1
|
Mueller C, Hong H, Sharma AA, Qin H, Benveniste EN, Szaflarski JP. Brain temperature, brain metabolites, and immune system phenotypes in temporal lobe epilepsy. Epilepsia Open 2024; 9:2454-2466. [PMID: 39470707 PMCID: PMC11633690 DOI: 10.1002/epi4.13082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 10/03/2024] [Accepted: 10/09/2024] [Indexed: 10/30/2024] Open
Abstract
OBJECTIVE Epileptogenesis is linked to neuroinflammation. We hypothesized that local heat production caused by neuroinflammation can be visualized non-invasively in vivo via brain magnetic resonance spectroscopic imaging (MRSI) and MRSI-thermometry (MRSI-t) and that there is a relationship in patients with temporal lobe epilepsy (TLE) between MRSI-t and brain metabolites choline and myo-inositol and between neuroimaging and cellular and serum biomarkers of inflammation. METHODS Thirty-six (36) participants, 18 with temporal lobe epilepsy (13 females) and 18 age-matched healthy controls (nine females), were enrolled prospectively and underwent MRSI/MRSI-t; TLE participants also provided blood samples. Temperature was measured using creatine as a reference metabolite. Analysis of Functional NeuroImages 3dttest++ tool was used to analyze voxel-level group differences in temperature, choline, and myo-inositol. Associations with immune cell subsets, cytokines, and chemokines related to inflammation were quantified using correlation coefficients with significant relationships as noted. RESULTS Patients with TLE showed elevated temperature, choline, and myo-inositol in the temporal lobes. Higher brain temperature was associated with higher levels of cytokines and chemokines, including GM-CSF, TNF, IL-1β, and IL - 12p70, and lower frequency of immune cells including CD3+ T-cells, CD4+ T-cells, CD8+ T-cells, and classical monocytes. Higher choline was associated with higher levels of the cytokines including LT-α, IL-13, and IL-4, and higher myo-inositol was associated with a higher frequency of CD4+ T-cell and CD19+ B-cell subsets and higher levels of cytokines and chemokines including LT-α, IL-13, and CCL3. SIGNIFICANCE This study, for the first time, showed that in temporal lobes of patients with TLE temperature and metabolite changes correlate with cellular and serum biomarkers of inflammation. Our results provide support for further development of MRSI-t as a measure of neuroinflammation in epilepsy and potentially other neurological disorders and as an investigative and clinical tool. PLAIN LANGUAGE SUMMARY Neuroinflammation is associated with excessive heat production which can be visualized with magnetic resonance spectroscopic imaging and thermometry (MRSI-t). We prospectively investigated the relationship between MRSI-t and cellular and serum measures of peripheral inflammation in patients with temporal lobe epilepsy (TLE); we compared the results of MRSI-t in patients with TLE to healthy controls. We showed a relationship between the temperature elevations in TLE and elevations of various measures of peripheral inflammation. Our results support further development of MRSI-t as a measure of neuroinflammation in epilepsy and potentially other neurological disorders and as an investigative and clinical tool.
Collapse
Affiliation(s)
- Christina Mueller
- Department of NeurologyHeersink School of Medicine, University of Alabama at BirminghamBirminghamAlabamaUSA
| | - Huixian Hong
- Department of Cell, Developmental and Integrative BiologyHeersink School of Medicine, University of Alabama at BirminghamBirminghamAlabamaUSA
| | - Ayushe A. Sharma
- Department of NeurologyHeersink School of Medicine, University of Alabama at BirminghamBirminghamAlabamaUSA
- Present address:
Department of NeurologyYale School of MedicineNew HavenConnecticutUSA
| | - Hongwei Qin
- Department of Cell, Developmental and Integrative BiologyHeersink School of Medicine, University of Alabama at BirminghamBirminghamAlabamaUSA
| | - Etty N. Benveniste
- Department of Cell, Developmental and Integrative BiologyHeersink School of Medicine, University of Alabama at BirminghamBirminghamAlabamaUSA
| | - Jerzy P. Szaflarski
- Department of NeurologyHeersink School of Medicine, University of Alabama at BirminghamBirminghamAlabamaUSA
| |
Collapse
|
2
|
Ito H, Hosomi S, Nishida T, Nakamura Y, Iba J, Ogura H, Oda J. A review on targeted temperature management for cardiac arrest and traumatic brain injury. Front Neurosci 2024; 18:1397300. [PMID: 39544908 PMCID: PMC11560895 DOI: 10.3389/fnins.2024.1397300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 10/11/2024] [Indexed: 11/17/2024] Open
Abstract
Therapeutic hypothermia inhibits organ damage by suppressing metabolism, which makes it a therapy of choice for treating various diseases. Specifically, it is often used to treat conditions involving central nervous system disorders where it is expected to positively impact functional prognosis. Although keeping the body temperature at a hypothermic level has been conventionally used, how to manage the body temperature correctly remains a topic of debate. Recently, the concept of temperature management has been proposed to improve the quality of body temperature control and avoid hyperthermia. This review focuses on the effect of temperature on the central nervous system in conditions involving central nervous system disorders and the practice of temperature management in clinical situations.
Collapse
Affiliation(s)
| | - Sanae Hosomi
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | | | | | | | | | | |
Collapse
|
3
|
Conti F, McCue JJ, DiTuro P, Galpin AJ, Wood TR. Mitigating Traumatic Brain Injury: A Narrative Review of Supplementation and Dietary Protocols. Nutrients 2024; 16:2430. [PMID: 39125311 PMCID: PMC11314487 DOI: 10.3390/nu16152430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Traumatic brain injuries (TBIs) constitute a significant public health issue and a major source of disability and death in the United States and worldwide. TBIs are strongly associated with high morbidity and mortality rates, resulting in a host of negative health outcomes and long-term complications and placing a heavy financial burden on healthcare systems. One promising avenue for the prevention and treatment of brain injuries is the design of TBI-specific supplementation and dietary protocols centred around nutraceuticals and biochemical compounds whose mechanisms of action have been shown to interfere with, and potentially alleviate, some of the neurophysiological processes triggered by TBI. For example, evidence suggests that creatine monohydrate and omega-3 fatty acids (DHA and EPA) help decrease inflammation, reduce neural damage and maintain adequate energy supply to the brain following injury. Similarly, melatonin supplementation may improve some of the sleep disturbances often experienced post-TBI. The scope of this narrative review is to summarise the available literature on the neuroprotective effects of selected nutrients in the context of TBI-related outcomes and provide an evidence-based overview of supplementation and dietary protocols that may be considered in individuals affected by-or at high risk for-concussion and more severe head traumas. Prophylactic and/or therapeutic compounds under investigation include creatine monohydrate, omega-3 fatty acids, BCAAs, riboflavin, choline, magnesium, berry anthocyanins, Boswellia serrata, enzogenol, N-Acetylcysteine and melatonin. Results from this analysis are also placed in the context of assessing and addressing important health-related and physiological parameters in the peri-impact period such as premorbid nutrient and metabolic health status, blood glucose regulation and thermoregulation following injury, caffeine consumption and sleep behaviours. As clinical evidence in this research field is rapidly emerging, a comprehensive approach including appropriate nutritional interventions has the potential to mitigate some of the physical, neurological, and emotional damage inflicted by TBIs, promote timely and effective recovery, and inform policymakers in the development of prevention strategies.
Collapse
Affiliation(s)
- Federica Conti
- School of Physics, University of Sydney, Sydney, NSW 2050, Australia;
| | - Jackson J. McCue
- School of Medicine, University of Washington, Seattle, WA 98195, USA;
| | - Paul DiTuro
- Department of Exercise Science, University of South Carolina, Columbia, SC 29208, USA
| | - Andrew J. Galpin
- Center for Sport Performance, California State University, Fullerton, CA 92831, USA;
| | - Thomas R. Wood
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
- Institute for Human and Machine Cognition, Pensacola, FL 32502, USA
| |
Collapse
|
4
|
Smith MA, McNinch NL, Chaney D, Shauver L, Murray T, Kline P, Lesak A, Franco-MacKendrick L, Scott L, Logan K, Ichesco IK, Liebig C, Congeni J. Reduced Concussion Symptom Burden in Early Adolescent Athletes Using a Head-Neck Cooling Device. Clin J Sport Med 2024; 34:247-255. [PMID: 38180057 PMCID: PMC11042520 DOI: 10.1097/jsm.0000000000001198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/02/2023] [Indexed: 01/06/2024]
Abstract
OBJECTIVE To determine whether an investigational head-neck cooling device, Pro2cool, can better reduce symptom severity compared with standard postconcussion care in early adolescent athletes after a sports-related concussion. DESIGN Prospective, longitudinal, randomized trial design conducted over a 28-day period. SETTING Six pediatric medical centers in Ohio and Michigan. PARTICIPANTS The study enrolled 167 male and female 12- to 19-year-old athletes who experienced a sports-related concussion within 8 days of study enrollment and registering a Sports Concussion Assessment Tool 5 (SCAT5) composite score >7. INTERVENTIONS Pro2cool, an investigational head-neck cooling therapy device, was applied at 2 postinjury time points compared with postconcussion standard of care only. MAIN OUTCOME MEASURES Baseline SCAT5 composite symptom severity scores were determined for all subjects. Sports Concussion Assessment Tool 5 scores for concussed athletes receiving cooling treatment were analyzed across 6 independent postenrollment time points compared with subjects who did not receive cooling therapy and only standard care. Adverse reactions and participate demographics were also compared. RESULTS Athletes who received Pro2cool cooling therapy (n = 79) experienced a 14.4% greater reduction in SCAT5 symptom severity scores at the initial visit posttreatment, a 25.5% greater reduction at the 72-hour visit posttreatment, and a 3.4% greater reduction at the 10-day visit compared with subjects receiving only standard care (n = 88). Overall, 36 adverse events (increased blood pressure, decreased pulse, and dizziness) were reported, with 13 events associated with the device, of which 3 were classified as moderate in severity. CONCLUSIONS This study demonstrates the efficacy and safety of head and neck cooling for the management of concussion symptoms in adolescent athletes of an age group for which little to no prior data are available.
Collapse
Affiliation(s)
- Matthew A. Smith
- Rebecca D. Considine Research Institute, Akron Children's Hospital, Akron, Ohio
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, Ohio
| | - Neil L. McNinch
- Rebecca D. Considine Research Institute, Akron Children's Hospital, Akron, Ohio
| | - Danielle Chaney
- Rebecca D. Considine Research Institute, Akron Children's Hospital, Akron, Ohio
| | - Lisa Shauver
- Rebecca D. Considine Research Institute, Akron Children's Hospital, Akron, Ohio
| | - Tamara Murray
- Department of Sports Medicine, Akron Children's Hospital, Akron, Ohio
| | - Peyton Kline
- Rebecca D. Considine Research Institute, Akron Children's Hospital, Akron, Ohio
| | - Alexandria Lesak
- Rebecca D. Considine Research Institute, Akron Children's Hospital, Akron, Ohio
| | | | - Lora Scott
- Department of Sports Medicine, Dayton Children's Hospital, Dayton Ohio
| | - Kelsey Logan
- Division of Sports Medicine, Cincinnati Children's Hospital, Cincinnati, Ohio; and
| | - Ingrid K. Ichesco
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan
| | | | - Joseph Congeni
- Department of Sports Medicine, Akron Children's Hospital, Akron, Ohio
| |
Collapse
|
5
|
Sharma AA, Nenert R, Goodman AM, Szaflarski JP. Brain temperature and free water increases after mild COVID-19 infection. Sci Rep 2024; 14:7450. [PMID: 38548815 PMCID: PMC10978935 DOI: 10.1038/s41598-024-57561-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 03/19/2024] [Indexed: 04/01/2024] Open
Abstract
The pathophysiology underlying the post-acute sequelae of COVID-19 remains understudied and poorly understood, particularly in healthy adults with a history of mild infection. Chronic neuroinflammation may underlie these enduring symptoms, but studying neuroinflammatory phenomena in vivo is challenging, especially without a comparable pre-COVID-19 dataset. In this study, we present a unique dataset of 10 otherwise healthy individuals scanned before and after experiencing mild COVID-19. Two emerging MR-based methods were used to map pre- to post-COVID-19 brain temperature and free water changes. Post-COVID-19 brain temperature and free water increases, which are indirect biomarkers of neuroinflammation, were found in structures functionally associated with olfactory, cognitive, and memory processing. The largest pre- to post-COVID brain temperature increase was observed in the left olfactory tubercle (p = 0.007, 95% CI [0.48, 3.01]), with a mean increase of 1.75 °C. Notably, the olfactory tubercle is also the region of the primary olfactory cortex where participants with chronic olfactory dysfunction showed the most pronounced increases as compared to those without lingering olfactory dysfunction (adjusted pFDR = 0.0189, 95% CI [1.42, 5.27]). These preliminary insights suggest a potential link between neuroinflammation and chronic cognitive and olfactory dysfunction following mild COVID-19, although further investigations are needed to improve our understanding of what underlies these phenomena.
Collapse
Affiliation(s)
- Ayushe A Sharma
- Department of Neurology, UAB Epilepsy Center, University of Alabama at Birmingham (UAB), 1719 6th Avenue South, CIRC 312, Birmingham, AL, 35294-0021, USA.
- Department of Neurobiology, University of Alabama at Birmingham (UAB), Birmingham, AL, USA.
| | - Rodolphe Nenert
- Department of Neurology, UAB Epilepsy Center, University of Alabama at Birmingham (UAB), 1719 6th Avenue South, CIRC 312, Birmingham, AL, 35294-0021, USA
| | - Adam M Goodman
- Department of Neurology, UAB Epilepsy Center, University of Alabama at Birmingham (UAB), 1719 6th Avenue South, CIRC 312, Birmingham, AL, 35294-0021, USA
| | - Jerzy P Szaflarski
- Department of Neurology, UAB Epilepsy Center, University of Alabama at Birmingham (UAB), 1719 6th Avenue South, CIRC 312, Birmingham, AL, 35294-0021, USA.
- Department of Neurobiology, University of Alabama at Birmingham (UAB), Birmingham, AL, USA.
- Department of Neurosurgery, University of Alabama at Birmingham (UAB), Birmingham, AL, USA.
- University of Alabama at Birmingham Epilepsy Center (UABEC), Birmingham, AL, USA.
| |
Collapse
|
6
|
Verghese G, Voroslakos M, Markovic S, Tal A, Dehkharghani S, Yaghmazadeh O, Alon L. Autonomous animal heating and cooling system for temperature-regulated magnetic resonance experiments. NMR IN BIOMEDICINE 2024; 37:e5046. [PMID: 37837254 PMCID: PMC10840815 DOI: 10.1002/nbm.5046] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 10/15/2023]
Abstract
Temperature is a hallmark parameter influencing almost all magnetic resonance properties (e.g., T1 , T2 , proton density, and diffusion). In the preclinical setting, temperature has a large influence on animal physiology (e.g., respiration rate, heart rate, metabolism, and oxidative stress) and needs to be carefully regulated, especially when the animal is under anesthesia and thermoregulation is disrupted. We present an open-source heating and cooling system capable of regulating the temperature of the animal. The system was designed using Peltier modules capable of heating or cooling a circulating water bath with active temperature feedback. Feedback was obtained using a commercial thermistor, placed in the animal rectum, and a proportional-integral-derivative controller was used to modulate the temperature. Its operation was demonstrated in a phantom as well as in mouse and rat animal models, where the standard deviation of the temperature of the animal upon convergence was less than a 10th of a degree. An application where brain temperature of a mouse was modulated was demonstrated using an invasive optical probe and noninvasive magnetic resonance spectroscopic thermometry measurements.
Collapse
Affiliation(s)
- George Verghese
- Center for Advanced Imaging Innovation and Research (CAIR), New York University School of Medicine, New York, NY, United States
- Center for Biomedical Imaging, New York University School of Medicine, New York, NY, United States
| | | | - Stefan Markovic
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Assaf Tal
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Seena Dehkharghani
- Center for Advanced Imaging Innovation and Research (CAIR), New York University School of Medicine, New York, NY, United States
- Center for Biomedical Imaging, New York University School of Medicine, New York, NY, United States
| | | | - Leeor Alon
- Center for Advanced Imaging Innovation and Research (CAIR), New York University School of Medicine, New York, NY, United States
- Center for Biomedical Imaging, New York University School of Medicine, New York, NY, United States
| |
Collapse
|
7
|
Verduzco-Mendoza A, Mota-Rojas D, Olmos Hernández SA, Gálvez-Rosas A, Aguirre-Pérez A, Cortes-Altamirano JL, Alfaro-Rodríguez A, Parra-Cid C, Avila-Luna A, Bueno-Nava A. Traumatic brain injury extending to the striatum alters autonomic thermoregulation and hypothalamic monoamines in recovering rats. Front Neurosci 2023; 17:1304440. [PMID: 38144211 PMCID: PMC10748590 DOI: 10.3389/fnins.2023.1304440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/21/2023] [Indexed: 12/26/2023] Open
Abstract
The brain cortex is the structure that is typically injured in traumatic brain injury (TBI) and is anatomically connected with other brain regions, including the striatum and hypothalamus, which are associated in part with motor function and the regulation of body temperature, respectively. We investigated whether a TBI extending to the striatum could affect peripheral and core temperatures as an indicator of autonomic thermoregulatory function. Moreover, it is unknown whether thermal modulation is accompanied by hypothalamic and cortical monoamine changes in rats with motor function recovery. The animals were allocated into three groups: the sham group (sham), a TBI group with a cortical contusion alone (TBI alone), and a TBI group with an injury extending to the dorsal striatum (TBI + striatal injury). Body temperature and motor deficits were evaluated for 20 days post-injury. On the 3rd and 20th days, rats were euthanized to measure the serotonin (5-HT), noradrenaline (NA), and dopamine (DA) levels using high-performance liquid chromatography (HPLC). We observed that TBI with an injury extending to the dorsal striatum increased core and peripheral temperatures. These changes were accompanied by a sustained motor deficit lasting for 14 days. Furthermore, there were notable increases in NA and 5-HT levels in the brain cortex and hypothalamus both 3 and 20 days after injury. In contrast, rats with TBI alone showed no changes in peripheral temperatures and achieved motor function recovery by the 7th day post-injury. In conclusion, our results suggest that TBI with an injury extending to the dorsal striatum elevates both core and peripheral temperatures, causing a delay in functional recovery and increasing hypothalamic monoamine levels. The aftereffects can be attributed to the injury site and changes to the autonomic thermoregulatory functions.
Collapse
Affiliation(s)
- Antonio Verduzco-Mendoza
- Programa de Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Ciudad de México, Mexico
| | - Daniel Mota-Rojas
- Neurofisiología, Conducta y Bienestar Animal, DPAA, Universidad Autónoma Metropolitana, Unidad Xochimilco, Ciudad de México, Mexico
| | | | - Arturo Gálvez-Rosas
- Neurociencias Básicas, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra (LGII), SSa, Ciudad de México, Mexico
| | - Alexander Aguirre-Pérez
- Neurociencias Básicas, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra (LGII), SSa, Ciudad de México, Mexico
| | - José Luis Cortes-Altamirano
- Neurociencias Básicas, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra (LGII), SSa, Ciudad de México, Mexico
- Departamento de Quiropráctica, Universidad Estatal del Valle de Ecatepec, Ecatepec de Morelos, Estado de México, Mexico
- Madrid College of Chiropractic, Real Centro Universitario Escorial María Cristina, Madrid, Spain
| | - Alfonso Alfaro-Rodríguez
- Neurociencias Básicas, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra (LGII), SSa, Ciudad de México, Mexico
| | - Carmen Parra-Cid
- Unidad de Ingeniería de Tejidos, Instituto Nacional de Rehabilitación LGII, SSa, Ciudad de México, Mexico
| | - Alberto Avila-Luna
- Neurociencias Básicas, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra (LGII), SSa, Ciudad de México, Mexico
| | - Antonio Bueno-Nava
- Neurociencias Básicas, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra (LGII), SSa, Ciudad de México, Mexico
| |
Collapse
|
8
|
Nozari A, Sharma A, Wang Z, Feng L, Muresanu DF, Tian ZR, Lafuente JV, Buzoianu AD, Wiklund L, Sharma HS. Co-administration of Nanowired Oxiracetam and Neprilysin with Monoclonal Antibodies to Amyloid Beta Peptide and p-Tau Thwarted Exacerbation of Brain Pathology in Concussive Head Injury at Hot Environment. ADVANCES IN NEUROBIOLOGY 2023; 32:271-313. [PMID: 37480464 DOI: 10.1007/978-3-031-32997-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Environmental temperature adversely affects the outcome of concussive head injury (CHI)-induced brain pathology. Studies from our laboratory showed that animals reared at either cold environment or at hot environment exacerbate brain pathology following CHI. Our previous experiments showed that nanowired delivery of oxiracetam significantly attenuated CHI-induced brain pathology and associated neurovascular changes. Military personnel are the most susceptible to CHI caused by explosion, blasts, missile or blunt head trauma leading to lifetime functional and cognitive impairments affecting the quality of life. Severe CHI leads to instant death and/or lifetime paralysis. Military personnel engaged in combat operations are often subjected to extreme high or low environmental temperature zones across the globe. Thus, further exploration of novel therapeutic agents at cold or hot ambient temperatures following CHI are the need of the hour. CHI is also a major risk factor for developing Alzheimer's disease by enhancing amyloid beta peptide deposits in the brain. In this review, effect of hot environment on CHI-induced brain pathology is discussed. In addition, whether nanodelivery of oxiracetam together with neprilysin and monoclonal antibodies (mAb) to amyloid beta peptide and p-tau could lead to superior neuroprotection in CHI is explored. Our results show that co-administration of oxiracetam with neprilysin and mAb to AβP and p-tau significantly induced superior neuroprotection following CHI in hot environment, not reported earlier.
Collapse
Affiliation(s)
- Ala Nozari
- Anesthesiology & Intensive Care, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, USA
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Zhenguo Wang
- Shijiazhuang Pharma Group NBP Pharmaceutical Co., Ltd., Shijiazhuang, Hebei Province, China
| | - Lianyuan Feng
- Department of Neurology, Bethune International Peace Hospital, Zhongshan, Hebei Province, China
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania
- "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| |
Collapse
|
9
|
Wasserman J, McGuire LS, Sick T, Bramlett HM, Dietrich WD. An Exploratory Report on Electrographic Changes in the Cerebral Cortex Following Mild Traumatic Brain Injury with Hyperthermia in the Rat. Ther Hypothermia Temp Manag 2021; 11:10-18. [PMID: 32366168 PMCID: PMC7910421 DOI: 10.1089/ther.2020.0002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Traumatic brain injury (TBI) has the potential to perturb perception by disrupting electrical propagation within and between the thalamus and cerebral cortex. Moderate and severe TBI may result in posttraumatic epilepsy, a condition characterized by convulsive tonic-clonic seizures. Spike/wave discharges (SWDs) of generalized nonconvulsive seizures, also called absence seizures, may also occur as a consequence of brain trauma. As mild hyperthermia has been reported to exacerbate histopathological and behavioral outcomes, we used an unbiased algorithm to detect periodic increases in power across different frequency bands following single or double closed head injury (CHI) under normothermia and hyperthermia conditions. We demonstrated that mild TBI did not significantly alter the occurrence of events containing increases in power between the delta (0.5-4 Hz), theta (4-8 Hz), alpha (8-12 Hz), and beta1 (12-20 Hz) frequency bands in the Sprague Dawley rat 12 weeks after injury. However, when hyperthermia (39°C) was induced before and after CHI, electrographic events containing a similar waveform and harmonic frequency to SWDs were observed in a subset of animals. Further experiments utilizing chronic recordings will need to be performed to determine if these trends lead to absence seizures.
Collapse
Affiliation(s)
- Joseph Wasserman
- The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Laura Stone McGuire
- The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Thomas Sick
- Department of Neurology and Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Helen M. Bramlett
- The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, Florida, USA
- Department of Neurosurgery, Miller School of Medicine, University of Miami, Miami, Florida, USA
- Bruce W. Carter Department of Veterans Affairs, Miami, Florida, USA
| | - W. Dalton Dietrich
- The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, Florida, USA
- Department of Neurology and Miller School of Medicine, University of Miami, Miami, Florida, USA
- Department of Neurosurgery, Miller School of Medicine, University of Miami, Miami, Florida, USA
| |
Collapse
|
10
|
Effect of selective brain cooling versus core cooling on achieving target temperature among patients with severe traumatic brain injury. INTERNATIONAL JOURNAL OF AFRICA NURSING SCIENCES 2020. [DOI: 10.1016/j.ijans.2020.100209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
11
|
Ueda Y, Oda Y, Povlishock JT, Wei EP. Mechanisms Associated with the Adverse Vascular Consequences of Rapid Posthypothermic Rewarming and Their Therapeutic Modulation in Rats. Ther Hypothermia Temp Manag 2019; 10:204-210. [PMID: 31433258 DOI: 10.1089/ther.2019.0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We previously demonstrated that rapid posthypothermic rewarming in noninjured animals was capable of damaging cerebral arterioles both at endothelial and smooth muscle levels. Such adverse consequences could be prevented with antioxidants, suggesting the involvement of free radicals. In this study, we further investigate the mechanisms associated with free radicals production by using two radical scavengers, superoxide dismutase (SOD) and catalase. Employing rats, the cerebral vascular response was evaluated at 2, 3, and 4 hours after onset of hypothermia. Before rapid rewarming, SOD treatment, but not catalase, preserved the NO-mediated dilation induced by acetylcholine (ACh). On the contrary, catalase preserved the hypercapnia-induced relaxation of the smooth muscle cells, whereas SOD offered only partial protection. Adding SOD to catalase treatment offered no additional benefit. These results suggest that rapid posthypothermic rewarming impairs ACh- and hypercapnia-induced vasodilation through different subcellular mechanisms. In the case of diminished vascular response to ACh, it appears to act on the endothelial front primarily by superoxide anions, as evidenced by its full preservation after SOD treatment. In terms of impaired dilation to hypercapnia, hydrogen peroxide and/or its derivatives are the likely candidates in targeting the smooth muscle cells. The partial protection of SOD to hypercapnia-induced dilation is believed to be the reduced amount of superoxide that would otherwise spontaneously dismutate to produce hydrogen peroxide. Although SOD exerts some indirect influence on the hydrogen peroxide production downstream, catalase apparently has no influence on upstream superoxide production.
Collapse
Affiliation(s)
- Yuji Ueda
- Department of Neurosurgery, Tokuyama Central Hospital, Yamaguchi, Japan
| | - Yasutaka Oda
- Advanced Medical Emergency and Critical Care Center, Yamaguchi University Hospital, Yamaguchi, Japan
| | - John T Povlishock
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia
| | - Enoch P Wei
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|