1
|
Chester SC, Ogawa T, Terao M, Nakai R, Abe N, De Brito SA. Cortical and subcortical grey matter correlates of psychopathic traits in a Japanese community sample of young adults: sex and configurations of factors' level matter! Cereb Cortex 2023; 33:5043-5054. [PMID: 36300595 PMCID: PMC10151884 DOI: 10.1093/cercor/bhac397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/09/2022] [Accepted: 09/10/2022] [Indexed: 11/14/2022] Open
Abstract
While neuroimaging research has examined the structural brain correlates of psychopathy predominantly in clinical/forensic male samples from western countries, much less is known about those correlates in non-western community samples. Here, structural magnetic resonance imaging data were analyzed using voxel- and surface-based morphometry to investigate the neuroanatomical correlates of psychopathic traits in a mixed-sex sample of 97 well-functioning Japanese adults (45 males, 21-39 years; M = 27, SD = 5.3). Psychopathic traits were assessed using the Self-Report Psychopathy Scale (SRP-SF; 4th Edition). Multiple regression analysis showed greater Factor 1 scores were associated with higher gyrification in the lingual gyrus, and gray matter volume in the anterior cingulate cortex and amygdala/hippocampus border. Total psychopathy and Factor 1 scores interacted with sex to, respectively, predict cortical thickness in the precuneus and gyrification in the superior temporal gyrus. Finally, Factor 1 and Factor 2 traits interacted to predict gyrification in the posterior cingulate cortex. These preliminary data suggest that, while there may be commonalities in the loci of structural brain correlates of psychopathic traits in clinical/forensic and community samples, the nature of that association might be different (i.e. positive) and may vary according to sex and configurations of factors' level.
Collapse
Affiliation(s)
- Sally C Chester
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, UK
| | - Tatsuyoshi Ogawa
- Division of Transdisciplinary Sciences, Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa, Japan
| | - Maki Terao
- Institute for the Future of Human Society, Kyoto University, Sakyo-ku, Kyoto, Kyoto, Japan
| | - Ryusuke Nakai
- Institute for the Future of Human Society, Kyoto University, Sakyo-ku, Kyoto, Kyoto, Japan
| | - Nobuhito Abe
- Institute for the Future of Human Society, Kyoto University, Sakyo-ku, Kyoto, Kyoto, Japan
| | - Stephane A De Brito
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, UK
| |
Collapse
|
2
|
White AL, Kay KN, Tang KA, Yeatman JD. Engaging in word recognition elicits highly specific modulations in visual cortex. Curr Biol 2023; 33:1308-1320.e5. [PMID: 36889316 PMCID: PMC10089978 DOI: 10.1016/j.cub.2023.02.042] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/26/2023] [Accepted: 02/13/2023] [Indexed: 03/09/2023]
Abstract
A person's cognitive state determines how their brain responds to visual stimuli. The most common such effect is a response enhancement when stimuli are task relevant and attended rather than ignored. In this fMRI study, we report a surprising twist on such attention effects in the visual word form area (VWFA), a region that plays a key role in reading. We presented participants with strings of letters and visually similar shapes, which were either relevant for a specific task (lexical decision or gap localization) or ignored (during a fixation dot color task). In the VWFA, the enhancement of responses to attended stimuli occurred only for letter strings, whereas non-letter shapes evoked smaller responses when attended than when ignored. The enhancement of VWFA activity was accompanied by strengthened functional connectivity with higher-level language regions. These task-dependent modulations of response magnitude and functional connectivity were specific to the VWFA and absent in the rest of visual cortex. We suggest that language regions send targeted excitatory feedback into the VWFA only when the observer is trying to read. This feedback enables the discrimination of familiar and nonsense words and is distinct from generic effects of visual attention.
Collapse
Affiliation(s)
- Alex L White
- Department of Neuroscience & Behavior, Barnard College, Columbia University, 76 Claremont Ave, New York, NY 10027, USA.
| | - Kendrick N Kay
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, 2021 6th Street SE, Minneapolis, MN 55455, USA
| | - Kenny A Tang
- Graduate School of Education and Department of Psychology, Stanford University, Division of Developmental-Behavioral Pediatrics, Stanford University School of Medicine, 520 Galvez Mall, Stanford, CA 94305, USA
| | - Jason D Yeatman
- Graduate School of Education and Department of Psychology, Stanford University, Division of Developmental-Behavioral Pediatrics, Stanford University School of Medicine, 520 Galvez Mall, Stanford, CA 94305, USA
| |
Collapse
|
3
|
Himmelberg MM, Kurzawski JW, Benson NC, Pelli DG, Carrasco M, Winawer J. Cross-dataset reproducibility of human retinotopic maps. Neuroimage 2021; 244:118609. [PMID: 34582948 PMCID: PMC8560578 DOI: 10.1016/j.neuroimage.2021.118609] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 11/11/2022] Open
Abstract
Population receptive field (pRF) models fit to fMRI data are used to non-invasively measure retinotopic maps in human visual cortex, and these maps are a fundamental component of visual neuroscience experiments. Here, we examined the reproducibility of retinotopic maps across two datasets: a newly acquired retinotopy dataset from New York University (NYU) (n = 44) and a public dataset from the Human Connectome Project (HCP) (n = 181). Our goal was to assess the degree to which pRF properties are similar across datasets, despite substantial differences in their experimental protocols. The two datasets simultaneously differ in their stimulus apertures, participant pool, fMRI protocol, MRI field strength, and preprocessing pipeline. We assessed the cross-dataset reproducibility of the two datasets in terms of the similarity of vertex-wise pRF estimates and in terms of large-scale polar angle asymmetries in cortical magnification. Within V1, V2, V3, and hV4, the group-median NYU and HCP vertex-wise polar angle estimates were nearly identical. Both eccentricity and pRF size estimates were also strongly correlated between the two datasets, but with a slope different from 1; the eccentricity and pRF size estimates were systematically greater in the NYU data. Next, to compare large-scale map properties, we quantified two polar angle asymmetries in V1 cortical magnification previously identified in the HCP data. The NYU dataset confirms earlier reports that more cortical surface area represents horizontal than vertical visual field meridian, and lower than upper vertical visual field meridian. Together, our findings show that the retinotopic properties of V1, V2, V3, and hV4 can be reliably measured across two datasets, despite numerous differences in their experimental design. fMRI-derived retinotopic maps are reproducible because they rely on an explicit computational model of the fMRI response. In the case of pRF mapping, the model is grounded in physiological evidence of how visual receptive fields are organized, allowing one to quantitatively characterize the BOLD signal in terms of stimulus properties (i.e., location and size). The new NYU Retinotopy Dataset will serve as a useful benchmark for testing hypotheses about the organization of visual areas and for comparison to the HCP 7T Retinotopy Dataset.
Collapse
Affiliation(s)
- Marc M Himmelberg
- Department of Psychology, New York University, New York 10003, NY, USA.
| | - Jan W Kurzawski
- Department of Psychology, New York University, New York 10003, NY, USA
| | - Noah C Benson
- eScience Institute, University of Washington, Seattle 98195, WA, USA
| | - Denis G Pelli
- Department of Psychology, New York University, New York 10003, NY, USA; Center for Neural Sciences, New York University, New York 10003, NY, USA
| | - Marisa Carrasco
- Department of Psychology, New York University, New York 10003, NY, USA; Center for Neural Sciences, New York University, New York 10003, NY, USA
| | - Jonathan Winawer
- Department of Psychology, New York University, New York 10003, NY, USA; Center for Neural Sciences, New York University, New York 10003, NY, USA
| |
Collapse
|
4
|
de Haas B, Sereno MI, Schwarzkopf DS. Inferior Occipital Gyrus Is Organized along Common Gradients of Spatial and Face-Part Selectivity. J Neurosci 2021; 41:5511-5521. [PMID: 34016715 PMCID: PMC8221599 DOI: 10.1523/jneurosci.2415-20.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 11/21/2022] Open
Abstract
The ventral visual stream of the human brain is subdivided into patches with categorical stimulus preferences, like faces or scenes. However, the functional organization within these areas is less clear. Here, we used functional magnetic resonance imaging and vertex-wise tuning models to independently probe spatial and face-part preferences in the inferior occipital gyrus (IOG) of healthy adult males and females. The majority of responses were well explained by Gaussian population tuning curves for both retinotopic location and the preferred relative position within a face. Parameter maps revealed a common gradient of spatial and face-part selectivity, with the width of tuning curves drastically increasing from posterior to anterior IOG. Tuning peaks clustered more idiosyncratically but were also correlated across maps of visual and face space. Preferences for the upper visual field went along with significantly increased coverage of the upper half of the face, matching recently discovered biases in human perception. Our findings reveal a broad range of neural face-part selectivity in IOG, ranging from narrow to "holistic." IOG is functionally organized along this gradient, which in turn is correlated with retinotopy.SIGNIFICANCE STATEMENT Brain imaging has revealed a lot about the large-scale organization of the human brain and visual system. For example, occipital cortex contains map-like representations of the visual field, while neurons in ventral areas cluster into patches with categorical preferences, like faces or scenes. Much less is known about the functional organization within these areas. Here, we focused on a well established face-preferring area-the inferior occipital gyrus (IOG). A novel neuroimaging paradigm allowed us to map the retinotopic and face-part tuning of many recording sites in IOG independently. We found a steep posterior-anterior gradient of decreasing face-part selectivity, which correlated with retinotopy. This suggests the functional role of ventral areas is not uniform and may follow retinotopic "protomaps."
Collapse
Affiliation(s)
- Benjamin de Haas
- Department of Psychology, Justus Liebig Universität, 35394 Giessen, Germany
- Experimental Psychology, University College London, London WC1E 6BT, United Kingdom
| | - Martin I Sereno
- Experimental Psychology, University College London, London WC1E 6BT, United Kingdom
- SDSU Imaging Center, San Diego State University, San Diego, California 92182
| | - D Samuel Schwarzkopf
- Experimental Psychology, University College London, London WC1E 6BT, United Kingdom
- School of Optometry and Vision Science, University of Auckland, Auckland 1142, New Zealand
| |
Collapse
|
5
|
Papadimitriou A, Passalis N, Tefas A. Visual representation decoding from human brain activity using machine learning: A baseline study. Pattern Recognit Lett 2019. [DOI: 10.1016/j.patrec.2019.08.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
6
|
Fritsche M, Lawrence SJD, de Lange FP. Temporal tuning of repetition suppression across the visual cortex. J Neurophysiol 2019; 123:224-233. [PMID: 31774368 DOI: 10.1152/jn.00582.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The visual system adapts to its recent history. A phenomenon related to this is repetition suppression (RS), a reduction in neural responses to repeated compared with nonrepeated visual input. An intriguing hypothesis is that the timescale over which RS occurs across the visual hierarchy is tuned to the temporal statistics of visual input features, which change rapidly in low-level areas but are more stable in higher level areas. Here, we tested this hypothesis by studying the influence of the temporal lag between successive visual stimuli on RS throughout the visual system using functional (f)MRI. Twelve human volunteers engaged in four fMRI sessions in which we characterized the blood oxygen level-dependent response to pairs of repeated and nonrepeated natural images with interstimulus intervals (ISI) ranging from 50 to 1,000 ms to quantify the temporal tuning of RS along the posterior-anterior axis of the visual system. As expected, RS was maximal for short ISIs and decayed with increasing ISI. Crucially, however, and against our hypothesis, RS decayed at a similar rate in early and late visual areas. This finding challenges the prevailing view that the timescale of RS increases along the posterior-anterior axis of the visual system and suggests that RS is not tuned to temporal input regularities.NEW & NOTEWORTHY Visual areas show reduced neural responses to repeated compared with nonrepeated visual input, a phenomenon termed repetition suppression (RS). Here we show that RS decays at a similar rate in low- and high-level visual areas, suggesting that the short-term decay of RS across the visual hierarchy is not tuned to temporal input regularities. This may limit the specificity with which the mechanisms underlying RS could optimize the processing of input features across the visual hierarchy.
Collapse
Affiliation(s)
- Matthias Fritsche
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Samuel J D Lawrence
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Floris P de Lange
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
7
|
Keshavan A, Yeatman JD, Rokem A. Combining Citizen Science and Deep Learning to Amplify Expertise in Neuroimaging. Front Neuroinform 2019; 13:29. [PMID: 31139070 PMCID: PMC6517786 DOI: 10.3389/fninf.2019.00029] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 04/01/2019] [Indexed: 01/02/2023] Open
Abstract
Big Data promises to advance science through data-driven discovery. However, many standard lab protocols rely on manual examination, which is not feasible for large-scale datasets. Meanwhile, automated approaches lack the accuracy of expert examination. We propose to (1) start with expertly labeled data, (2) amplify labels through web applications that engage citizen scientists, and (3) train machine learning on amplified labels, to emulate the experts. Demonstrating this, we developed a system to quality control brain magnetic resonance images. Expert-labeled data were amplified by citizen scientists through a simple web interface. A deep learning algorithm was then trained to predict data quality, based on citizen scientist labels. Deep learning performed as well as specialized algorithms for quality control (AUC = 0.99). Combining citizen science and deep learning can generalize and scale expert decision making; this is particularly important in disciplines where specialized, automated tools do not yet exist.
Collapse
Affiliation(s)
- Anisha Keshavan
- eScience Institute, University of Washington, Seattle, WA, United States
- Institute for Neuroengineering, University of Washington, Seattle, WA, United States
- Institute for Learning and Brain Sciences, University of Washington, Seattle, WA, United States
- Department of Speech and Hearing, University of Washington, Seattle, WA, United States
| | - Jason D. Yeatman
- Institute for Learning and Brain Sciences, University of Washington, Seattle, WA, United States
- Department of Speech and Hearing, University of Washington, Seattle, WA, United States
| | - Ariel Rokem
- eScience Institute, University of Washington, Seattle, WA, United States
- Institute for Neuroengineering, University of Washington, Seattle, WA, United States
| |
Collapse
|
8
|
Abstract
The location and topography of the first three visual field maps in the human brain, V1-V3, are well agreed upon and routinely measured across most laboratories. The position of 4
th visual field map, ‘hV4’, is identified with less consistency in the neuroimaging literature. Using magnetic resonance imaging data, we describe landmarks to help identify the position and borders of ‘hV4’. The data consist of anatomical images, visualized as cortical meshes to highlight the sulcal and gyral patterns, and functional data obtained from retinotopic mapping experiments, visualized as eccentricity and angle maps on the cortical surface. Several features of the functional and anatomical data can be found across nearly all subjects and are helpful for identifying the location and extent of the hV4 map. The medial border of hV4 is shared with the posterior, ventral portion of V3, and is marked by a retinotopic representation of the upper vertical meridian. The anterior border of hV4 is shared with the VO-1 map, and falls on a retinotopic representation of the peripheral visual field, usually coincident with the posterior transverse collateral sulcus. The ventro-lateral edge of the map typically falls on the inferior occipital gyrus, where functional MRI artifacts often obscure the retinotopic data. Finally, we demonstrate the continuity of retinotopic parameters between hV4 and its neighbors; hV4 and V3v contain iso-eccentricity lines in register, whereas hV4 and VO-1 contain iso-polar angle lines in register. Together, the multiple constraints allow for a consistent identification of the hV4 map across most human subjects.
Collapse
Affiliation(s)
- Jonathan Winawer
- Psychology and Center for Neural Science, New York University, New York, NY, 10003, USA
| | - Nathan Witthoft
- Department of Psychology, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|