1
|
Osamura A, Onizuka H, Masui K, Murakami K, Yamamoto T, Nagashima Y, Takeda M, Kurata A. An Autopsy Case of Fulminant Systemic Infection of Clostridium perfringens With a Diverse Role of Toxins in a Healthy Patient. Case Rep Pathol 2024; 2024:9213132. [PMID: 39310291 PMCID: PMC11416167 DOI: 10.1155/2024/9213132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 07/04/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024] Open
Abstract
We herein report an autopsy case of a fulminant Clostridium perfringens (C. perfringens or Welch bacilli) infection in a healthy adult. A 72-year-old, immunocompetent man visited the emergency department with lower back pain, and blood test revealed hemolytic attack. His condition rapidly worsened with severe acidosis and anemia, and he died despite symptomatic treatment. An autopsy examination demonstrated an abscess with necrosis and air spaces in the right lobe of his liver. Numerous Gram-positive bacilli were seen in the liver and bone marrow, and C. perfringens was identified in culture of the antemortem blood sample. Of note, a mucosal epithelium of the ileum showed loss of tight junctions (claudin 4), suggesting the involvement of C. perfringens toxins with its systemic spreading. Welch toxins were suggested to be involved in serious pathological conditions such as hemolytic anemia and systemic infections, and it is necessary to raise Welch infection as one of the differential diagnoses for fulminant systemic infections even in healthy individuals.
Collapse
Affiliation(s)
- Ayano Osamura
- Department of PathologyTokyo Women's Medical University, Shinjuku, Tokyo 162-8666, Japan
| | - Hiromi Onizuka
- Department of PathologyKyorin University, Mitaka, Tokyo 181-8611, Japan
| | - Kenta Masui
- Department of PathologyTokyo Women's Medical University, Shinjuku, Tokyo 162-8666, Japan
| | - Kumiko Murakami
- Department of PathologyTokyo Women's Medical University, Shinjuku, Tokyo 162-8666, Japan
| | - Tomoko Yamamoto
- Department of PathologyTokyo Women's Medical University, Shinjuku, Tokyo 162-8666, Japan
- Department of Surgical PathologyTokyo Women's Medical University, Shinjuku, Tokyo 162-8666, Japan
| | - Yoji Nagashima
- Department of Surgical PathologyTokyo Women's Medical University, Shinjuku, Tokyo 162-8666, Japan
| | - Munekazu Takeda
- Department of Critical Care and Emergency MedicineTokyo Women's Medical University, Shinjuku, Tokyo 162-8666, Japan
| | - Atsushi Kurata
- Department of PathologyTokyo Women's Medical University, Shinjuku, Tokyo 162-8666, Japan
| |
Collapse
|
2
|
Kitazawa R, Haraguchi R, Murata Y, Takaoka Y, Kitazawa S. CpG Methylation of Receptor Activator NF-κB (RANK) Gene Promoter Region Delineates Senescence-Related Decrease of RANK Gene Expression. Acta Histochem Cytochem 2024; 57:137-147. [PMID: 39228907 PMCID: PMC11367149 DOI: 10.1267/ahc.24-00034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 07/26/2024] [Indexed: 09/05/2024] Open
Abstract
While the rapid decrease in estrogen is well known as the main cause of postmenopausal osteoporosis in women, the precise pathogenesis of senile osteoporosis in the elderly regardless of gender is largely unknown. The age-related epigenetic regulation of receptor activator NF-κB (RANK) gene expression was investigated with the use of a high-passaged mouse osteoclast progenitor cell line, RAW264.7, as an in vitro model of aging. In the RAW264.7 cells after repeated passages, receptor RANK expression was downregulated, resulting in decreased soluble RANK ligand (sRANKL)-induced osteoclastogenesis, expression of tartrate-resistant acid phosphatase-5b (TRAcP) and cathepsin K (CTSK). Methylation-specific PCR and bisulfite mapping revealed hypermethylation of CpG-loci located in the RANK gene promoter in multiple-passaged cells. ICON probe-mediated in situ assessment of methylated-cytosine at the CpG loci revealed an increase in the percentage of methylated RAW264.7 cells in the RANK gene in a passage-dependent manner. Conversely, upon treatment with demethylating agent 5-aza-2-deoxycytidine (5-aza-dC), high-passaged RAW264.7 cells displayed restored expression of the RANK gene, osteoclastogenesis, TRAcP and CTSK. Ex vivo cultures of splenic macrophages from young (10.5 W) and aged (12 M) mice also showed that CpG methylation was predominant in the aged animals, resulting in reduced RANK expression and osteoclastogenesis. Reduced RANK expression by age-related accumulation of DNA methylation, albeit in a limited population of osteoclast precursor cells, might be, at least in part, indicative of low-turnover bone characteristic of senile osteoporosis.
Collapse
Affiliation(s)
- Riko Kitazawa
- Department of Molecular Pathology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
- Division of Diagnostic Pathology, Ehime University Hospital, Toon, Ehime, Japan
| | - Ryuma Haraguchi
- Department of Molecular Pathology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Yuki Murata
- Department of Molecular Pathology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Yuki Takaoka
- Department of Molecular Pathology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Sohei Kitazawa
- Department of Molecular Pathology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| |
Collapse
|
3
|
Li X, Zhou L, Xu X, Liu X, Wu W, Feng Q, Tang Z. Metabolic reprogramming in hepatocellular carcinoma: a bibliometric and visualized study from 2011 to 2023. Front Pharmacol 2024; 15:1392241. [PMID: 39086383 PMCID: PMC11289777 DOI: 10.3389/fphar.2024.1392241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/18/2024] [Indexed: 08/02/2024] Open
Abstract
Background and aims Metabolic reprogramming has been found to be a typical feature of tumors. Hepatocellular carcinoma (HCC), a cancer with high morbidity and mortality, has been extensively studied for its metabolic reprogramming-related mechanisms. Our study aims to identify the hotspots and frontiers of metabolic reprogramming research in HCC and to provide guidance for future scientific research and decision-making in HCC metabolism. Methods Relevant studies on the metabolic reprogramming of HCC were derived from the Web of Science Core Collection (WoSCC) database up until November 2023. The bibliometrix tools in R were used for scientometric analysis and visualization. Results From 2011 to 2023, a total of 575 publications were obtained from WoSCC that met the established criteria. These publications involved 3,904 researchers and 948 organizations in 37 countries, with an average annual growth rate of 39.11% in research. These studies were published in 233 journals, with Cancers (n = 29) ranking first, followed by Frontiers in Oncology (n = 20) and International Journal of Molecular Sciences (n = 19). The top ten journals accounted for 26% of the 575 studies. The most prolific authors were Wang J (n = 14), Li Y (n = 12), and Liu J (n = 12). The country with the most publications is China, followed by the United States, Italy, and France. Fudan University had the largest percentage of research results with 15.48% (n = 89). Ally A's paper in Cell has the most citations. A total of 1,204 keywords were analyzed, with the trend themes such as "glycolysis," "tumor microenvironment," "Warburg effect," "mitochondria," "hypoxia ," etc. Co-occurrence network and cluster analysis revealed the relationships between keywords, authors, publications, and journals. Moreover, the close collaboration between countries in this field was elucidated. Conclusion This bibliometric and visual analysis delves into studies related to metabolic reprogramming in HCC between 2012 and 2023, elucidating the characteristics of research in this field, which has gradually moved away from single glycolipid metabolism studies to the integration of overall metabolism in the body, pointing out the trend of research topics, and the dynamics of the interaction between the tumor microenvironment and metabolic reprogramming will be the future direction of research, which provides blueprints and inspirations for HCC prevention and treatment programs to the researchers in this field. Systematic Review Registration: [https://www.bibliometrix.org].
Collapse
Affiliation(s)
- Xia Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liping Zhou
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinyi Xu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiyang Liu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenjun Wu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Quansheng Feng
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ziwei Tang
- The Beibei Affiliated Hospital of Chongqing Medical University, The Ninth People’s Hospital of Chongqing, Chongqing, China
| |
Collapse
|
4
|
Huang M, Liu M, Wang R, Man Y, Zhou H, Xu ZX, Wang Y. The crosstalk between glucose metabolism and telomerase regulation in cancer. Biomed Pharmacother 2024; 175:116643. [PMID: 38696988 DOI: 10.1016/j.biopha.2024.116643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 04/24/2024] [Indexed: 05/04/2024] Open
Abstract
Accumulated alterations in metabolic control provide energy and anabolic demands for enhanced cancer cell proliferation. Exemplified by the Warburg effect, changes in glucose metabolism during cancer progression are widely recognized as a characteristic of metabolic disorders. Since telomerases are a vital factor in maintaining DNA integrity and stability, any damage threatening telomerases could have a severe impact on DNA and, subsequently, whole-cell homeostasis. However, it remains unclear whether the regulation of glucose metabolism in cancer is connected to the regulation of telomerase. In this review, we present the latest insights into the crosstalk between telomerase function and glucose metabolism in cancer cells. However, at this moment this subject is not well investigated that the association is mostly indirectly regulations and few explicit regulating pathways were identified between telomerase and glucose metabolism. Therefore, the information presented in this review can provide a scientific basis for further research on the detail mechanism and the clinical application of cancer therapy, which could be valuable in improving the effectiveness of chemotherapy.
Collapse
Affiliation(s)
- Mingrui Huang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin 130021, China; The First Norman Bethune College of Clinical Medicine, Jilin University, Changchun 130021, China
| | - Mingdi Liu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin 130021, China
| | - Ruijia Wang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin 130021, China; The First Norman Bethune College of Clinical Medicine, Jilin University, Changchun 130021, China
| | - Yifan Man
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin 130021, China; The First Norman Bethune College of Clinical Medicine, Jilin University, Changchun 130021, China
| | - Honglan Zhou
- Department of Urology, the First Hospital of Jilin University, Changchun, Jilin 130021, China.
| | - Zhi-Xiang Xu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin 130021, China.
| | - Yishu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin 130021, China.
| |
Collapse
|
5
|
Harachi M, Masui K, Shimizu E, Murakami K, Onizuka H, Muragaki Y, Kawamata T, Nakayama H, Miyata M, Komori T, Cavenee WK, Mischel PS, Kurata A, Shibata N. DNA hypomethylator phenotype reprograms glutamatergic network in receptor tyrosine kinase gene-mutated glioblastoma. Acta Neuropathol Commun 2024; 12:40. [PMID: 38481314 PMCID: PMC10935831 DOI: 10.1186/s40478-024-01750-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/25/2024] [Indexed: 03/17/2024] Open
Abstract
DNA methylation is crucial for chromatin structure and gene expression and its aberrancies, including the global "hypomethylator phenotype", are associated with cancer. Here we show that an underlying mechanism for this phenotype in the large proportion of the highly lethal brain tumor glioblastoma (GBM) carrying receptor tyrosine kinase gene mutations, involves the mechanistic target of rapamycin complex 2 (mTORC2), that is critical for growth factor signaling. In this scenario, mTORC2 suppresses the expression of the de novo DNA methyltransferase (DNMT3A) thereby inducing genome-wide DNA hypomethylation. Mechanistically, mTORC2 facilitates a redistribution of EZH2 histone methyltransferase into the promoter region of DNMT3A, and epigenetically represses the expression of DNA methyltransferase. Integrated analyses in both orthotopic mouse models and clinical GBM samples indicate that the DNA hypomethylator phenotype consistently reprograms a glutamate metabolism network, eventually driving GBM cell invasion and survival. These results nominate mTORC2 as a novel regulator of DNA hypomethylation in cancer and an exploitable target against cancer-promoting epigenetics.
Collapse
Affiliation(s)
- Mio Harachi
- Department of Pathology, Tokyo Women's Medical University, Shinjuku, Tokyo, 162-8666, Japan
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Kenta Masui
- Department of Pathology, Tokyo Women's Medical University, Shinjuku, Tokyo, 162-8666, Japan.
| | - Erika Shimizu
- Department of Pathology, Tokyo Women's Medical University, Shinjuku, Tokyo, 162-8666, Japan
| | - Kumiko Murakami
- Department of Pathology, Tokyo Women's Medical University, Shinjuku, Tokyo, 162-8666, Japan
| | - Hiromi Onizuka
- Department of Pathology, Tokyo Women's Medical University, Shinjuku, Tokyo, 162-8666, Japan
| | - Yoshihiro Muragaki
- Department of Neurosurgery, Tokyo Women's Medical University, Shinjuku, Tokyo, 162-8666, Japan
- Center for Advanced Medical Engineering Research and Development, Kobe University, Kobe, Hyogo, 650-0047, Japan
| | - Takakazu Kawamata
- Department of Neurosurgery, Tokyo Women's Medical University, Shinjuku, Tokyo, 162-8666, Japan
| | - Hisako Nakayama
- Department of Physiology, Tokyo Women's Medical University, Shinjuku, Tokyo, 162-8666, Japan
| | - Mariko Miyata
- Department of Physiology, Tokyo Women's Medical University, Shinjuku, Tokyo, 162-8666, Japan
| | - Takashi Komori
- Department of Neuropathology, Tokyo Metropolitan Neurological Hospital, Musashinodai, Tokyo, 156-8506, Japan
| | - Webster K Cavenee
- Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA, 92093, USA
| | - Paul S Mischel
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Atsushi Kurata
- Department of Pathology, Tokyo Women's Medical University, Shinjuku, Tokyo, 162-8666, Japan
| | - Noriyuki Shibata
- Department of Pathology, Tokyo Women's Medical University, Shinjuku, Tokyo, 162-8666, Japan
| |
Collapse
|
6
|
Masui K, Mischel PS. Metabolic and epigenetic reprogramming in the pathogenesis of glioblastoma: Toward the establishment of "metabolism-based pathology". Pathol Int 2023; 73:533-541. [PMID: 37755062 DOI: 10.1111/pin.13379] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/03/2023] [Indexed: 09/28/2023]
Abstract
Molecular genetic approaches are now mandatory for cancer diagnostics, especially for brain tumors. Genotype-based diagnosis has predominated over the phenotype-based approach, with its prognostic and predictive powers. However, comprehensive genetic testing would be difficult to perform in the clinical setting, and translational research is required to histologically decipher the peculiar biology of cancer. Of interest, recent studies have demonstrated discrete links between oncogenotypes and the resultant metabolic phenotypes, revealing cancer metabolism as a promising histologic surrogate to reveal specific characteristics of each cancer type and indicate the best way to manage cancer patients. Here, we provide an overview of our research progress to work on cancer metabolism, with a particular focus on the genomically well-characterized malignant tumor glioblastoma. With the use of clinically relevant animal models and human tissue, we found that metabolic reprogramming plays a major role in the aggressive cancer biology by conferring therapeutic resistance to cancer cells and rewiring their epigenomic landscapes. We further discuss our future endeavor to establish "metabolism-based pathology" on how the basic knowledge of cancer metabolism could be leveraged to improve the management of patients by linking cancer cell genotype, epigenotype, and phenotype through metabolic reprogramming.
Collapse
Affiliation(s)
- Kenta Masui
- Department of Pathology, Tokyo Women's Medical University, Shinjuku, Tokyo, Japan
| | - Paul S Mischel
- Department of Pathology, Stanford University, Stanford, California, USA
- Department of Neurosurgery, Stanford University, Stanford, California, USA
- Sarafan ChEM-H, Stanford University, Stanford, California, USA
| |
Collapse
|
7
|
Kitazawa R, Haraguchi R, Kitazawa S. Histone Modification in Histochemistry and Cytochemistry. Acta Histochem Cytochem 2023; 56:41-47. [PMID: 37425097 PMCID: PMC10323199 DOI: 10.1267/ahc.23-00014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/09/2023] [Indexed: 07/11/2023] Open
Abstract
Keeping chromatin in a stable state is essential for genome stability, scheduled transcription, replication, DNA repair, and precise and reliable chromosome segregation and telomere maintenance during cell division. Over the past decade, research on chromatin remodeling has made great strides whereby modification of histone proteins is a key factor involved in many of the essential cellular processes. The nuclear findings of tumor cells that pathologists routinely examine are nothing but reflections of both genomic and histone alterations. Moreover, impaired histone function is known to be related to common diseases such as diabetes and atherosclerosis, and is, therefore, considered a potential therapeutic target. The present review first outlines the physiological function of histone proteins, and second, demonstrates their alterations to pathological states, emphasizing the importance of immunohistochemistry in histopathological diagnosis.
Collapse
Affiliation(s)
- Riko Kitazawa
- Division of Diagnostic Pathology, Ehime University Hospital, Ehime, Japan
| | - Ryuma Haraguchi
- Department of Molecular Pathology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Sohei Kitazawa
- Department of Molecular Pathology, Ehime University Graduate School of Medicine, Ehime, Japan
| |
Collapse
|
8
|
Marcucci F, Rumio C. On the Role of Glycolysis in Early Tumorigenesis-Permissive and Executioner Effects. Cells 2023; 12:cells12081124. [PMID: 37190033 DOI: 10.3390/cells12081124] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/26/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
Reprogramming energy production from mitochondrial respiration to glycolysis is now considered a hallmark of cancer. When tumors grow beyond a certain size they give rise to changes in their microenvironment (e.g., hypoxia, mechanical stress) that are conducive to the upregulation of glycolysis. Over the years, however, it has become clear that glycolysis can also associate with the earliest steps of tumorigenesis. Thus, many of the oncoproteins most commonly involved in tumor initiation and progression upregulate glycolysis. Moreover, in recent years, considerable evidence has been reported suggesting that upregulated glycolysis itself, through its enzymes and/or metabolites, may play a causative role in tumorigenesis, either by acting itself as an oncogenic stimulus or by facilitating the appearance of oncogenic mutations. In fact, several changes induced by upregulated glycolysis have been shown to be involved in tumor initiation and early tumorigenesis: glycolysis-induced chromatin remodeling, inhibition of premature senescence and induction of proliferation, effects on DNA repair, O-linked N-acetylglucosamine modification of target proteins, antiapoptotic effects, induction of epithelial-mesenchymal transition or autophagy, and induction of angiogenesis. In this article we summarize the evidence that upregulated glycolysis is involved in tumor initiation and, in the following, we propose a mechanistic model aimed at explaining how upregulated glycolysis may play such a role.
Collapse
Affiliation(s)
- Fabrizio Marcucci
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Trentacoste 2, 20134 Milan, Italy
| | - Cristiano Rumio
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Trentacoste 2, 20134 Milan, Italy
| |
Collapse
|
9
|
Masui K, Cavenee WK, Mischel PS, Shibata N. The metabolomic landscape plays a critical role in glioma oncogenesis. Cancer Sci 2022; 113:1555-1563. [PMID: 35271755 PMCID: PMC9128185 DOI: 10.1111/cas.15325] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/24/2022] [Accepted: 03/04/2022] [Indexed: 12/01/2022] Open
Abstract
Cancer cells depend on metabolic reprogramming for survival, undergoing profound shifts in nutrient sensing, nutrient uptake and flux through anabolic pathways, in order to drive nucleotide, lipid, and protein synthesis and provide key intermediates needed for those pathways. Although metabolic enzymes themselves can be mutated, including to generate oncometabolites, this is a relatively rare event in cancer. Usually, gene amplification, overexpression, and/or downstream signal transduction upregulate rate‐limiting metabolic enzymes and limit feedback loops, to drive persistent tumor growth. Recent molecular‐genetic advances have revealed discrete links between oncogenotypes and the resultant metabolic phenotypes. However, more comprehensive approaches are needed to unravel the dynamic spatio‐temporal regulatory map of enzymes and metabolites that enable cancer cells to adapt to their microenvironment to maximize tumor growth. Proteomic and metabolomic analyses are powerful tools for analyzing a repertoire of metabolic enzymes as well as intermediary metabolites, and in conjunction with other omics approaches could provide critical information in this regard. Here, we provide an overview of cancer metabolism, especially from an omics perspective and with a particular focus on the genomically well characterized malignant brain tumor, glioblastoma. We further discuss how metabolomics could be leveraged to improve the management of patients, by linking cancer cell genotype, epigenotype, and phenotype through metabolic reprogramming.
Collapse
Affiliation(s)
- Kenta Masui
- Department of Pathology, Tokyo Women's Medical University, Shinjuku, Tokyo, 162-8666, Japan
| | - Webster K Cavenee
- Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA, 92093, USA
| | - Paul S Mischel
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA.,ChEM-H, Stanford University, Stanford, CA, 94305, USA
| | - Noriyuki Shibata
- Department of Pathology, Tokyo Women's Medical University, Shinjuku, Tokyo, 162-8666, Japan
| |
Collapse
|
10
|
Kitazawa S, Ohno T, Haraguchi R, Kitazawa R. Histochemistry, Cytochemistry and Epigenetics. Acta Histochem Cytochem 2022; 55:1-7. [PMID: 35444348 PMCID: PMC8913277 DOI: 10.1267/ahc.21-00095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 12/27/2021] [Indexed: 12/23/2022] Open
Abstract
Over the past few decades, many researchers have individually identified tumor-related genes, and have accumulated information on their basic research in a database. With the development of technology that can comprehensively test the expression status within a short time, oncogene panel testing has become attainable. On the other hand, changes in gene expression that do not depend on changes in base sequences, that is, epigenetics, or more comprehensively, epigenomes, are also highly involved in the development and progression of disease. Oncogene panel tests tend to focus on DNA base mutations such as point mutations, deletions, duplications, and chimera formation. Elucidation leads to correct interpretation of diseases and treatment choices, and we are in an era where integrated understanding of the genome and epigenome is indispensable. In this review, we make every effort to cover a wide range of knowledge, including data on histone protein modification, non-coding (nc)RNA and DNA methylation, and recent application trials for demonstrating epigenetic alterations in histologic and cytologic specimens. We hope this review will help marshal the knowledge accumulated by researchers involved in genomic and epigenomic studies.
Collapse
Affiliation(s)
- Sohei Kitazawa
- Department of Molecular Pathology, Ehime University Graduate School of Medicine
| | - Teruyuki Ohno
- Division of Diagnostic Pathology, Ehime University Hospital
| | - Ryuma Haraguchi
- Department of Molecular Pathology, Ehime University Graduate School of Medicine
| | - Riko Kitazawa
- Division of Diagnostic Pathology, Ehime University Hospital
| |
Collapse
|
11
|
Tulipano G. Integrated or Independent Actions of Metformin in Target Tissues Underlying Its Current Use and New Possible Applications in the Endocrine and Metabolic Disorder Area. Int J Mol Sci 2021; 22:13068. [PMID: 34884872 PMCID: PMC8658259 DOI: 10.3390/ijms222313068] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/18/2021] [Accepted: 11/29/2021] [Indexed: 12/14/2022] Open
Abstract
Metformin is considered the first-choice drug for type 2 diabetes treatment. Actually, pleiotropic effects of metformin have been recognized, and there is evidence that this drug may have a favorable impact on health beyond its glucose-lowering activity. In summary, despite its long history, metformin is still an attractive research opportunity in the field of endocrine and metabolic diseases, age-related diseases, and cancer. To this end, its mode of action in distinct cell types is still in dispute. The aim of this work was to review the current knowledge and recent findings on the molecular mechanisms underlying the pharmacological effects of metformin in the field of metabolic and endocrine pathologies, including some endocrine tumors. Metformin is believed to act through multiple pathways that can be interconnected or work independently. Moreover, metformin effects on target tissues may be either direct or indirect, which means secondary to the actions on other tissues and consequent alterations at systemic level. Finally, as to the direct actions of metformin at cellular level, the intracellular milieu cooperates to cause differential responses to the drug between distinct cell types, despite the primary molecular targets may be the same within cells. Cellular bioenergetics can be regarded as the primary target of metformin action. Metformin can perturb the cytosolic and mitochondrial NAD/NADH ratio and the ATP/AMP ratio within cells, thus affecting enzymatic activities and metabolic and signaling pathways which depend on redox- and energy balance. In this context, the possible link between pyruvate metabolism and metformin actions is extensively discussed.
Collapse
Affiliation(s)
- Giovanni Tulipano
- Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| |
Collapse
|