1
|
Akiyama S, Barnes EL, Onoda T, Ishikawa N, Shiroyama M, Ito Y, Rubin DT, Tsuchiya K. Endoscopic assessment of the J pouch in ulcerative colitis: A narrative review. DEN OPEN 2025; 5:e373. [PMID: 38694540 PMCID: PMC11058686 DOI: 10.1002/deo2.373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 04/08/2024] [Indexed: 05/04/2024]
Abstract
Patients with ulcerative colitis sometimes need a total colectomy with ileal pouch-anal anastomosis due to medically refractory disease or colitis-associated neoplasia. Up to 50% of patients with ulcerative colitis postoperatively develop pouchitis and the rate of chronic inflammatory pouch conditions requiring pouch excision or diverting ileostomy is reported to be 10%. In order to diagnose and monitor pouchitis, pouchoscopy is essential to assess endoscopic inflammatory findings of the J pouch and to survey neoplasia development, particularly in the remnant distal rectum. However, endoscopic protocols for the evaluation of the pouch may not be standardized worldwide and the reliability of existing disease activity indices for pouchitis has been questioned due to the lack of validation. Recently, reliable endoscopic scoring systems based on an observation of the anatomical location of the J pouch were reported and a significant association between the distribution pattern of endoscopic inflammation (i.e., endoscopic phenotype) and pouch outcomes was also uncovered. In this review, we discuss how to survey the J pouch using pouchoscopy, endoscopic indices for pouchitis disease activity, endoscopic phenotypes and classification, and the pathological mechanisms of pouchitis phenotype in patients with ulcerative colitis.
Collapse
Affiliation(s)
- Shintaro Akiyama
- Department of GastroenterologyInstitute of MedicineUniversity of TsukubaTsukubaIbarakiJapan
| | - Edward L Barnes
- Division of Gastroenterology and HepatologyUniversity of North Carolina at Chapel HillChapel HillUSA
| | - Tsubasa Onoda
- Department of GastroenterologyNHO Mito Medical CenterIbarakiJapan
- Doctoral Program in Medical SciencesGraduate School of Comprehensive Human SciencesUniversity of TsukubaTsukubaIbarakiJapan
| | - Naoki Ishikawa
- Department of GastroenterologyInstitute of MedicineUniversity of TsukubaTsukubaIbarakiJapan
- Doctoral Program in Medical SciencesGraduate School of Comprehensive Human SciencesUniversity of TsukubaTsukubaIbarakiJapan
| | - Mamiko Shiroyama
- Department of GastroenterologyInstitute of MedicineUniversity of TsukubaTsukubaIbarakiJapan
- Doctoral Program in Medical SciencesGraduate School of Comprehensive Human SciencesUniversity of TsukubaTsukubaIbarakiJapan
| | - Yuka Ito
- Department of GastroenterologyNHO Mito Medical CenterIbarakiJapan
| | - David T Rubin
- University of Chicago Medicine Inflammatory Bowel Disease CenterChicagoUSA
| | - Kiichiro Tsuchiya
- Department of GastroenterologyInstitute of MedicineUniversity of TsukubaTsukubaIbarakiJapan
| |
Collapse
|
2
|
Akiyama S, Onoda T, Moue S, Sakamoto N, Sakamoto T, Suzuki H, Enomoto T, Matsubara D, Oda T, Tsuchiya K. Association of colonic metaplasia of goblet cells and endoscopic phenotypes of the J pouch in patients with ulcerative colitis: a retrospective pilot study. Intest Res 2024; 22:92-103. [PMID: 38327000 PMCID: PMC10850699 DOI: 10.5217/ir.2023.00105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/17/2023] [Accepted: 09/21/2023] [Indexed: 02/09/2024] Open
Abstract
BACKGROUND/AIMS Mucosal adaptation of the ileum toward colonic epithelium has been reported in pouchitis in ulcerative colitis (UC); however, the clinical characteristics, endoscopic findings, and outcomes in patients with pouchitis with ileal mucosal adaptation are poorly understood. METHODS This was a single-center retrospective study comprising UC patients treated by proctocolectomy with ileal pouch-anal anastomosis who had undergone pouchoscopy at the University of Tsukuba Hospital between 2005 and 2022. Endoscopic phenotypes were evaluated according to the Chicago classification. High-iron diamine staining (HID) was performed to identify sulfomucin (colon-type mucin)-producing goblet cells (GCs) in pouch biopsies. We compared clinical data between patients with (high HID group) and without > 10% sulfomucin-producing GCs in at least one biopsy (low HID group). RESULTS We reviewed 390 endoscopic examination reports from 50 patients. Focal inflammation was the most common phenotype (78%). Five patients (10%) required diverting ileostomy. Diffuse inflammation and fistula were significant risk factors for diverting ileostomy. The median proportion of sulfomucin-producing GCs on histological analysis of 82 pouch biopsies from 23 patients was 9.9% (range, 0%-93%). The duration of disease was significantly greater in the high HID group compared to the low HID group. The median percentage of sulfomucin-producing GCs was significantly higher in patients with diffuse inflammation or fistula compared to other endoscopic phenotypes (14% vs. 6.0%, P= 0.011). CONCLUSIONS Greater proportions of sulfomucin-producing GCs were observed in endoscopic phenotypes associated with poor outcomes in UC, indicating patients with pouchitis showing colonic metaplasia of GCs may benefit from early interventions.
Collapse
Affiliation(s)
- Shintaro Akiyama
- Department of Gastroenterology, Institute of Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Tsubasa Onoda
- Department of Gastroenterology, Institute of Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Shoko Moue
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Institute of Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Noriaki Sakamoto
- Department of Pathology, Institute of Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Taku Sakamoto
- Department of Gastroenterology, Institute of Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Hideo Suzuki
- Department of Gastroenterology, Institute of Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Tsuyoshi Enomoto
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Institute of Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Daisuke Matsubara
- Department of Pathology, Institute of Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Tatsuya Oda
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Institute of Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Kiichiro Tsuchiya
- Department of Gastroenterology, Institute of Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
3
|
Organoids transplantation as a new modality to design epithelial signature to create a membrane-protective sulfomucin-enriched segment. J Gastroenterol 2023; 58:379-393. [PMID: 36745238 DOI: 10.1007/s00535-023-01959-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/08/2023] [Indexed: 02/07/2023]
Abstract
BACKGROUND The organoids therapy for ulcerative colitis (UC) is under development. It is important to dissect how the engrafted epithelium can provide benefits for overcoming the vulnerability to inflammation. We mainly focused on the deliverability of sulfomucin, which is reported to play an important role in epithelial function. METHODS We analyzed each segment of colon epithelium to determine differences in sulfomucin production in both mice and human. Subsequently, we transplanted organoids established from sulfomucin-enriched region into the injured recipient epithelium following dextran sulfate sodium-induced colitis and analyzed the engrafted epithelium in mouse model. RESULTS In human normal colon, sulfomucin production was increased in proximal colon, whereas it was decreased in the inflammatory region of UC. In murine colon epithelium, increased sulfomucin production was found in cecum compared to distal small intestine and proximal colon. RNA sequencing analysis revealed that several key genes associated with sulfomucin production such as Papss2 and Slc26a1 were enriched in isolated murine cecum crypts. Then we established murine cecum organoids and transplanted them into the injured epithelium of distal colon. Although the expression of sulfomucin was temporally decreased in cecum organoids, its secretion was restored again in the engrafted patches after transplantation. Finally, we verified a part of mechanisms controlling sulfomucin production in human samples. CONCLUSION This study illustrated the deliverability of sulfomucin in the disease-relevant grafting model to design sulfomucin-producing epithelial units in severely injured distal colon. The current study is the basis for the better promotion of organoids transplantation therapy for refractory UC.
Collapse
|
4
|
Brown RE, Jacobse J, Anant SA, Blunt KM, Chen B, Vega PN, Jones CT, Pilat JM, Revetta F, Gorby AH, Stengel KR, Choksi YA, Palin K, Piazuelo MB, Washington MK, Lau KS, Goettel JA, Hiebert SW, Short SP, Williams CS. MTG16 regulates colonic epithelial differentiation, colitis, and tumorigenesis by repressing E protein transcription factors. JCI Insight 2022; 7:e153045. [PMID: 35503250 PMCID: PMC9220854 DOI: 10.1172/jci.insight.153045] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/13/2022] [Indexed: 12/04/2022] Open
Abstract
Aberrant epithelial differentiation and regeneration contribute to colon pathologies, including inflammatory bowel disease (IBD) and colitis-associated cancer (CAC). Myeloid translocation gene 16 (MTG16, also known as CBFA2T3) is a transcriptional corepressor expressed in the colonic epithelium. MTG16 deficiency in mice exacerbates colitis and increases tumor burden in CAC, though the underlying mechanisms remain unclear. Here, we identified MTG16 as a central mediator of epithelial differentiation, promoting goblet and restraining enteroendocrine cell development in homeostasis and enabling regeneration following dextran sulfate sodium-induced (DSS-induced) colitis. Transcriptomic analyses implicated increased Ephrussi box-binding transcription factor (E protein) activity in MTG16-deficient colon crypts. Using a mouse model with a point mutation that attenuates MTG16:E protein interactions (Mtg16P209T), we showed that MTG16 exerts control over colonic epithelial differentiation and regeneration by repressing E protein-mediated transcription. Mimicking murine colitis, MTG16 expression was increased in biopsies from patients with active IBD compared with unaffected controls. Finally, uncoupling MTG16:E protein interactions partially phenocopied the enhanced tumorigenicity of Mtg16-/- colon in the azoxymethane/DSS-induced model of CAC, indicating that MTG16 protects from tumorigenesis through additional mechanisms. Collectively, our results demonstrate that MTG16, via its repression of E protein targets, is a key regulator of cell fate decisions during colon homeostasis, colitis, and cancer.
Collapse
Affiliation(s)
- Rachel E. Brown
- Program in Cancer Biology and
- Medical Scientist Training Program, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Justin Jacobse
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee, USA
- Willem Alexander Children’s Hospital, Leiden University Medical Center, Leiden, Netherlands
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | - Koral M. Blunt
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Bob Chen
- Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Paige N. Vega
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Cell and Developmental Biology and
| | - Chase T. Jones
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | - Frank Revetta
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee, USA
| | - Aidan H. Gorby
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kristy R. Stengel
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Yash A. Choksi
- Program in Cancer Biology and
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Veterans Affairs Tennessee Valley Health Care System, Nashville, Tennessee, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kimmo Palin
- Department of Medical and Clinical Genetics
- Applied Tumor Genomics Research Program, Research Programs Unit, and
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| | - M. Blanca Piazuelo
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Mary Kay Washington
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee, USA
| | - Ken S. Lau
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Cell and Developmental Biology and
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jeremy A. Goettel
- Program in Cancer Biology and
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee, USA
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Scott W. Hiebert
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Sarah P. Short
- Program in Cancer Biology and
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Christopher S. Williams
- Program in Cancer Biology and
- Medical Scientist Training Program, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Veterans Affairs Tennessee Valley Health Care System, Nashville, Tennessee, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
5
|
Urbano PCM, Angus HCK, Gadeock S, Schultz M, Kemp RA. Assessment of source material for human intestinal organoid culture for research and clinical use. BMC Res Notes 2022; 15:35. [PMID: 35144661 PMCID: PMC8830126 DOI: 10.1186/s13104-022-05925-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/26/2022] [Indexed: 12/04/2022] Open
Abstract
Objective Human intestinal organoids (hIOs) have potential as a model for investigating intestinal diseases. The hIO system faces logistic challenges including limited access to biopsies or low expression of epithelial cell types. Previous research identified the feasibility of tissue from the transverse (TC) or sigmoid colon (SC), or from cryopreserved biopsies from regions of the gastrointestinal tract. We aimed to create a protocol for robust hIO generation that could be implemented across multiple centres, allowing for development of a consistent biobank of hIOs from diverse patients. Results TC and SC hIOs were expanded from fresh or frozen biopsies with standard or refined media. The expression of epithelial cells was evaluated via PCR. Growth of TC and SC hIO from healthy donors was reproducible from freshly acquired and frozen biopsies. A refined media including insulin-like growth factor (IGF)-1 and fibroblast growth factor (FGF)-2 enabled the expression of epithelial cells, including higher expression of goblet cells and enterocytes compared to standard organoid media. We identified a consistent time point where hIOs generated from frozen biopsies reflect similar hIO composition from freshly acquired samples. Feasibility of hIOs as a tool for research and clinical use, including the use of frozen biopsies, was demonstrated. Supplementary Information The online version contains supplementary material available at 10.1186/s13104-022-05925-4.
Collapse
Affiliation(s)
- Paulo C M Urbano
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand.,Department of Medicine, University of Otago, Dunedin, New Zealand
| | - Hamish C K Angus
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Safina Gadeock
- Children's Hospital Los Angeles, University of Southern California, Los Angeles, USA
| | - Michael Schultz
- Department of Medicine, University of Otago, Dunedin, New Zealand.,Department of Gastroenterology, Southern District Health Board, Dunedin, New Zealand
| | - Roslyn A Kemp
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
6
|
Kawakubo M, Komura H, Goso Y, Okumura M, Sato Y, Fujii C, Miyashita M, Arisaka N, Harumiya S, Yamanoi K, Yamada S, Kakuta S, Kawashima H, Fukuda MN, Fukuda M, Nakayama J. Analysis of A4gnt Knockout Mice Reveals an Essential Role for Gastric Sulfomucins in Preventing Gastritis Cystica Profunda. J Histochem Cytochem 2019; 67:759-770. [PMID: 31246144 PMCID: PMC6764063 DOI: 10.1369/0022155419860134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 06/06/2019] [Indexed: 12/04/2022] Open
Abstract
Gastric adenocarcinoma cells secrete sulfomucins, but their role in gastric tumorigenesis remains unclear. To address that question, we generated A4gnt/Chst4 double-knockout (DKO) mice by crossing A4gnt knockout (KO) mice, which spontaneously develop gastric adenocarcinoma, with Chst4 KO mice, which are deficient in the sulfotransferase GlcNAc6ST-2. A4gnt/Chst4 DKO mice lack gastric sulfomucins but developed gastric adenocarcinoma. Unexpectedly, severe gastric erosion occurred in A4gnt/Chst4 DKO mice at as early as 3 weeks of age, and with aging these lesions were accompanied by gastritis cystica profunda (GCP). Cxcl1, Cxcl5, Ccl2, and Cxcr2 transcripts in gastric mucosa of 5-week-old A4gnt/Chst4 DKO mice exhibiting both hyperplasia and severe erosion were significantly upregulated relative to age-matched A4gnt KO mice, which showed hyperplasia alone. However, upregulation of these genes disappeared in 50-week-old A4gnt/Chst4 DKO mice exhibiting high-grade dysplasia/adenocarcinoma and GCP. Moreover, Cxcl1 and Cxcr2 were downregulated in A4gnt/Chst4 DKO mice relative to age-matched A4gnt KO mice exhibiting adenocarcinoma alone. These combined results indicate that the presence of sulfomucins prevents severe gastric erosion followed by GCP in A4gnt KO mice by transiently regulating a set of inflammation-related genes, Cxcl1, Cxcl5, Ccl2, and Cxcr2 at 5 weeks of age, although sulfomucins were not directly associated with gastric cancer development.
Collapse
Affiliation(s)
- Masatomo Kawakubo
- Department of Molecular Pathology, Shinshu
University School of Medicine, Shinshu University, Matsumoto, Japan
- Institute for Biomedical Sciences,
Interdisciplinary Cluster for Cutting Edge Research, Shinshu University,
Matsumoto, Japan
| | - Hitomi Komura
- Department of Molecular Pathology, Shinshu
University School of Medicine, Shinshu University, Matsumoto, Japan
| | - Yukinobu Goso
- Department of Biochemistry, Kitasato University
Graduate School of Medical Sciences, Sagamihara, Japan
| | - Motohiro Okumura
- Department of Molecular Pathology, Shinshu
University School of Medicine, Shinshu University, Matsumoto, Japan
| | - Yoshiko Sato
- Department of Molecular Pathology, Shinshu
University School of Medicine, Shinshu University, Matsumoto, Japan
| | - Chifumi Fujii
- Department of Molecular Pathology, Shinshu
University School of Medicine, Shinshu University, Matsumoto, Japan
- Institute for Biomedical Sciences,
Interdisciplinary Cluster for Cutting Edge Research, Shinshu University,
Matsumoto, Japan
| | - Masaki Miyashita
- Department of Molecular Pathology, Shinshu
University School of Medicine, Shinshu University, Matsumoto, Japan
| | - Nobuhiko Arisaka
- Department of Molecular Pathology, Shinshu
University School of Medicine, Shinshu University, Matsumoto, Japan
| | - Satoru Harumiya
- Department of Molecular Pathology, Shinshu
University School of Medicine, Shinshu University, Matsumoto, Japan
| | - Kazuhiro Yamanoi
- Department of Molecular Pathology, Shinshu
University School of Medicine, Shinshu University, Matsumoto, Japan
- Institute for Biomedical Sciences,
Interdisciplinary Cluster for Cutting Edge Research, Shinshu University,
Matsumoto, Japan
| | - Shigenori Yamada
- Division of Gastroenterology, Iiyama Red Cross
Hospital, Iiyama, Japan
| | - Shigeru Kakuta
- Research Center for Human and Environmental
Sciences, Shinshu University, Matsumoto, Japan
- Department of Biomedical Science, Graduate
School of Agricultural and Life Sciences, The University of Tokyo, Tokyo,
Japan
| | - Hiroto Kawashima
- Laboratory of Microbiology and Immunology,
Graduate School of Pharmaceutical Sciences, Chiba University, Chiba,
Japan
| | - Michiko N. Fukuda
- Tumor Microenvironment and Cancer Immunology
Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA,
USA
- Laboratory for Drug Discovery, National
Institute of Advanced Industrial Science and Technology, Tsukuba,
Japan
| | - Minoru Fukuda
- Tumor Microenvironment and Cancer Immunology
Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA,
USA
| | - Jun Nakayama
- Department of Molecular Pathology, Shinshu
University School of Medicine, Shinshu University, Matsumoto, Japan
- Institute for Biomedical Sciences,
Interdisciplinary Cluster for Cutting Edge Research, Shinshu University,
Matsumoto, Japan
| |
Collapse
|
7
|
Buchwalow I, Schnekenburger J, Samoilova V, Boecker W, Neumann J, Tiemann K. New Insight into the Role of Nitric Oxide Pathways in Pancreas. Acta Histochem Cytochem 2018; 51:167-172. [PMID: 30647491 PMCID: PMC6328368 DOI: 10.1267/ahc.18028] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 10/03/2018] [Indexed: 12/15/2022] Open
Abstract
Nitric oxide (NO) is generated by a family of enzymes termed NO synthases (NOS) that convert L-arginine to NO and citrulline. The role of NO as an important biological mediator and recognition of the pathophysiological significance of superoxides/NO interaction has led to an intensive research and development of therapies based on the interception of the NO signaling cascade in the pancreatitis course. However, the presence and localization of the NO-generating enzymes in various organs including pancreas are subject to controversy. We assumed that this controversy might reflect rather the diversity of experimental approaches and an insufficient sensitivity of the methods used. Applying tyramide signal amplification (TSA) immunohistochemical technology, we were able detect all three NOS isoforms both in exocrine and endocrine compartments and in the vasculature in the normal pancreas and in pancreatitis. This also allowed us to demonstrate that oxidative stress runs ahead of NOS up-regulation, which implies that the NO enhancement in the course of pancreatitis is likely to be an adaptive mechanism aimed at maintaining the homeostatic cellular level of the bioactive NO. The aims of this minireview are to describe normal intrapancreatic NO pathways and the role of NO in the pancreatitis course.
Collapse
Affiliation(s)
| | | | | | | | - Joachim Neumann
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin-Luther-University Halle-Wittenberg
| | | |
Collapse
|