou, PR China
| |
Collapse
|
3
|
Yan J, Wang L, Pan L, Ye H, Zhu X, Feng Q, Wang H, Ding Z, Ge X. Altered trends of local brain function in classical trigeminal neuralgia patients after a single trigger pain. BMC Med Imaging 2024; 24:66. [PMID: 38500069 PMCID: PMC10949736 DOI: 10.1186/s12880-024-01239-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 03/05/2024] [Indexed: 03/20/2024] Open
Abstract
OBJECTIVE To investigate the altered trends of regional homogeneity (ReHo) based on time and frequency, and clarify the time-frequency characteristics of ReHo in 48 classical trigeminal neuralgia (CTN) patients after a single pain stimulate. METHODS All patients underwent three times resting-state functional MRI (before stimulation (baseline), after stimulation within 5 s (triggering-5 s), and in the 30th min of stimulation (triggering-30 min)). The spontaneous brain activity was investigated by static ReHo (sReHo) in five different frequency bands and dynamic ReHo (dReHo) methods. RESULTS In the five frequency bands, the number of brain regions which the sReHo value changed in classical frequency band were most, followed by slow 4 frequency band. The left superior occipital gyrus was only found in slow 2 frequency band and the left superior parietal gyrus was only found in slow 3 frequency band. The dReHo values were changed in midbrain, left thalamus, right putamen, and anterior cingulate cortex, which were all different from the brain regions that the sReHo value altered. There were four altered trends of the sReHo and dReHo, which dominated by decreased at triggering-5 s and increased at triggering-30 min. CONCLUSIONS The duration of brain function changed was more than 30 min after a single pain stimulate, although the pain of CTN was transient. The localized functional homogeneity has time-frequency characteristic in CTN patients after a single pain stimulate, and the changed brain regions of the sReHo in five frequency bands and dReHo complemented to each other. Which provided a certain theoretical basis for exploring the pathophysiology of CTN.
Collapse
Affiliation(s)
- Juncheng Yan
- Department of Rehabilitation, Hangzhou First People's Hospital, 310000, Hangzhou, China
| | - Luoyu Wang
- Department of Radiology, Hangzhou First People's Hospital, 310000, Hangzhou, China
- Department of Radiology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Cancer Center, Hangzhou First People's Hospital, 310006, Hangzhou, China
| | - Lei Pan
- Department of Radiology, Hangzhou First People's Hospital, 310000, Hangzhou, China
| | - Haiqi Ye
- Department of Radiology, Hangzhou First People's Hospital, 310000, Hangzhou, China
| | - Xiaofen Zhu
- Department of Radiology, Hangzhou First People's Hospital, 310000, Hangzhou, China
| | - Qi Feng
- Department of Radiology, Hangzhou First People's Hospital, 310000, Hangzhou, China
| | - Haibin Wang
- Department of Radiology, Hangzhou First People's Hospital, 310000, Hangzhou, China
| | - Zhongxiang Ding
- Department of Radiology, Hangzhou First People's Hospital, 310000, Hangzhou, China
- Department of Radiology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Cancer Center, Hangzhou First People's Hospital, 310006, Hangzhou, China
| | - Xiuhong Ge
- Department of Radiology, Hangzhou First People's Hospital, 310000, Hangzhou, China.
- Department of Radiology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Cancer Center, Hangzhou First People's Hospital, 310006, Hangzhou, China.
| |
Collapse
|
4
|
Ge X, Wang L, Yan J, Pan L, Ye H, Zhu X, Feng Q, Chen B, Du Q, Yu W, Ding Z. Altered brain function in classical trigeminal neuralgia patients: ALFF, ReHo, and DC static- and dynamic-frequency study. Cereb Cortex 2024; 34:bhad455. [PMID: 38012118 DOI: 10.1093/cercor/bhad455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/02/2023] [Accepted: 11/10/2023] [Indexed: 11/29/2023] Open
Abstract
The present study aimed to clarify the brain function of classical trigeminal neuralgia (CTN) by analyzing 77 CTN patients and age- and gender-matched 73 healthy controls (HCs) based on three frequency bands of the static and dynamic amplitude of low-frequency fluctuation, regional homogeneity, and degree centrality (sALFF, sReHo, sDC, dALFF, dReHo, and dDC). Compared to HCs, the number of altered brain regions was different in three frequency bands, and the classical frequency band was most followed by slow-4 in CTN patients. Cerrelellum_8_L (sReHo), Cerrelellum_8_R (sDC), Calcarine_R (sDC), and Caudate_R (sDC) were found only in classical frequency band, while Precuneus_L (sALFF) and Frontal_Inf_Tri_L (sReHo) were found only in slow-4 frequency band. Except for the above six brain regions, the others overlapped in the classical and slow-4 frequency bands. CTN seriously affects the mental health of patients, and some different brain regions are correlated with clinical parameters. The static and dynamic indicators of brain function were complementary in CTN patients, and the changing brain regions showed frequency specificity. Compared to slow-5 frequency band, slow-4 is more consistent with the classical frequency band, which could be valuable in exploring the pathophysiology of CTN.
Collapse
Affiliation(s)
- Xiuhong Ge
- Department of Radiology, Hangzhou First People's Hospital, No. 261, Huansha Road, Shangcheng District, Hangzhou City, Zhejiang Province 310000, China
- Department of Radiology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer Center, Zhejiang University School of Medicine, No. 261, Huansha Road, Shangcheng District, Hangzhou City, Zhejiang Province 310000, China
| | - Luoyu Wang
- Department of Radiology, Hangzhou First People's Hospital, No. 261, Huansha Road, Shangcheng District, Hangzhou City, Zhejiang Province 310000, China
- Department of Radiology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer Center, Zhejiang University School of Medicine, No. 261, Huansha Road, Shangcheng District, Hangzhou City, Zhejiang Province 310000, China
| | - Juncheng Yan
- Department of Rehabilitation, Hangzhou First People's Hospital, No. 261, Huansha Road, Shangcheng District, Hangzhou City, Zhejiang Province 310000, China
| | - Lei Pan
- Department of Radiology, Hangzhou First People's Hospital, No. 261, Huansha Road, Shangcheng District, Hangzhou City, Zhejiang Province 310000, China
| | - Haiqi Ye
- Department of Radiology, Hangzhou First People's Hospital, No. 261, Huansha Road, Shangcheng District, Hangzhou City, Zhejiang Province 310000, China
| | - Xiaofen Zhu
- Department of Radiology, Hangzhou First People's Hospital, No. 261, Huansha Road, Shangcheng District, Hangzhou City, Zhejiang Province 310000, China
| | - Qi Feng
- Department of Radiology, Hangzhou First People's Hospital, No. 261, Huansha Road, Shangcheng District, Hangzhou City, Zhejiang Province 310000, China
| | - Bing Chen
- Jing Hengyi School of Education, Hangzhou Normal University, No. 2318, Yuhang Tang Road, Yuhang District, Hangzhou City, Zhejiang Province 311121, China
| | - Quan Du
- Department of Neurosurgery, Hangzhou First People's Hospital, No. 261, Huansha Road, Shangcheng District, Hangzhou City, Zhejiang Province 310000, China
| | - Wenhua Yu
- Department of Neurosurgery, Hangzhou First People's Hospital, No. 261, Huansha Road, Shangcheng District, Hangzhou City, Zhejiang Province 310000, China
| | - Zhongxiang Ding
- Department of Radiology, Hangzhou First People's Hospital, No. 261, Huansha Road, Shangcheng District, Hangzhou City, Zhejiang Province 310000, China
- Department of Radiology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer Center, Zhejiang University School of Medicine, No. 261, Huansha Road, Shangcheng District, Hangzhou City, Zhejiang Province 310000, China
| |
Collapse
|
5
|
Hu J, Su A, Liu X, Tong Z, Jiang Q, Yu J. Effects of D-CAG chemotherapy regimen on cognitive function in patients with acute myeloid leukaemia: A resting-state functional magnetic resonance imaging study. Eur J Neurosci 2024; 59:119-131. [PMID: 37969020 DOI: 10.1111/ejn.16191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/16/2023] [Accepted: 10/26/2023] [Indexed: 11/17/2023]
Abstract
Post-chemotherapy cognitive impairment, also known as 'chemobrain', is a common neurotoxic complication induced by chemotherapy, which has been reported in many cancer survivors who have undergone chemotherapy. In this study, we aimed to explore the effects of D-neneneba dicitabine, C-nenenebb cytarabine, A-aclamycin, G-granulocyte colony-stimulating factor (D-CAG) chemotherapy on cognitive function in patients with acute myeloid leukaemia (AML) and its possible central mechanisms. Twenty patients with AML and 25 matched healthy controls (HC) were enrolled in this study. The cognitive function of patients before and after D-CAG chemotherapy was evaluated by the Functional Assessment of Cancer Therapy-Cognitive Function (FACT-Cog). The resting-state functional magnetic resonance imaging data were collected from all patients before and after chemotherapy intervention, as well as HC. Then, resting-state functional magnetic resonance imaging data were preprocessed using DPABI software package and regional homogeneity (ReHo) values of brain regions were calculated. Finally, ReHo values between groups were compared by Resting-State fMRI Data Analysis software package with t-tests and Alphasim method was performed for multiple comparison correction. Moreover, associations between ReHo values of altered brain regions and the scores of FACT-Cog were analysed by Pearson correlation. The total FACT-Cog scores and four factor scores of AML patients increased significantly after treatment. ReHo values showed no significant changes in patients before treatment when compared with HC. Compared with HC, ReHo values of the right middle frontal gyrus, inferior frontal gyrus (opercular part), middle occipital gyrus, and left praecuneus decreased significantly, while ReHo values of the left inferior temporal gyrus, right middle temporal gyrus, and hippocampus increased significantly in patients after treatment. Compared with patients before treatment, ReHo values decreased significantly in the right middle frontal gyrus, inferior frontal gyrus (opercular part), and middle and inferior occipital gyri of patients after treatment. In addition, ReHo values of the right inferior frontal gyrus (opercular part) were negatively correlated with the total scores of FACT-Cog and factor scores of perceived cognitive impairment in patients after treatment. There were also negative correlations between ReHo values of the right middle frontal gyrus and perceived cognitive impairment scores. The present study confirmed that D-CAG chemotherapy might cause impaired subjective self-reported cognitive functioning in AML patients, which might be related to the decreased function of certain regions in the right prefrontal lobe. These findings provided further understanding of the mechanisms involved in post-chemotherapy cognitive impairment and would help develop new therapeutic strategies for 'chemobrain' in AML patients.
Collapse
Affiliation(s)
- Jun Hu
- Department of Radiology, Nanjing Brain Hospital, Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ailing Su
- Department of Hematology, Nanjing First Hospital, Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xianwei Liu
- Department of Radiology, Nanjing Brain Hospital, Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhengrong Tong
- Department of Radiology, Nanjing Brain Hospital, Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qin Jiang
- Department of Radiology, Nanjing Brain Hospital, Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jing Yu
- Department of Radiology, Nanjing Brain Hospital, Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
6
|
Hu Y, Yu H, Lai Y, Liu J, Tan Y, Lei W, Zhang J, Zhou X, Cao Y, Tang Y, Liu D, Zhang J. Longitudinal trajectory of amplitude of low-frequency fluctuation changes in breast cancer patients during neoadjuvant chemotherapy-A preliminary prospective study. Brain Res Bull 2024; 206:110845. [PMID: 38101650 DOI: 10.1016/j.brainresbull.2023.110845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/15/2023] [Accepted: 12/12/2023] [Indexed: 12/17/2023]
Abstract
There is growing evidence that the amplitude of low-frequency fluctuation (ALFF) changes in breast cancer patients after chemotherapy. However, longitudinal changes in ALFF during chemotherapy are unclear. To assess the trajectory of ALFF changes during chemotherapy, 36 breast cancer patients underwent both resting-state functional magnetic resonance imaging and neuropsychological testing at three time points, including before neoadjuvant chemotherapy (NAC) (time point 0, TP0), after one cycle of NAC (before the second cycle of NAC, TP1), and upon completion of NAC (pre-operation, TP2). Healthy controls (HC) received the same assessments at matching time points. We compared the longitudinal changes of ALFF in the NAC and two HC groups. In the NAC group, compared with TP0, ALFF values in the right orbital part of the inferior frontal gyrus, left medial orbital part of the superior frontal gyrus, right insula, left medial part of the superior frontal gyrus, and right middle frontal gyrus declined significantly at TP1 and TP2. Compared with TP1, there were no significant changes in ALFF values at TP2. In the two HC groups, there were no significant changes in ALFF at corresponding intervals. We concluded that for breast cancer patients receiving NAC, ALFF values declined significantly in some brain regions after one cycle of NAC and then remained stable until the completion of NAC, and most of the brain regions with ALFF changes were located in the frontal lobe.
Collapse
Affiliation(s)
- Yixin Hu
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Hong Yu
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Yong Lai
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Jiang Liu
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Yong Tan
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Weiwei Lei
- Department of Intensive Care, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Jing Zhang
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Xiaoyu Zhou
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Ying Cao
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Yu Tang
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Daihong Liu
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China.
| | - Jiuquan Zhang
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China.
| |
Collapse
|
7
|
Ge X, Wang L, Wang M, Pan L, Ye H, Zhu X, Fan S, Feng Q, Du Q, Wenhua Y, Ding Z. Alteration of brain network centrality in CTN patients after a single triggering pain. Front Neurosci 2023; 17:1109684. [PMID: 36875648 PMCID: PMC9978223 DOI: 10.3389/fnins.2023.1109684] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/25/2023] [Indexed: 02/18/2023] Open
Abstract
Objective The central nervous system may also be involved in the pathogenesis of classical trigeminal neuralgia (CTN). The present study aimed to explore the characteristics of static degree centrality (sDC) and dynamic degree centrality (dDC) at multiple time points after a single triggering pain in CTN patients. Materials and methods A total of 43 CTN patients underwent resting-state function magnetic resonance imaging (rs-fMRI) before triggering pain (baseline), within 5 s after triggering pain (triggering-5 s), and 30 min after triggering pain (triggering-30 min). Voxel-based degree centrality (DC) was used to assess the alteration of functional connection at different time points. Results The sDC values of the right caudate nucleus, fusiform gyrus, middle temporal gyrus, middle frontal gyrus, and orbital part were decreased in triggering-5 s and increased in triggering-30 min. The sDC value of the bilateral superior frontal gyrus were increased in triggering-5 s and decreased in triggering-30 min. The dDC value of the right lingual gyrus was gradually increased in triggering-5 s and triggering-30 min. Conclusion Both the sDC and dDC values were changed after triggering pain, and the brain regions were different between the two parameters, which supplemented each other. The brain regions which the sDC and dDC values were changing reflect the global brain function of CTN patients, and provides a basis for further exploration of the central mechanism of CTN.
Collapse
Affiliation(s)
- Xiuhong Ge
- Department of Radiology Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Jiangsu, China.,Department of Radiology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, The Affiliated Hangzhou First People's Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, China
| | - Luoyu Wang
- Department of Radiology Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Jiangsu, China.,Department of Radiology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, The Affiliated Hangzhou First People's Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengze Wang
- Department of Radiology Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Jiangsu, China.,Department of Radiology, The Fourth Clinical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lei Pan
- Department of Radiology Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Jiangsu, China
| | - Haiqi Ye
- Department of Radiology Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Jiangsu, China
| | - Xiaofen Zhu
- Department of Neurosurgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Sandra Fan
- Department of Radiology, The Fourth Clinical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qi Feng
- Department of Neurosurgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Quan Du
- Department of Radiology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, The Affiliated Hangzhou First People's Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu Wenhua
- Department of Radiology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, The Affiliated Hangzhou First People's Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhongxiang Ding
- Department of Radiology Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Jiangsu, China.,Department of Radiology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, The Affiliated Hangzhou First People's Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
8
|
Liu S, Ni J, Yan F, Yin N, Li X, Ma R, Wu J, Zhou G, Feng J. Functional changes of the prefrontal cortex, insula, caudate and associated cognitive impairment (chemobrain) in NSCLC patients receiving different chemotherapy regimen. Front Oncol 2022; 12:1027515. [PMID: 36408140 PMCID: PMC9667024 DOI: 10.3389/fonc.2022.1027515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/21/2022] [Indexed: 01/24/2023] Open
Abstract
INTRODUCTION Chemotherapy-induced cognitive impairment (CICI), termed "chemobrain", is highly prevalent in cancer patients following the administration of chemotherapeutic agents. However, the potential pathophysiological mechanisms underlying CICI remain unknown. This study aimed to explore the functional changes of the brain and associated cognitive impairment in non-small cell lung cancer (NSCLC) patients receiving different chemotherapy regimen. METHODS A total of 49 NSCLC patients (25 patients receiving pemetrexed plus carboplatin chemotherapy (PeCC) and 24 patients receiving paclitaxel plus carboplatin chemotherapy (PaCC)) and 61 healthy controls (HCs) were recruited and underwent resting-state functional magnetic resonance imaging (rs-fMRI) scanning, as well as cognitive function tests including Mini Mental State Exam (MMSE), Montreal Cognitive Assessment (MoCA), Functional Assessment of Cancer Therapy-Cognitive Function (FACT-Cog). Brain functional activities were measured by regional homogeneity (ReHo) values, which were calculated and compared between groups. In addition, the associations between ReHo values of changed brain regions and scores of cognitive scales were evaluated. RESULTS NSCLC patients showed decreased scores of MMSE, MoCA and FACT-Cog and decreased ReHo values in the bilateral superior frontal gyrus (medial), middle frontal gyrus, left inferior frontal gyrus (orbital part) and increased ReHo values in the bilateral insula and caudate. Compared with HCs, patients receiving PeCC demonstrated decreased ReHo values in the right superior frontal gyrus (dorsolateral), left superior frontal gyrus (medial orbital), middle frontal gyrus, insula and rectus gyrus while patients receiving PaCC presented increased ReHo values in the right rolandic operculum, left insula and right caudate. Compared with patients receiving PaCC, patients receiving PeCC had decreased ReHo values in the left superior frontal gyrus (orbital part), middle frontal gyrus and increased ReHo values in the left inferior temporal gyrus, lingual gyrus. Moreover, positive relationships were found between ReHo values of the left and right superior frontal gyrus (medial) and the total scores of FACT-Cog in the patient group. CONCLUSION The findings provided evidences that carboplatin-based chemotherapy could cause CICI accompanied by functional changes in the prefrontal cortex, insula, caudate. These might be the pathophysiological basis for CICI of NSCLC patients and were affected by the differences of chemotherapeutic agent administration through different biological mechanisms.
Collapse
Affiliation(s)
- Siwen Liu
- Research Center for Clinical Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Jie Ni
- Department of Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Fei Yan
- Department of Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Na Yin
- Department of Radiology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoyou Li
- Department of Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Rong Ma
- Research Center for Clinical Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Jianzhong Wu
- Research Center for Clinical Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Guoren Zhou
- Department of Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China,*Correspondence: Jifeng Feng, ; Guoren Zhou,
| | - Jifeng Feng
- Research Center for Clinical Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China,Department of Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China,*Correspondence: Jifeng Feng, ; Guoren Zhou,
| |
Collapse
|
9
|
Shang S, Ye J, Wu J, Zhang H, Dou W, Krishnan Muthaiah VP, Tian Y, Zhang Y, Chen YC, Yin X. Early disturbance of dynamic synchronization and neurovascular coupling in cognitively normal Parkinson's disease. J Cereb Blood Flow Metab 2022; 42:1719-1731. [PMID: 35473430 PMCID: PMC9441726 DOI: 10.1177/0271678x221098503] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Pathological process in Parkinson's disease (PD) is accompanied with functional and metabolic alterations. The time-varying properties of functional coherence and their coupling to regional perfusion are still rarely elucidated. To investigate early disruption of dynamic regional homogeneity (dReho) and neurovascular coupling in cognitively normal PD patients, dynamic neuronal synchronization and regional perfusion were measured using dReho and cerebral blood flow (CBF), respectively. Neurovascular coupling was assessed by CBF-ReHo correlation coefficient and CBF/ReHo ratio. Multivariate pattern analysis was conducted for the differentiating ability of each feature. Relative to healthy controls (HC) subjects, PD patients demonstrated increased dReho in middle temporal gyrus (MTG), rectus gyrus, middle occipital gyrus, and precuneus, whereas reduced dReho in putamen and supplementary motor area (SMA); while higher CBF/dReho ratio was located in putamen, SMA, paracentral lobule, and postcentral gyrus, whereas lower CBF/dReho ratio in superior temporal gyrus, MTG, precuneus, and angular gyrus (AG). Global and regional CBF-Reho decoupling were both observed in PD groups. The CBF/Reho ratio features achieved more powerful classification performance than other features. From the view of dynamic neural synchronization and neurovascular coupling, this study reinforced the insights into neural basis underlying PD and the potential role in the disease diagnosis and differentiation.
Collapse
Affiliation(s)
- Song'an Shang
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jing Ye
- Department of Radiology, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Jingtao Wu
- Department of Radiology, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Hongying Zhang
- Department of Radiology, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Weiqiang Dou
- MR Research China, GE Healthcare, Beijing, China
| | | | - Youyong Tian
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yingdong Zhang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yu-Chen Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xindao Yin
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
10
|
Liu S, Guo Y, Ni J, Yin N, Li C, Pan X, Ma R, Wu J, Li S, Li X. Chemotherapy-induced functional brain abnormality in colorectal cancer patients: a resting‐state functional magnetic resonance imaging study. Front Oncol 2022; 12:900855. [PMID: 35924154 PMCID: PMC9339615 DOI: 10.3389/fonc.2022.900855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/28/2022] [Indexed: 12/02/2022] Open
Abstract
Introduction Chemotherapy-induced cognitive impairment (i.e., “chemobrain”) is a common neurotoxic side-effect experienced by many cancer survivors who undergone chemotherapy. However, the central mechanism underlying chemotherapy-related cognitive impairment is still unclear. The purpose of this study was to investigate the changes of intrinsic brain activity and their associations with cognitive impairment in colorectal cancer (CRC) patients after chemotherapy. Methods Resting‐state functional magnetic resonance imaging data of 29 CRC patients following chemotherapy and 29 matched healthy controls (HCs) were collected in this study, as well as cognitive test data including Mini Mental State Exam (MMSE), Montreal Cognitive Assessment (MoCA) and Functional Assessment of Cancer Therapy-Cognitive Function (FACT-Cog). The measure of fractional amplitude of low-frequency fluctuation (fALFF) was calculated and compared between groups. The correlations between the fALFF of impaired brain region and cognitive performance were also analyzed. Results Compared with HCs, CRC patients following chemotherapy showed decreased fALFF values in the left anterior cingulate gyrus (ACG) and middle frontal gyrus, as well as increased fALFF values in the left superior frontal gyrus (orbital part) and middle occipital gyrus. Moreover, positive associations were identified between fALFF values of the left ACG and the total scores of MMSE, MoCA and FACT-Cog in the patient group. Conclusion These findings indicated that CRC patients after chemotherapy had decreased intrinsic brain activity in the left ACG, which might be vulnerable to the neurotoxic side-effect of chemotherapeutic drugs and related to chemotherapy-induced cognitive impairment.
Collapse
Affiliation(s)
- Siwen Liu
- Research Center for Clinical Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Yesong Guo
- Department of Radiotherapy, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Jie Ni
- Department of Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Na Yin
- Department of Radiology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Chenchen Li
- Department of Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Xuan Pan
- Department of Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Rong Ma
- Research Center for Clinical Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Jianzhong Wu
- Research Center for Clinical Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Shengwei Li
- Department of Anorectal, Yangzhou Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Yangzhou, China
- *Correspondence: Xiaoyou Li, ; Shengwei Li,
| | - Xiaoyou Li
- Department of Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Xiaoyou Li, ; Shengwei Li,
| |
Collapse
|
11
|
Chen W, Hu H, Wu Q, Chen L, Zhou J, Chen HH, Xu XQ, Wu FY. Altered Static and Dynamic Interhemispheric Resting-State Functional Connectivity in Patients With Thyroid-Associated Ophthalmopathy. Front Neurosci 2021; 15:799916. [PMID: 34938158 PMCID: PMC8685321 DOI: 10.3389/fnins.2021.799916] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/17/2021] [Indexed: 11/16/2022] Open
Abstract
Purpose: Thyroid-associated ophthalmopathy (TAO) is a debilitating and sight-threatening autoimmune disease that severely impairs patients' quality of life. Besides the most common ophthalmic manifestations, the emotional and psychiatric disturbances are also usually observed in clinical settings. This study was to investigate the interhemispheric functional connectivity alterations in TAO patients using resting-state functional magnetic resonance imaging (rs-fMRI). Methods: Twenty-eight TAO patients and 22 healthy controls (HCs) underwent rs-fMRI scans. Static and dynamic voxel-mirrored homotopic connectivity (VMHC) values were calculated and compared between the two groups. A linear support vector machine (SVM) classifier was used to examine the performance of static and dynamic VMHC differences in distinguishing TAOs from HCs. Results: Compared with HCs, TAOs showed decreased static VMHC in lingual gyrus (LG)/calcarine (CAL), middle occipital gyrus, postcentral gyrus, superior parietal lobule, inferior parietal lobule, and precuneus. Meanwhile, TAOs demonstrated increased dynamic VMHC in orbitofrontal cortex (OFC). In TAOs, static VMHC in LG/CAL was positively correlated with visual acuity (r = 0.412, P = 0.036), whilst dynamic VMHC in OFC was positively correlated with Hamilton Anxiety Rating Scale (HARS) score (r = 0.397, P = 0.044) and Hamilton Depression Rating Scale (HDRS) score (r = 0.401, P = 0.042). The SVM model showed good performance in distinguishing TAOs from HCs (area under the curve, 0.971; average accuracy, 94%). Conclusion: TAO patients had altered static and dynamic VMHC in the occipital, parietal, and orbitofrontal areas, which could serve as neuroimaging prediction markers of TAO.
Collapse
Affiliation(s)
- Wen Chen
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hao Hu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qian Wu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lu Chen
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiang Zhou
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Huan-Huan Chen
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiao-Quan Xu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Fei-Yun Wu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
12
|
Plata-Bello J, Plata-Bello A, Pérez-Martín Y, López-Curtis D, Acosta-López S, Modroño C, Concepción-Massip T. Changes in resting-state measures of prostate cancer patients exposed to androgen deprivation therapy. Sci Rep 2021; 11:23350. [PMID: 34857811 PMCID: PMC8639725 DOI: 10.1038/s41598-021-02611-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 11/10/2021] [Indexed: 11/09/2022] Open
Abstract
The aim of the present work is to describe the differences in rs-fMRI measures (Amplitude of low frequency fluctuations [ALFF], Regional Homogeneity [ReHo] and Functional Connectivity [FC]) between patients exposed to Androgen deprivation therapy (ADT) and a control group. Forty-nine ADT patients and fifteen PC-non-ADT patients (Controls) were included in the study. A neuropsychological evaluation and a resting-state fMRI was performed to evaluate differences in ALFF and ReHo. Region of interest (ROI) analysis was also performed. ROIs were selected among those whose androgen receptor expression (at RNA-level) was the highest. FC analysis was performed using the same ROIs. Higher ALFF in frontal regions and temporal regions was identified in Controls than in ADT patients. In the ROI analysis, higher activity for Controls than ADT patients was shown in the left inferior frontal gyrus and in the left precentral gyrus. Lower ALFF in the right hippocampus and the lateral geniculate nucleus of the right thalamus was identified for Controls than ADT patients. Higher ReHo was observed in Controls in the left parietal-occipital area. Finally, ADT patients presented an increase of FC in more regions than Controls. These differences may reflect an impairment in brain functioning in ADT users.
Collapse
Affiliation(s)
- Julio Plata-Bello
- Department of Neurosurgery, Hospital Universitario de Canarias, CP 38320, S/C de Tenerife, Spain.
- Cognitive Neuroscience Research Group, University of La Laguna, S/C de Tenerife, Spain.
- Neuroscience Department, Hospital Universitario de Canarias, Calle Ofra s/n La Cuesta, La Laguna, CP 38320, S/C de Tenerife, Spain.
| | - Ana Plata-Bello
- Department of Urology, Hospital Universitario de Canarias, CP 38320, S/C de Tenerife, Spain
- Cognitive Neuroscience Research Group, University of La Laguna, S/C de Tenerife, Spain
| | - Yaiza Pérez-Martín
- Department of Neurology, Hospital Universitario de Canarias, CP 38320, S/C de Tenerife, Spain
| | - David López-Curtis
- Cognitive Neuroscience Research Group, University of La Laguna, S/C de Tenerife, Spain
| | - Silvia Acosta-López
- Cognitive Neuroscience Research Group, University of La Laguna, S/C de Tenerife, Spain
| | - Cristián Modroño
- Department of Physiology, Faculty of Medicine, University of La Laguna, CP 38320, S/C de Tenerife, Spain
| | | |
Collapse
|
13
|
Dynamic functional network connectivity reveals the brain functional alterations in lung cancer patients after chemotherapy. Brain Imaging Behav 2021; 16:1040-1048. [PMID: 34718941 DOI: 10.1007/s11682-021-00575-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 09/28/2021] [Indexed: 10/19/2022]
Abstract
This study aimed to investigate alterations of brain functional network connectivity (FNC) in lung cancer patients after chemotherapy and explore links between these FNC differences and cognitive impairment. Twenty-two lung cancer patients receiving chemotherapy and 26 healthy controls (HCs) underwent resting-state functional MRI (rs-fMRI) and neuropsychological testing. Group independent component analysis (GICA) was applied to rs-fMRI data to extract whole-brain resting state networks (RSNs). Static and dynamic FNC (dFNC) were constructed to reveal RSNs connectivity alterations between lung cancer patients and HCs group, and the correlations between the group differences in RSNs and cognitive performance were analyzed. Our findings revealed that chemotherapeutics can produce widespread connectivity abnormalities in RSNs, mainly focused on default mode network (DMN) and executive control network. Furthermore, the dFNC analysis help identify network configurations of each state and capture more chemotherapy-induced disorders of interactions between and within RSNs, which mainly includes sensorimotor network, attentional network and auditory network. In addition, after chemotherapy, the lung cancer patients spend shorter mean dwell time (MDT) in state 2. The decreased dFNC between DMN [independent component 5 (IC5)] and DMN (IC6) in the lung cancer patients after chemotherapy in state 4 was negatively correlated with Montreal Cognitive Assessment (MoCA) scores (r=-0.447, p=0.042). The dFNC analysis enrich our understanding of the neural mechanisms underlying the chemobrain, and suggested that the temporal dynamics of FNC could be a potential effective method to detect cognitive changes in lung cancer patients receiving chemotherapy.
Collapse
|
14
|
Bernstein LJ, Edelstein K, Sharma A, Alain C. Chemo-brain: An activation likelihood estimation meta-analysis of functional magnetic resonance imaging studies. Neurosci Biobehav Rev 2021; 130:314-325. [PMID: 34454915 DOI: 10.1016/j.neubiorev.2021.08.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 07/24/2021] [Accepted: 08/23/2021] [Indexed: 11/17/2022]
Abstract
Adults with non-central nervous system (CNS) cancers frequently report problems in attention, memory and executive function during or after chemotherapy, referred to as cancer-related cognitive dysfunction (CRCD). Despite numerous studies investigating CRCD, there is no consensus regarding the brain areas implicated. We sought to determine if there are brain areas that consistently show either hyper- or hypo-activation in people treated with chemotherapy for non-CNS cancer (Chemo+). Using activation likelihood estimation on brain coordinates from 14 fMRI studies yielding 25 contrasts from 375 Chemo+ and 429 chemotherapy-naive controls while they performed cognitive tasks, the meta-analysis yielded two significant clusters which are part of the frontoparietal attention network, both showing lower activation in Chemo+. One cluster peaked in the left superior parietal cortex, extending into precuneus, inferior parietal lobule, and angular gyrus. The other peaked in the right superior prefrontal areas, extending into inferior prefrontal cortex. We propose that these observed lower activations reflect a dysfunction in mobilizing and/or sustaining attention due to depletion of cognitive resources. This could explain higher level of mental fatigue reported by Chemo+ and why cancer survivors report problems in a wide variety of cognitive domains.
Collapse
Affiliation(s)
- Lori J Bernstein
- Department of Supportive Care, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Canada.
| | - Kim Edelstein
- Department of Supportive Care, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Canada
| | - Alisha Sharma
- Department of Supportive Care, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Claude Alain
- Rotman Research Institute, Baycrest Health Centre, Canada; Department of Psychology, University of Toronto, Canada
| |
Collapse
|
15
|
You J, Zhang J, Shang S, Gu W, Hu L, Zhang Y, Xiong Z, Chen YC, Yin X. Altered Brain Functional Network Topology in Lung Cancer Patients After Chemotherapy. Front Neurol 2021; 12:710078. [PMID: 34408724 PMCID: PMC8367296 DOI: 10.3389/fneur.2021.710078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/05/2021] [Indexed: 12/24/2022] Open
Abstract
Purpose: This study aimed to explore the topological features of brain functional network in lung cancer patients before and after chemotherapy using graph theory. Methods: Resting-state functional magnetic resonance imaging scans were obtained from 44 post-chemotherapy and 46 non-chemotherapy patients as well as 49 healthy controls (HCs). All groups were age- and gender-matched. Then, the topological features of brain functional network were assessed using graph theory analysis. Results: At the global level, compared with the HCs, both the non-chemotherapy group and the post-chemotherapy group showed significantly increased values in sigma (p < 0.05), gamma (p < 0.05), and local efficiency, Eloc (p < 0.05). The post-chemotherapy group and the non-chemotherapy group did not differ significantly in the above-mentioned parameters. At the nodal level, when non-chemotherapy or post-chemotherapy patients were compared with the HCs, abnormal nodal centralities were mainly observed in widespread brain regions. However, when the post-chemotherapy group was compared with the non-chemotherapy group, significantly decreased nodal centralities were observed primarily in the prefrontal–subcortical regions. Conclusions: These results indicate that lung cancer and chemotherapy can disrupt the topological features of functional networks, and chemotherapy may cause a pattern of prefrontal–subcortical brain network abnormality. As far as we know, this is the first study to report that altered functional brain networks are related to lung cancer and chemotherapy.
Collapse
Affiliation(s)
- Jia You
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Juan Zhang
- Department of Neurology, Nanjing Yuhua Hospital, Yuhua Branch of Nanjing First Hospital, Nanjing, China
| | - Song'an Shang
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Wei Gu
- Department of Respiratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Lanyue Hu
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yujie Zhang
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Zhenyu Xiong
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Yu-Chen Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xindao Yin
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
16
|
Vachha BA, Gohel S, Root JC, Kryza-Lacombe M, Hensley ML, Correa DD. Altered regional homogeneity in patients with ovarian cancer treated with chemotherapy: a resting state fMRI study. Brain Imaging Behav 2021; 16:539-546. [PMID: 34409561 DOI: 10.1007/s11682-021-00525-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2021] [Indexed: 11/30/2022]
Abstract
Many patients treated with chemotherapy for non-central nervous system (CNS) cancers experience cognitive dysfunction. However, few studies have investigated treatment-related neurotoxicity in women with ovarian cancer. The goal of this study was to assess regional brain function in patients with ovarian cancer after first-line chemotherapy. Seventeen patients with ovarian cancer and seventeen healthy controls matched for gender, age and education participated in the study. The patients were evaluated 1-4 months after completion of first line taxane/platinum chemotherapy. All participants underwent resting state functional MRI (rsfMRI) and regional homogeneity (ReHo) indices were calculated. The results showed that patients had significantly decreased average ReHo values in the left middle frontal gyrus, medial prefrontal cortex, and right superior parietal lobule, compared to healthy controls. This is the first rsfMRI study showing ReHo alterations in frontal and parietal regions in patients with ovarian cancer treated with first-line chemotherapy. The findings are overall congruent with prior studies in non-CNS cancer populations and provide supporting evidence for the prevailing notion that frontal areas are particularly vulnerable to the adverse effects of chemotherapy.
Collapse
Affiliation(s)
- Behroze A Vachha
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA.,Brain Tumor Center, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA.,Department of Radiology, Weill Medical College of Cornell University, 525 East 68th Street, New York, NY, 10065, USA
| | - Suril Gohel
- Department of Health Informatics, Rutgers University School of Health Professions, 65 Bergen Street, Newark, NJ, 07107, USA
| | - James C Root
- Department of Psychiatry and Behavioral Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Maria Kryza-Lacombe
- Department of Neurology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.,San Diego Joint Doctoral Program in Clinical Psychology, San Diego State University/University of California, San Diego, CA, USA
| | - Martee L Hensley
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Denise D Correa
- Department of Neurology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA. .,Department of Neurology and Neuroscience, Weill Medical College of Cornell University, 525 East 68th Street, New York, NY, 10065, USA.
| |
Collapse
|