1
|
Bearden AA, Stewart EM, Casher CC, Shaddix MA, Nobles AC, Mockett RJ. Effects of Target of Rapamycin and Phosphatidylinositol 3-Kinase Inhibitors and Other Autophagy-Related Supplements on Life Span in y w Male Drosophila melanogaster. Int J Mol Sci 2024; 25:11504. [PMID: 39519056 PMCID: PMC11547029 DOI: 10.3390/ijms252111504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/10/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024] Open
Abstract
Various dietary supplements have been shown to extend the life span of Drosophila melanogaster, including several that promote autophagy, such as rapamycin and spermidine. The goal of the study presented here was to test numerous additional potential anti-aging supplements, primarily inhibitors of the target of rapamycin (TOR) and/or phosphatidylinositol 3-kinase (PI3K). Using a single, comparatively long-lived y w test strain, screening was performed in male flies supplemented either throughout adulthood or, in a few cases, beginning in middle or late adult life, with concentrations spanning 4-6 orders of magnitude in most cases. Supplementation with PP242 and deferiprone, an iron chelator, beginning in late adult life had no positive effect on life span. Lifelong supplementation with Ku-0063794, LY294002, PX-866-17OH, Torin2 and WYE-28 had no effect at any dose. Rapamycin, spermidine and wortmannin all had significant life-shortening effects at the highest doses tested. AZD8055, PI-103 hydrochloride and WYE-132 yielded slight beneficial effects at 1-2 doses, but only 100 nM AZD8055 was confirmed to have a minor (1.3%) effect in a replicate experiment, which was encompassed by other control groups within the same study. These compounds had no effect on fly fecundity (egg laying) or fertility (development of progeny to adulthood), but equivalent high doses of rapamycin abolished fertility. The solvent DMSO had no significant effect on life span at the concentrations used to solubilize most compounds in the fly medium, but it drastically curtailed both survival and fertility at higher concentrations. 2-Hydroxypropyl-β-cyclodextrin also failed to extend the life span when provided throughout adulthood or beginning in mid-adult life. Collectively, the results suggest that inhibition of the TOR/PI3K pathway and autophagy through dietary intervention is not a straightforward anti-aging strategy in Drosophila and that further extension of life is difficult in comparatively long-lived flies.
Collapse
Affiliation(s)
| | | | | | | | | | - Robin J. Mockett
- Department of Biomedical Sciences, University of South Alabama, Mobile, AL 36688-0002, USA; (A.A.B.); (E.M.S.); (C.C.C.); (M.A.S.); (A.C.N.)
| |
Collapse
|
2
|
Oli AN, Adejumo SA, Rowaiye AB, Ogidigo JO, Hampton-Marcell J, Ibeanu GC. Tumour Immunotherapy and Applications of Immunological Products: A Review of Literature. J Immunol Res 2024; 2024:8481761. [PMID: 39483536 PMCID: PMC11527548 DOI: 10.1155/2024/8481761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 09/23/2024] [Accepted: 09/28/2024] [Indexed: 11/03/2024] Open
Abstract
Malignant tumors, characterized by uncontrolled cell proliferation, are a leading global health challenge, responsible for over 9.7 million deaths in 2022, with new cases expected to rise to 35 million annually by 2050. Immunotherapy is preferred to other cancer therapies, offering precise targeting of malignant cells while simultaneously strengthening the immune system's complex responses. Advances in this novel field of science have been closely linked to a deeper knowledge of tumor biology, particularly the intricate interplay between tumor cells, the immune system, and the tumor microenvironment (TME), which are central to cancer progression and immune evasion. This review offers a comprehensive analysis of the molecular mechanisms that govern these interactions, emphasizing their critical role in the development of effective immunotherapeutic products. We critically evaluate the current immunotherapy approaches, including cancer vaccines, adoptive T cell therapies, and cytokine-based treatments, highlighting their efficacy and safety. We also explore the latest advancements in combination therapies, which synergistically integrate multiple immunotherapeutic strategies to overcome resistance and enhance therapeutic outcomes. This review offers key insights into the future of cancer immunotherapy with a focus on advancing more effective and personalized treatment strategies.
Collapse
Affiliation(s)
- Angus Nnamdi Oli
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, Awka 420211, Nigeria
| | - Samson Adedeji Adejumo
- Department of Biological Sciences, University of Illinois, Chicago, 845 West Taylor, Chicago 60607, Illinois, USA
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, Federal University Oye Ekiti, Oye, Ekiti State, Nigeria
| | - Adekunle Babajide Rowaiye
- National Biotechnology Development Agency, Abuja 900211, Nigeria
- Department of Pharmaceutical Science, North Carolina Central University, Durham 27707, North Carolina, USA
| | | | - Jarrad Hampton-Marcell
- Department of Biological Sciences, University of Illinois, Chicago, 845 West Taylor, Chicago 60607, Illinois, USA
| | - Gordon C. Ibeanu
- Department of Pharmaceutical Science, North Carolina Central University, Durham 27707, North Carolina, USA
| |
Collapse
|
3
|
Nayeem N, Sauma S, Ahad A, Rameau R, Kebadze S, Bazett M, Park BJ, Casaccia P, Prabha S, Hubbard K, Contel M. Insights into Mechanisms and Promising Triple Negative Breast Cancer Therapeutic Potential for a Water-Soluble Ruthenium Compound. ACS Pharmacol Transl Sci 2024; 7:1364-1376. [PMID: 38751641 PMCID: PMC11092013 DOI: 10.1021/acsptsci.4c00020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/14/2024] [Accepted: 03/22/2024] [Indexed: 05/18/2024]
Abstract
Triple negative breast cancer (TNBC) represents a subtype of breast cancer that does not express the three major prognostic receptors of human epidermal growth factor receptor 2 (HER2), progesterone (PR), and estrogen (ER). This limits treatment options and results in a high rate of mortality. We have reported previously on the efficacy of a water-soluble, cationic organometallic compound (Ru-IM) in a TNBC mouse xenograft model with impressive tumor reduction and targeted tumor drug accumulation. Ru-IM inhibits cancer hallmarks such as migration, angiogenesis, and invasion in TNBC cells by a mechanism that generates apoptotic cell death. Ru-IM displays little interaction with DNA and appears to act by a P53-independent pathway. We report here on the mitochondrial alterations caused by Ru-IM treatment and detail the inhibitory properties of Ru-IM in the PI3K/AKT/mTOR pathway in MDA-MB-231 cells. Lastly, we describe the results of an efficacy study of the TNBC xenografted mouse model with Ru-IM and Olaparib monotherapy and combinatory treatments. We find 59% tumor shrinkage with Ru-IM and 65% with the combination. Histopathological analysis confirmed no test-article-related toxicity. Immunohistochemical analysis indicated an inhibition of the angiogenic marker CD31 and increased levels of apoptotic cleaved caspase 3 marker, along with a slight inhibition of p-mTOR. Taken together, the effects of Ru-IM in vitro show similar trends and translation in vivo. Our investigation underscores the therapeutic potential of Ru-IM in addressing the challenges posed by TNBC as evidenced by its robust efficacy in inhibiting key cancer hallmarks, substantial tumor reduction, and minimal systemic toxicity.
Collapse
Affiliation(s)
- Nazia Nayeem
- Department
of Chemistry, Brooklyn College, The City
University of New York, Brooklyn, New York 11210, United States
- Brooklyn
College Cancer Center, Brooklyn College, The City University of New York, Brooklyn, New York 11210, United States
- Biology
PhD Program The Graduate Center, The City
University of New York, New York, New York 10016, United States
| | - Sami Sauma
- Biology
PhD Program The Graduate Center, The City
University of New York, New York, New York 10016, United States
- Neuroscience
Initiative, Advanced Science Research Center, New York, New York 10065, United States
- Department
of Biology, City College, The City University
of New York, New York, New York 10031, United States
| | - Afruja Ahad
- Department
of Chemistry, Brooklyn College, The City
University of New York, Brooklyn, New York 11210, United States
- Brooklyn
College Cancer Center, Brooklyn College, The City University of New York, Brooklyn, New York 11210, United States
- Biology
PhD Program The Graduate Center, The City
University of New York, New York, New York 10016, United States
- Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10031, United States
| | - Rachele Rameau
- Biology
PhD Program The Graduate Center, The City
University of New York, New York, New York 10016, United States
- Department
of Biology, City College, The City University
of New York, New York, New York 10031, United States
| | - Sophia Kebadze
- Department
of Chemistry, Brooklyn College, The City
University of New York, Brooklyn, New York 11210, United States
- Brooklyn
College Cancer Center, Brooklyn College, The City University of New York, Brooklyn, New York 11210, United States
| | - Mark Bazett
- Bold
Therapeutics Inc., Vancouver, British Columbia V6C 1E1, Canada
| | - Brian J. Park
- Bold
Therapeutics Inc., Vancouver, British Columbia V6C 1E1, Canada
| | - Patrizia Casaccia
- Neuroscience
Initiative, Advanced Science Research Center, New York, New York 10065, United States
| | - Swayam Prabha
- Fels
Cancer Institute for Personalized Medicine and Department of Cancer
and Cellular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19104, United States
- Cancer
Signaling and Tumor Microenvironment Program, Fox Chase Center, Temple University, Philadelphia, Pennsylvania 19111, United States
| | - Karen Hubbard
- Biology
PhD Program The Graduate Center, The City
University of New York, New York, New York 10016, United States
- Department
of Biology, City College, The City University
of New York, New York, New York 10031, United States
| | - Maria Contel
- Department
of Chemistry, Brooklyn College, The City
University of New York, Brooklyn, New York 11210, United States
- Brooklyn
College Cancer Center, Brooklyn College, The City University of New York, Brooklyn, New York 11210, United States
- Biology
PhD Program The Graduate Center, The City
University of New York, New York, New York 10016, United States
- Chemistry
PhD Program, The Graduate Center, The City
University of New York, New York, New York 10016, United States
- Biochemistry
PhD Program, The Graduate Center, The City
University of New York, New York, New York 10016, United States
| |
Collapse
|
4
|
Hoenigsperger H, Koepke L, Acharya D, Hunszinger V, Freisem D, Grenzner A, Wiese S, Kirchhoff F, Gack MU, Sparrer KM. CSNK2 suppresses autophagy by activating FLN-NHL-containing TRIM proteins. Autophagy 2024; 20:994-1014. [PMID: 37938186 PMCID: PMC11135829 DOI: 10.1080/15548627.2023.2281128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/26/2023] [Accepted: 11/02/2023] [Indexed: 11/09/2023] Open
Abstract
Macroautophagy/autophagy is a tightly regulated cellular process integral to homeostasis and innate immunity. As such, dysregulation of autophagy is associated with cancer, neurodegenerative disorders, and infectious diseases. While numerous factors that promote autophagy have been characterized, the key mechanisms that prevent excessive autophagy are less well understood. Here, we identify CSNK2/CK2 (casein kinase 2) as a negative regulator of autophagy. Pharmacological inhibition of CSNK2 activity or siRNA-mediated depletion of CSNK2 increased basal autophagic flux in cell lines and primary human lung cells. Vice versa, ectopic expression of CSNK2 reduced autophagic flux. Mechanistically, CSNK2 interacted with the FLN (filamin)-NHL domain-containing tripartite motif (TRIM) family members TRIM2, TRIM3 and TRIM71. Our data show that recruitment of CSNK2 to the C-terminal NHL domain of TRIM3 lead to its robust phosphorylation at serine 661 by CSNK2. A phosphorylation-defective mutant of TRIM3 was unable to reduce autophagosome numbers indicating that phosphorylation by CSNK2 is required for TRIM-mediated autophagy inhibition. All three TRIMs facilitated inactivation of the ULK1-BECN1 autophagy initiation complex by facilitating ULK1 serine 757 phosphorylation. Inhibition of CSNK2 promoted autophagy upon influenza A virus (IAV) and measles virus (MeV) infection. In line with this, targeting of CSNK2 or depletion of TRIM2, TRIM3 or TRIM71 enhanced autophagy-dependent restriction of IAV, MeV and human immunodeficiency virus 1 (HIV-1). Thus, our results identify the CSNK2-TRIM2, -TRIM3, -TRIM71 axis as a key regulatory pathway that limits autophagy. Targeting this axis may allow for therapeutic induction of autophagy against viral infections and in diseases associated with dysregulated autophagy.Abbreviation: ATG5: autophagy related 5; BafA1: bafilomycin A1; BECN1: beclin 1; CCD: coiled-coil domain; CSNK2/CK2: casein kinase 2; CSNK2A1: casein kinase 2 alpha 1; CSNK2A2: casein kinase 2 alpha 2; CSNK2B: casein kinase 2 beta; FLN: filamin; HeLa GL: HeLa cells stably expressing eGFP-LC3B; HIV-1: human immunodeficiency virus 1; IAV: influenza A virus; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3; MeV: measles virus; MTOR: mechanistic target of rapamycin kinase; RING: really interesting new gene; SQSTM1/p62: sequestosome 1; TRIM: tripartite motif; ULK1: unc-51 like autophagy activating kinase 1.
Collapse
Affiliation(s)
- Helene Hoenigsperger
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Baden-Wuerttemberg, Germany
| | - Lennart Koepke
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Baden-Wuerttemberg, Germany
| | - Dhiraj Acharya
- Florida Research and Innovation Center, Cleveland Clinic, Port St Lucie, Florida, USA
| | - Victoria Hunszinger
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Baden-Wuerttemberg, Germany
| | - Dennis Freisem
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Baden-Wuerttemberg, Germany
| | - Alexander Grenzner
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Baden-Wuerttemberg, Germany
| | - Sebastian Wiese
- Core Unit Mass Spectrometry and Proteomics, Ulm University, Ulm, Baden-Wuerttemberg, Germany
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Baden-Wuerttemberg, Germany
| | - Michaela U. Gack
- Florida Research and Innovation Center, Cleveland Clinic, Port St Lucie, Florida, USA
| | - Konstantin M.J. Sparrer
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Baden-Wuerttemberg, Germany
| |
Collapse
|
5
|
Mujawar A, Dimri S, Palkina KA, Markina NM, Sarkisyan KS, Balakireva AV, Yampolsky IV, De A. Novel BRET combination for detection of rapamycin-induced protein dimerization using luciferase from fungus Neonothopanusnambi. Heliyon 2024; 10:e25553. [PMID: 38384550 PMCID: PMC10878866 DOI: 10.1016/j.heliyon.2024.e25553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 01/18/2024] [Accepted: 01/29/2024] [Indexed: 02/23/2024] Open
Abstract
Bioluminescence resonance energy transfer (BRET) is one of the most promising approaches used for noninvasive imaging of protein-protein interactions in vivo. Recently, our team has discovered a genetically encodable bioluminescent system from the fungus Neonothopanus nambi and identified a novel luciferase that represents an imaging tool orthogonal to other luciferin-luciferase systems. We demonstrated the possibility of using the fungal luciferase as a new BRET donor by creating fused pairs with acceptor red fluorescent proteins, of which tdTomato provided the highest BRET efficiency. Using this new BRET system, we also designed a mTOR pathway specific rapamycin biosensor by integrating the FRB and FKBP12 protein dimerization system. We demonstrated the specificity and efficacy of the new fungal luciferase-based BRET combination for application in mammalian cell culture that will provide the unique opportunity to perform multiplexed BRET assessment in the future.
Collapse
Affiliation(s)
- Aaiyas Mujawar
- Advanced Center for Treatment Research and Education in Cancer (ACTREC), Sector-22, Kharghar, Navi Mumbai 410210, India
- Life Science, Homi Bhabha National Institute, Mumbai, India
| | - Shalini Dimri
- Advanced Center for Treatment Research and Education in Cancer (ACTREC), Sector-22, Kharghar, Navi Mumbai 410210, India
- Life Science, Homi Bhabha National Institute, Mumbai, India
| | - Ksenia A. Palkina
- Planta LLC, Bolshoi Boulevard, 42 Str 1, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya, 16/10, Moscow, Russia
| | - Nadezhda M. Markina
- Planta LLC, Bolshoi Boulevard, 42 Str 1, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya, 16/10, Moscow, Russia
| | - Karen S. Sarkisyan
- Planta LLC, Bolshoi Boulevard, 42 Str 1, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya, 16/10, Moscow, Russia
- Synthetic Biology Group, MRC London Institute of Medical Sciences, London W12 0NN, UK
| | - Anastasia V. Balakireva
- Planta LLC, Bolshoi Boulevard, 42 Str 1, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya, 16/10, Moscow, Russia
| | - Ilia V. Yampolsky
- Planta LLC, Bolshoi Boulevard, 42 Str 1, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya, 16/10, Moscow, Russia
| | - Abhijit De
- Advanced Center for Treatment Research and Education in Cancer (ACTREC), Sector-22, Kharghar, Navi Mumbai 410210, India
- Life Science, Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
6
|
Çetin F, Kosba S, Abdik H, Bolat ZB. Synergistic anti-proliferative and apoptotic effect of NVP-BEZ235 and curcumin on human SH-SY5Y neuroblastoma cells. Med Oncol 2023; 41:11. [PMID: 38071672 DOI: 10.1007/s12032-023-02239-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023]
Abstract
Neuroblastoma, a tumor of the sympathetic nervous system, is one of the most common tumors found in children. Most patients develop resistance to therapy and show poor prognosis, thus there is a need of novel therapeutic agents for the treatment of neuroblastoma. NVP-BEZ235 is a dual Phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) kinase inhibitor that induces apoptosis and suppresses the growth of cancer. Curcumin acts as an anticancer agent in certain cancers. This study investigated the synergetic effect of NVP-BEZ235 and curcumin against neuroblastoma SH-SY5Y cell line. In the current study, the synergic effect of NVP-BEZ235 and curcumin in SH-SY5Y was examined in terms of the cell growth by cell viability and colony forming assay, cell cycle and apoptotic cell death by flow cytometry and mRNA expression levels by quantitative Real Time Polymerase Chain Reaction (qRT-PCR). Curcumin, NVP-BEZ235 or a combination of both, showed cytotoxicity in a dose and time dependent manner in SH-SY5Y cells. 10 µM curcumin and 200 nM NVP-BEZ235 were chosen as combination therapy, as the combination index showed synergism. Colony forming assay showed decrease in cell growth in combination group. The cell cycle distribution for combination group demonstrated a decrease in G0/G1 phase at 48 h. Annexin V showed an anticancer effect in combination group when compared to control group. Moreover, qRT-PCR results showed a significant increase in caspase 3, caspase 7, Bax and p53 genes, while a decrease in Bcl-2 gene expression levels. These findings suggest that combination therapy of NVP-BEZ235 and curcumin may be a promising therapeutic candidate for treatment of neuroblastoma.
Collapse
Affiliation(s)
- Fadime Çetin
- Sabri Ulker R&D Center, Istanbul Sabahattin Zaim University, Kucukcekmece, Istanbul, Turkey
| | - Sifa Kosba
- Sabri Ulker R&D Center, Istanbul Sabahattin Zaim University, Kucukcekmece, Istanbul, Turkey
| | - Hüseyin Abdik
- Sabri Ulker R&D Center, Istanbul Sabahattin Zaim University, Kucukcekmece, Istanbul, Turkey
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Istanbul Sabahattin Zaim University, Kucukcekmece, Istanbul, 34303, Turkey
| | - Zeynep Busra Bolat
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Istanbul Sabahattin Zaim University, Kucukcekmece, Istanbul, 34303, Turkey.
- Molecular Biology and Genetics Department, Hamidiye Institute of Health Sciences, University of Health Sciences- Turkey, Istanbul, 34668, Turkey.
- Experimental Medicine Research and Application Center, Validebag Research Park, University of Health Sciences, Uskudar, Istanbul, 34662, Turkey.
| |
Collapse
|
7
|
Mane RR, Kale PP. The roles of HDAC with IMPDH and mTOR with JAK as future targets in the treatment of rheumatoid arthritis with combination therapy. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2023; 20:689-706. [PMID: 36409592 DOI: 10.1515/jcim-2022-0114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 07/19/2022] [Indexed: 06/16/2023]
Abstract
Various studies have shown that cytokines are important regulators in rheumatoid arthritis (RA). In synovial inflammation alteration of the enzyme HDAC, IMPDH enzyme, mTOR pathway, and JAK pathway increase cytokine level. These increased cytokine levels are responsible for the inflammation in RA. Inflammation is a physiological and normal reaction of the immune system against dangerous stimuli such as injury and infection. The cytokine-based approach improves the treatment of RA. To reach this goal, various researchers and scientists are working more aggressively by using a combination approach. The present review of combination therapy provides essential evidence about the possible synergistic effect of combinatorial agents. We have focused on the effects of HDAC inhibitor with IMPDH inhibitor and mTOR inhibitor with JAK inhibitor in combination for the treatment of RA. Combining various targeted strategies can be helpful for the treatment of RA.
Collapse
Affiliation(s)
- Reshma Rajendra Mane
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Pravin Popatrao Kale
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| |
Collapse
|
8
|
Malvi P, Chava S, Cai G, Hu K, Zhu LJ, Edwards YJK, Green MR, Gupta R, Wajapeyee N. HOXC6 drives a therapeutically targetable pancreatic cancer growth and metastasis pathway by regulating MSK1 and PPP2R2B. Cell Rep Med 2023; 4:101285. [PMID: 37951219 PMCID: PMC10694669 DOI: 10.1016/j.xcrm.2023.101285] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 11/13/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers, which lacks effective therapies. Here, we demonstrate that the transcription factor, homeobox C6 (HOXC6), is overexpressed in most PDACs, and its inhibition blocks PDAC tumor growth and metastasis. HOXC6 transcriptionally activates tumor-promoting kinase MSK1 and suppresses tumor-inhibitory protein PPP2R2B in PDAC. HOXC6-induced PPP2R2B suppression causes mammalian target of rapamycin (mTOR) pathway activation, which facilitates PDAC growth. Also, MSK1 upregulation by HOXC6 is necessary for PDAC growth because of its ability to suppress apoptosis via its substrate DDX17. Combinatorial pharmacological inhibition of MSK1 and mTOR potently suppressed PDAC tumor growth and metastasis in PDAC mouse models. PDAC cells with acquired resistance to MSK1/mTOR-inhibitors displayed activated insulin-like growth factor 1 receptor (IGF1R) signaling and were successfully eradicated by IGF1R inhibitor. Furthermore, MEK inhibitor trametinib enhanced the efficacy of dual MSK1 and mTOR inhibition. Collectively, these results identify therapeutic vulnerabilities of PDAC and an approach to overcome acquired drug resistance to prolong therapeutic benefit.
Collapse
Affiliation(s)
- Parmanand Malvi
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Suresh Chava
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Guoping Cai
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Kai Hu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Lihua Julie Zhu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA; Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA; Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Yvonne J K Edwards
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Michael R Green
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Romi Gupta
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35233, USA; O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Narendra Wajapeyee
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35233, USA; O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
9
|
Arora M, Pavlíková Z, Kučera T, Kozlík P, Šopin T, Vacík T, Ľupták M, Duda M, Slanař O, Kutinová Canová N. Pharmacological effects of mTORC1/C2 inhibitor in a preclinical model of NASH progression. Biomed Pharmacother 2023; 167:115447. [PMID: 37683589 DOI: 10.1016/j.biopha.2023.115447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 09/10/2023] Open
Abstract
Knowledge of the benefits of mTOR inhibition concerning adipogenesis and inflammation has recently encouraged the investigation of a new generation of mTOR inhibitors for non-alcoholic steatohepatitis (NASH). We investigated whether treatment with a specific mTORC1/C2 inhibitor (Ku-0063794; KU) exerted any beneficial impacts on experimentally-induced NASH in vitro and in vivo. The results indicated that KU decreases palmitic acid-induced lipotoxicity in cultivated primary hepatocytes, thus emerging as a successful candidate for testing in an in vivo NASH dietary model, which adopted the intraperitoneal KU dosing route rather than oral application due to its significantly greater bioavailability in mice. The pharmacodynamics experiments commenced with the feeding of male C57BL/6 mice with a high-fat atherogenic western-type diet (WD) for differing intervals over several weeks aimed at inducing various phases of NASH. In addition to the WD, the mice were treated with KU for 3 weeks or 4 months. Acute and chronic KU treatments were observed to be safe at the given concentrations with no toxicity indications in the mice. KU was found to alleviate NASH-related hepatotoxicity, mitochondrial and oxidative stress, and decrease the liver triglyceride content and TNF-α mRNA in at least one set of in vivo experiments. The KU modulated liver expression of selected metabolic and oxidative stress-related genes depended upon the length and severity of the disease. Although KU failed to completely reverse the histological progression of NASH in the mice, we demonstrated the complexity of mTORC1/C2 signaling regulation and suggest a stratified therapeutic management approach throughout the disease course.
Collapse
Affiliation(s)
- Mahak Arora
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Zuzana Pavlíková
- Institute of Histology and Embryology, First Faculty of Medicine, Charles University, Prague, Czech Republic; Department of Anthropology and Human Genetics, Faculty of Science, Charles University, Prague, Czech Republic
| | - Tomáš Kučera
- Institute of Histology and Embryology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Petr Kozlík
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Tijana Šopin
- Institute of Biology and Medical Genetics of the First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Tomáš Vacík
- Institute of Biology and Medical Genetics of the First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Matej Ľupták
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Matthias Duda
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Ondřej Slanař
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Nikolina Kutinová Canová
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic.
| |
Collapse
|
10
|
Mehta P, Shende P. Dual role of autophagy for advancements from conventional to new delivery systems in cancer. Biochim Biophys Acta Gen Subj 2023; 1867:130430. [PMID: 37506854 DOI: 10.1016/j.bbagen.2023.130430] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023]
Abstract
Autophagy, a programmed cell-lysis mechanism, holds significant promise in the prevention and treatment of a wide range of conditions, including cancer, Alzheimer's, and Parkinson's disease. The successful utilization of autophagy modulation for therapeutic purposes hinges upon accurately determining the role of autophagy in disease progression, whether it acts as a cytotoxic or cytoprotective factor. This critical knowledge empowers scientists to effectively manipulate tumor sensitivity to anti-cancer therapies through autophagy modulation, while also circumventing drug resistance. However, conventional therapies face limitations such as low bioavailability, poor solubility, and a lack of controlled release mechanisms, hindering their clinical applicability. In this regard, innovative nanoplatforms including organic and inorganic systems have emerged as promising solutions to offer stimuli-responsive, theranostic-controlled drug delivery systems with active targeting and improved solubility. The review article explores a variety of organic nanoplatforms, such as lipid-based, polymer-based, and DNA-based systems, which incorporate autophagy-inhibiting drugs like hydroxychloroquine. By inhibiting the glycolytic pathway and depriving cells of essential nutrients, these platforms exhibit tumor-suppressive effects in advanced forms of cancer such as leukemia, colon cancer, and glioblastoma. Furthermore, metal-based, metal-oxide-based, silica-based, and quantum dot-based nanoplatforms selectively induce autophagy in tumors, leading to extensive cancer cell destruction. Additionally, this article discusses the current clinical status of autophagy-modulating drugs for cancer therapy with valuable insights of progress and potential of such approaches.
Collapse
Affiliation(s)
- Parth Mehta
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India
| | - Pravin Shende
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India.
| |
Collapse
|
11
|
Glaviano A, Foo ASC, Lam HY, Yap KCH, Jacot W, Jones RH, Eng H, Nair MG, Makvandi P, Geoerger B, Kulke MH, Baird RD, Prabhu JS, Carbone D, Pecoraro C, Teh DBL, Sethi G, Cavalieri V, Lin KH, Javidi-Sharifi NR, Toska E, Davids MS, Brown JR, Diana P, Stebbing J, Fruman DA, Kumar AP. PI3K/AKT/mTOR signaling transduction pathway and targeted therapies in cancer. Mol Cancer 2023; 22:138. [PMID: 37596643 PMCID: PMC10436543 DOI: 10.1186/s12943-023-01827-6] [Citation(s) in RCA: 388] [Impact Index Per Article: 194.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 07/18/2023] [Indexed: 08/20/2023] Open
Abstract
The PI3K/AKT/mTOR (PAM) signaling pathway is a highly conserved signal transduction network in eukaryotic cells that promotes cell survival, cell growth, and cell cycle progression. Growth factor signalling to transcription factors in the PAM axis is highly regulated by multiple cross-interactions with several other signaling pathways, and dysregulation of signal transduction can predispose to cancer development. The PAM axis is the most frequently activated signaling pathway in human cancer and is often implicated in resistance to anticancer therapies. Dysfunction of components of this pathway such as hyperactivity of PI3K, loss of function of PTEN, and gain-of-function of AKT, are notorious drivers of treatment resistance and disease progression in cancer. In this review we highlight the major dysregulations in the PAM signaling pathway in cancer, and discuss the results of PI3K, AKT and mTOR inhibitors as monotherapy and in co-administation with other antineoplastic agents in clinical trials as a strategy for overcoming treatment resistance. Finally, the major mechanisms of resistance to PAM signaling targeted therapies, including PAM signaling in immunology and immunotherapies are also discussed.
Collapse
Affiliation(s)
- Antonino Glaviano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123, Palermo, Italy
| | - Aaron S C Foo
- Department of Surgery, National University Hospital Singapore, National University of Singapore, Singapore, Singapore
| | - Hiu Y Lam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119077, Singapore
| | - Kenneth C H Yap
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119077, Singapore
| | - William Jacot
- Department of Medical Oncology, Institut du Cancer de Montpellier, Inserm U1194, Montpellier University, Montpellier, France
| | - Robert H Jones
- Cardiff University and Velindre Cancer Centre, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Huiyan Eng
- Department of Surgery, National University Hospital Singapore, National University of Singapore, Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| | - Madhumathy G Nair
- Division of Molecular Medicine, St. John's Research Institute, St. John's Medical College, Bangalore, 560034, India
| | - Pooyan Makvandi
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, Zhejiang, China
| | - Birgit Geoerger
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Center, Inserm U1015, Université Paris-Saclay, Paris, France
| | - Matthew H Kulke
- Section of Hematology and Medical Oncology, Boston University and Boston Medical Center, Boston, MA, USA
| | - Richard D Baird
- Cancer Research UK Cambridge Centre, Hills Road, Cambridge, CB2 0QQ, UK
| | - Jyothi S Prabhu
- Division of Molecular Medicine, St. John's Research Institute, St. John's Medical College, Bangalore, 560034, India
| | - Daniela Carbone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123, Palermo, Italy
| | - Camilla Pecoraro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123, Palermo, Italy
| | - Daniel B L Teh
- Departments of Ophthalmology and Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, and Neurobiology Programme, National University of Singapore, Singapore, Singapore
| | - Gautam Sethi
- Department of Surgery, National University Hospital Singapore, National University of Singapore, Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| | - Vincenzo Cavalieri
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123, Palermo, Italy
| | - Kevin H Lin
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | | - Eneda Toska
- Department of Biochemistry and Molecular Biology, Johns Hopkins School of Public Health, Baltimore, MD, USA
| | - Matthew S Davids
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Jennifer R Brown
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Patrizia Diana
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123, Palermo, Italy
| | - Justin Stebbing
- Division of Cancer, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK
| | - David A Fruman
- Department of Molecular Biology and Biochemistry, University of California, 216 Sprague Hall, Irvine, CA, USA
| | - Alan P Kumar
- Department of Surgery, National University Hospital Singapore, National University of Singapore, Singapore, Singapore.
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
| |
Collapse
|
12
|
Misra DP, Singh K, Sharma A, Agarwal V. Arterial wall fibrosis in Takayasu arteritis and its potential for therapeutic modulation. Front Immunol 2023; 14:1174249. [PMID: 37256147 PMCID: PMC10225504 DOI: 10.3389/fimmu.2023.1174249] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 04/20/2023] [Indexed: 06/01/2023] Open
Abstract
Arterial wall damage in Takayasu arteritis (TAK) can progress despite immunosuppressive therapy. Vascular fibrosis is more prominent in TAK than in giant cell arteritis (GCA). The inflamed arterial wall in TAK is infiltrated by M1 macrophages [which secrete interleukin-6 (IL-6)], which transition to M2 macrophages once the inflammation settles. M2 macrophages secrete transforming growth factor beta (TGF-β) and glycoprotein non-metastatic melanoma protein B (GPNMB), both of which can activate fibroblasts in the arterial wall adventitia. Mast cells in the arterial wall of TAK also activate resting adventitial fibroblasts. Th17 lymphocytes play a role in both TAK and GCA. Sub-populations of Th17 lymphocytes, Th17.1 lymphocytes [which secrete interferon gamma (IFN-γ) in addition to interleukin-17 (IL-17)] and programmed cell death 1 (PD1)-expressing Th17 (which secrete TGF-β), have been described in TAK but not in GCA. IL-6 and IL-17 also drive fibroblast activation in the arterial wall. The Th17 and Th1 lymphocytes in TAK demonstrate an activation of mammalian target organ of rapamycin 1 (mTORC1) driven by Notch-1 upregulation. A recent study reported that the enhanced liver fibrosis score (derived from serum hyaluronic acid, tissue inhibitor of metalloproteinase 1, and pro-collagen III amino-terminal pro-peptide) had a moderate-to-strong correlation with clinically assessed and angiographically assessed vascular damage. In vitro experiments suggest the potential to target arterial wall fibrosis in TAK with leflunomide, tofacitinib, baricitinib, or mTORC1 inhibitors. Since arterial wall inflammation is followed by fibrosis, a strategy of combining immunosuppressive agents with drugs that have an antifibrotic effect merits exploration in future clinical trials of TAK.
Collapse
Affiliation(s)
- Durga Prasanna Misra
- Department of Clinical Immunology and Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, India
| | - Kritika Singh
- Department of Clinical Immunology and Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, India
| | - Aman Sharma
- Clinical Immunology and Rheumatology Services, Department of Internal Medicine, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Vikas Agarwal
- Department of Clinical Immunology and Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, India
| |
Collapse
|
13
|
You M, Xie Z, Zhang N, Zhang Y, Xiao D, Liu S, Zhuang W, Li L, Tao Y. Signaling pathways in cancer metabolism: mechanisms and therapeutic targets. Signal Transduct Target Ther 2023; 8:196. [PMID: 37164974 PMCID: PMC10172373 DOI: 10.1038/s41392-023-01442-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 03/20/2023] [Accepted: 04/17/2023] [Indexed: 05/12/2023] Open
Abstract
A wide spectrum of metabolites (mainly, the three major nutrients and their derivatives) can be sensed by specific sensors, then trigger a series of signal transduction pathways and affect the expression levels of genes in epigenetics, which is called metabolite sensing. Life body regulates metabolism, immunity, and inflammation by metabolite sensing, coordinating the pathophysiology of the host to achieve balance with the external environment. Metabolic reprogramming in cancers cause different phenotypic characteristics of cancer cell from normal cell, including cell proliferation, migration, invasion, angiogenesis, etc. Metabolic disorders in cancer cells further create a microenvironment including many kinds of oncometabolites that are conducive to the growth of cancer, thus forming a vicious circle. At the same time, exogenous metabolites can also affect the biological behavior of tumors. Here, we discuss the metabolite sensing mechanisms of the three major nutrients and their derivatives, as well as their abnormalities in the development of various cancers, and discuss the potential therapeutic targets based on metabolite-sensing signaling pathways to prevent the progression of cancer.
Collapse
Affiliation(s)
- Mengshu You
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China
| | - Zhuolin Xie
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China
| | - Nan Zhang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China
| | - Yixuan Zhang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China
| | - Desheng Xiao
- Department of Pathology, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Shuang Liu
- Department of Oncology, Institute of Medical Sciences, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Wei Zhuang
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, People's Republic of China.
| | - Lili Li
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Ma Liu Shui, Hong Kong.
| | - Yongguang Tao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China.
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China.
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China.
- Department of Thoracic Surgery, Hunan Key Laboratory of Early Diagnosis and Precision Therapy in Lung Cancer, Second Xiangya Hospital, Central South University, 410011, Changsha, China.
| |
Collapse
|
14
|
Willemse L, Terburgh K, Louw R. A ketogenic diet alters mTOR activity, systemic metabolism and potentially prevents collagen degradation associated with chronic alcohol consumption in mice. Metabolomics 2023; 19:43. [PMID: 37076659 PMCID: PMC10115735 DOI: 10.1007/s11306-023-02006-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 03/31/2023] [Indexed: 04/21/2023]
Abstract
INTRODUCTION A ketogenic diet (KD), which is a high fat, low carbohydrate diet has been shown to inhibit the mammalian target of rapamycin (mTOR) pathway and alter the redox state. Inhibition of the mTOR complex has been associated with the attenuation and alleviation of various metabolic and- inflammatory diseases such as neurodegeneration, diabetes, and metabolic syndrome. Various metabolic pathways and signalling mechanisms have been explored to assess the therapeutic potential of mTOR inhibition. However, chronic alcohol consumption has also been reported to alter mTOR activity, the cellular redox- and inflammatory state. Thus, a relevant question that remains is what effect chronic alcohol consumption would have on mTOR activity and overall metabolism during a KD-based intervention. OBJECTIVES The aim of this study was to evaluate the effect of alcohol and a KD on the phosphorylation of the mTORC1 target p70S6K, systemic metabolism as well as the redox- and inflammatory state in a mouse model. METHODS Mice were fed either a control diet with/without alcohol or a KD with/without alcohol for three weeks. After the dietary intervention, samples were collected and subjected towards western blot analysis, multi-platform metabolomics analysis and flow cytometry. RESULTS Mice fed a KD exhibited significant mTOR inhibition and reduction in growth rate. Alcohol consumption alone did not markedly alter mTOR activity or growth rate but moderately increased mTOR inhibition in mice fed a KD. In addition, metabolic profiling showed alteration of several metabolic pathways as well as the redox state following consumption of a KD and alcohol. A KD was also observed to potentially prevent bone loss and collagen degradation associated with chronic alcohol consumption, as indicated by hydroxyproline metabolism. CONCLUSION This study sheds light on the influence that a KD alongside alcohol intake can exert on not just mTOR, but also their effect on metabolic reprogramming and the redox state.
Collapse
Affiliation(s)
- Luciano Willemse
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), Private Bag X6001, Potchefstroom, South Africa
| | - Karin Terburgh
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), Private Bag X6001, Potchefstroom, South Africa
| | - Roan Louw
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), Private Bag X6001, Potchefstroom, South Africa.
| |
Collapse
|
15
|
Golovine K, Abalakov G, Lian Z, Chatla S, Karami A, Chitrala KN, Madzo J, Nieborowska-Skorska M, Huang J, Skorski T. ABL1 kinase as a tumor suppressor in AML1-ETO and NUP98-PMX1 leukemias. Blood Cancer J 2023; 13:42. [PMID: 36959186 PMCID: PMC10036529 DOI: 10.1038/s41408-023-00810-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/25/2023] Open
Abstract
Deletion of ABL1 was detected in a cohort of hematologic malignancies carrying AML1-ETO and NUP98 fusion proteins. Abl1-/- murine hematopoietic cells transduced with AML1-ETO and NUP98-PMX1 gained proliferation advantage when compared to Abl1 + /+ counterparts. Conversely, overexpression and pharmacological stimulation of ABL1 kinase resulted in reduced proliferation. To pinpoint mechanisms facilitating the transformation of ABL1-deficient cells, Abl1 was knocked down in 32Dcl3-Abl1ko cells by CRISPR/Cas9 followed by the challenge of growth factor withdrawal. 32Dcl3-Abl1ko cells but not 32Dcl3-Abl1wt cells generated growth factor-independent clones. RNA-seq implicated PI3K signaling as one of the dominant mechanisms contributing to growth factor independence in 32Dcl3-Abl1ko cells. PI3K inhibitor buparlisib exerted selective activity against Lin-cKit+ NUP98-PMX1;Abl1-/- cells when compared to the Abl1 + /+ counterparts. Since the role of ABL1 in DNA damage response (DDR) is well established, we also tested the inhibitors of ATM (ATMi), ATR (ATRi) and DNA-PKcs (DNA-PKi). AML1-ETO;Abl1-/- and NUP98-PMX1;Abl1-/- cells were hypersensitive to DNA-PKi and ATRi, respectively, when compared to Abl1 + /+ counterparts. Moreover, ABL1 kinase inhibitor enhanced the sensitivity to PI3K, DNA-PKcs and ATR inhibitors. In conclusion, we showed that ABL1 kinase plays a tumor suppressor role in hematological malignancies induced by AML1-ETO and NUP98-PMX1 and modulates the response to PI3K and/or DDR inhibitors.
Collapse
Affiliation(s)
- Konstantin Golovine
- Fels Cancer Institute for Personalized Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Gleb Abalakov
- Fels Cancer Institute for Personalized Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Zhaorui Lian
- Coriell Institute for Medical Research, Camden, NJ, USA
| | - Srinivas Chatla
- Fels Cancer Institute for Personalized Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Adam Karami
- Fels Cancer Institute for Personalized Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Kumaraswamy Naidu Chitrala
- Fels Cancer Institute for Personalized Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Jozef Madzo
- Coriell Institute for Medical Research, Camden, NJ, USA
| | - Margaret Nieborowska-Skorska
- Fels Cancer Institute for Personalized Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Jian Huang
- Coriell Institute for Medical Research, Camden, NJ, USA.
| | - Tomasz Skorski
- Fels Cancer Institute for Personalized Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
16
|
The Role of Proteomics and Phosphoproteomics in the Discovery of Therapeutic Targets and Biomarkers in Acquired EGFR-TKI-Resistant Non-Small Cell Lung Cancer. Int J Mol Sci 2023; 24:ijms24054827. [PMID: 36902280 PMCID: PMC10003401 DOI: 10.3390/ijms24054827] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 02/25/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
The discovery of potent EGFR-tyrosine kinase inhibitors (EGFR-TKIs) has revolutionized the treatment of EGFR-mutated lung cancer. Despite the fact that EGFR-TKIs have yielded several significant benefits for lung cancer patients, the emergence of resistance to EGFR-TKIs has been a substantial impediment to improving treatment outcomes. Understanding the molecular mechanisms underlying resistance is crucial for the development of new treatments and biomarkers for disease progression. Together with the advancement in proteome and phosphoproteome analysis, a diverse set of key signaling pathways have been successfully identified that provide insight for the discovery of possible therapeutically targeted proteins. In this review, we highlight the proteome and phosphoproteomic analyses of non-small cell lung cancer (NSCLC) as well as the proteome analysis of biofluid specimens that associate with acquired resistance in response to different generations of EGFR-TKI. Furthermore, we present an overview of the targeted proteins and potential drugs that have been tested in clinical studies and discuss the challenges of implementing this discovery in future NSCLC treatment.
Collapse
|
17
|
Leclercq-Cohen G, Bacac M, Klein C. Rationale for combining tyrosine kinase inhibitors and T cell redirecting antibodies to mitigate cytokine release syndrome (CRS). Expert Opin Biol Ther 2023; 23:223-225. [PMID: 36629122 DOI: 10.1080/14712598.2023.2166786] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Gabrielle Leclercq-Cohen
- Roche Innovation Center Zurich, Roche Pharma Research and Early Development, pRED, Schlieren, Switzerland
| | - Marina Bacac
- Roche Innovation Center Zurich, Roche Pharma Research and Early Development, pRED, Schlieren, Switzerland
| | - Christian Klein
- Roche Innovation Center Zurich, Roche Pharma Research and Early Development, pRED, Schlieren, Switzerland
| |
Collapse
|
18
|
Chelakkot C, Chelakkot VS, Shin Y, Song K. Modulating Glycolysis to Improve Cancer Therapy. Int J Mol Sci 2023; 24:2606. [PMID: 36768924 PMCID: PMC9916680 DOI: 10.3390/ijms24032606] [Citation(s) in RCA: 110] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/31/2023] Open
Abstract
Cancer cells undergo metabolic reprogramming and switch to a 'glycolysis-dominant' metabolic profile to promote their survival and meet their requirements for energy and macromolecules. This phenomenon, also known as the 'Warburg effect,' provides a survival advantage to the cancer cells and make the tumor environment more pro-cancerous. Additionally, the increased glycolytic dependence also promotes chemo/radio resistance. A similar switch to a glycolytic metabolic profile is also shown by the immune cells in the tumor microenvironment, inducing a competition between the cancer cells and the tumor-infiltrating cells over nutrients. Several recent studies have shown that targeting the enhanced glycolysis in cancer cells is a promising strategy to make them more susceptible to treatment with other conventional treatment modalities, including chemotherapy, radiotherapy, hormonal therapy, immunotherapy, and photodynamic therapy. Although several targeting strategies have been developed and several of them are in different stages of pre-clinical and clinical evaluation, there is still a lack of effective strategies to specifically target cancer cell glycolysis to improve treatment efficacy. Herein, we have reviewed our current understanding of the role of metabolic reprogramming in cancer cells and how targeting this phenomenon could be a potential strategy to improve the efficacy of conventional cancer therapy.
Collapse
Affiliation(s)
| | - Vipin Shankar Chelakkot
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Youngkee Shin
- Laboratory of Molecular Pathology and Cancer Genomics, Research Institute of Pharmaceutical Science, Department of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyoung Song
- College of Pharmacy, Duksung Women’s University, Seoul 01366, Republic of Korea
| |
Collapse
|
19
|
Grzmil M, Wiesmann F, Schibli R, Behe M. Targeting mTORC1 Activity to Improve Efficacy of Radioligand Therapy in Cancer. Cancers (Basel) 2022; 15:cancers15010017. [PMID: 36612012 PMCID: PMC9817840 DOI: 10.3390/cancers15010017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/06/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Radioligand therapy (RLT) represents an effective strategy to treat malignancy by cancer-selective delivery of radioactivity following systemic application. Despite recent therapeutic successes, cancer radioresistance and insufficient delivery of the radioactive ligands, as well as cytotoxicity to healthy organs, significantly impairs clinical efficacy. To improve disease management while minimizing toxicity, in recent years, the combination of RLT with molecular targeted therapies against cancer signaling networks showed encouraging outcomes. Characterization of the key deregulated oncogenic signaling pathways revealed their convergence to activate the mammalian target of rapamycin (mTOR), in which signaling plays an essential role in the regulation of cancer growth and survival. Therapeutic interference with hyperactivated mTOR pathways was extensively studied and led to the development of mTOR inhibitors for clinical applications. In this review, we outline the regulation and oncogenic role of mTOR signaling, as well as recapitulate and discuss mTOR complex 1 (mTORC1) inhibition to improve the efficacy of RLT in cancer.
Collapse
Affiliation(s)
- Michal Grzmil
- Center for Radiopharmaceutical Sciences, Paul Scherrer Institute, 5232 Villigen, Switzerland
- Correspondence:
| | - Fabius Wiesmann
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Roger Schibli
- Center for Radiopharmaceutical Sciences, Paul Scherrer Institute, 5232 Villigen, Switzerland
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Martin Behe
- Center for Radiopharmaceutical Sciences, Paul Scherrer Institute, 5232 Villigen, Switzerland
| |
Collapse
|
20
|
Leeksma AC, Derks IAM, Garrick B, Jongejan A, Colombo M, Bloedjes T, Trowe T, Leisten JC, Howarth M, Malek M, Mortensen DS, Blease K, Groza MC, Narla RK, Loos R, Kersten M, Moerland PD, Guikema JEJ, Kater AP, Eldering E, Filvaroff EH. SMG1, a nonsense-mediated mRNA decay (NMD) regulator, as a candidate therapeutic target in multiple myeloma. Mol Oncol 2022; 17:284-297. [PMID: 36400430 PMCID: PMC9892823 DOI: 10.1002/1878-0261.13343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/16/2022] [Accepted: 11/17/2022] [Indexed: 11/20/2022] Open
Abstract
Early data suggested that CC-115, a clinical molecule, already known to inhibit the mammalian target of rapamycin kinase (TORK) and DNA-dependent protein kinase (DNA-PK) may have additional targets beyond TORK and DNA-PK. Therefore, we aimed to identify such target(s) and investigate a potential therapeutic applicability. Functional profiling of 141 cancer cell lines revealed inhibition of kinase suppressor of morphogenesis in genitalia 1 (SMG1), a key regulator of the RNA degradation mechanism nonsense-mediated mRNA decay (NMD), as an additional target of CC-115. CC-115 treatment showed a dose-dependent increase of SMG1-mediated NMD transcripts. A subset of cell lines, including multiple myeloma (MM) cell lines sensitive to the endoplasmic reticulum stress-inducing compound thapsigargin, were highly susceptible to SMG1 inhibition. CC-115 caused the induction of UPR transcripts and cell death by mitochondrial apoptosis, requiring the presence of BAX/BAK and caspase activity. Superior antitumor activity of CC-115 over TORK inhibitors in primary human MM cells and three xenograft mouse models appeared to be via inhibition of SMG1. Our data support further development of SMG1 inhibitors as possible therapeutics in MM.
Collapse
Affiliation(s)
- Alexander C. Leeksma
- Department of Hematology, Amsterdam University Medical CentersUniversity of AmsterdamThe Netherlands,Department of Experimental ImmunologyAmsterdam University Medical CentersUniversity of AmsterdamThe Netherlands,Lymphoma and myeloma center Amsterdam (LYMMCARE), Cancer Center Amsterdam (CCA) and Amsterdam Infection and Immunity Institute (AIII)The Netherlands
| | - Ingrid A. M. Derks
- Department of Experimental ImmunologyAmsterdam University Medical CentersUniversity of AmsterdamThe Netherlands,Lymphoma and myeloma center Amsterdam (LYMMCARE), Cancer Center Amsterdam (CCA) and Amsterdam Infection and Immunity Institute (AIII)The Netherlands
| | - Brett Garrick
- Translational Research, Bristol Myers SquibbSan FranciscoCAUSA
| | - Aldo Jongejan
- Department of Clinical Epidemiology, Biostatistics and BioinformaticsAmsterdam University Medical Centers, University of AmsterdamThe Netherlands
| | - Martino Colombo
- Bristol Myers Squibb's Center for Innovation and Translational Research Europe (CITRE)SevilleSpain
| | - Timon Bloedjes
- Department of Pathology, Amsterdam University Medical Centers, Lymphoma and Myeloma Center Amsterdam (LYMMCARE)University of AmsterdamThe Netherlands
| | - Torsten Trowe
- Translational Research, Bristol Myers SquibbSan FranciscoCAUSA
| | | | | | - Mehnaz Malek
- Translational Research, Bristol Myers SquibbSan FranciscoCAUSA
| | | | - Kate Blease
- Discovery, Bristol Myers SquibbSan DiegoCAUSA
| | | | | | - Remco Loos
- Bristol Myers Squibb's Center for Innovation and Translational Research Europe (CITRE)SevilleSpain
| | - Marie‐José Kersten
- Department of Hematology, Amsterdam University Medical CentersUniversity of AmsterdamThe Netherlands
| | - Perry D. Moerland
- Department of Clinical Epidemiology, Biostatistics and BioinformaticsAmsterdam University Medical Centers, University of AmsterdamThe Netherlands
| | - Jeroen E. J. Guikema
- Department of Pathology, Amsterdam University Medical Centers, Lymphoma and Myeloma Center Amsterdam (LYMMCARE)University of AmsterdamThe Netherlands
| | - Arnon P. Kater
- Department of Hematology, Amsterdam University Medical CentersUniversity of AmsterdamThe Netherlands,Lymphoma and myeloma center Amsterdam (LYMMCARE), Cancer Center Amsterdam (CCA) and Amsterdam Infection and Immunity Institute (AIII)The Netherlands
| | - Eric Eldering
- Department of Experimental ImmunologyAmsterdam University Medical CentersUniversity of AmsterdamThe Netherlands,Lymphoma and myeloma center Amsterdam (LYMMCARE), Cancer Center Amsterdam (CCA) and Amsterdam Infection and Immunity Institute (AIII)The Netherlands
| | | |
Collapse
|
21
|
Enomoto M, Igaki T. Cell-cell interactions that drive tumorigenesis in Drosophila. Fly (Austin) 2022; 16:367-381. [PMID: 36413374 PMCID: PMC9683056 DOI: 10.1080/19336934.2022.2148828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Cell-cell interactions within tumour microenvironment play crucial roles in tumorigenesis. Genetic mosaic techniques available in Drosophila have provided a powerful platform to study the basic principles of tumour growth and progression via cell-cell communications. This led to the identification of oncogenic cell-cell interactions triggered by endocytic dysregulation, mitochondrial dysfunction, cell polarity defects, or Src activation in Drosophila imaginal epithelia. Such oncogenic cooperations can be caused by interactions among epithelial cells, mesenchymal cells, and immune cells. Moreover, microenvironmental factors such as nutrients, local tissue structures, and endogenous growth signalling activities critically affect tumorigenesis. Dissecting various types of oncogenic cell-cell interactions at the single-cell level in Drosophila will greatly increase our understanding of how tumours progress in living animals.
Collapse
Affiliation(s)
- Masato Enomoto
- Laboratory of Genetics, Graduate School of Biostudies, Kyoto University, Yoshida-Konoecho, Kyoto, Japan
| | - Tatsushi Igaki
- Laboratory of Genetics, Graduate School of Biostudies, Kyoto University, Yoshida-Konoecho, Kyoto, Japan,CONTACT Tatsushi Igaki
| |
Collapse
|
22
|
Bouyahya A, El Allam A, Aboulaghras S, Bakrim S, El Menyiy N, Alshahrani MM, Al Awadh AA, Benali T, Lee LH, El Omari N, Goh KW, Ming LC, Mubarak MS. Targeting mTOR as a Cancer Therapy: Recent Advances in Natural Bioactive Compounds and Immunotherapy. Cancers (Basel) 2022; 14:5520. [PMID: 36428613 PMCID: PMC9688668 DOI: 10.3390/cancers14225520] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/12/2022] Open
Abstract
The mammalian target of rapamycin (mTOR) is a highly conserved serine/threonine-protein kinase, which regulates many biological processes related to metabolism, cancer, immune function, and aging. It is an essential protein kinase that belongs to the phosphoinositide-3-kinase (PI3K) family and has two known signaling complexes, mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2). Even though mTOR signaling plays a critical role in promoting mitochondria-related protein synthesis, suppressing the catabolic process of autophagy, contributing to lipid metabolism, engaging in ribosome formation, and acting as a critical regulator of mRNA translation, it remains one of the significant signaling systems involved in the tumor process, particularly in apoptosis, cell cycle, and cancer cell proliferation. Therefore, the mTOR signaling system could be suggested as a cancer biomarker, and its targeting is important in anti-tumor therapy research. Indeed, its dysregulation is involved in different types of cancers such as colon, neck, cervical, head, lung, breast, reproductive, and bone cancers, as well as nasopharyngeal carcinoma. Moreover, recent investigations showed that targeting mTOR could be considered as cancer therapy. Accordingly, this review presents an overview of recent developments associated with the mTOR signaling pathway and its molecular involvement in various human cancer types. It also summarizes the research progress of different mTOR inhibitors, including natural and synthetised compounds and their main mechanisms, as well as the rational combinations with immunotherapies.
Collapse
Affiliation(s)
- Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat 10106, Morocco
| | - Aicha El Allam
- Department of Immunology, Yale University School of Medicine, 333 Cedars Street, TAC S610, New Haven, CT 06519, USA
| | - Sara Aboulaghras
- Physiology and Physiopathology Team, Faculty of Sciences, Genomic of Human Pathologies Research, Mohammed V University in Rabat, Rabat 10106, Morocco
| | - Saad Bakrim
- Geo-Bio-Environment Engineering and Innovation Laboratory, Molecular Engineering, Biotechnologies and Innovation Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir 80000, Morocco
| | - Naoual El Menyiy
- Laboratory of Pharmacology, National Agency of Medicinal and Aromatic Plants, Taounate 34025, Morocco
| | - Mohammed Merae Alshahrani
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, 1988, Najran 61441, Saudi Arabia
| | - Ahmed Abdullah Al Awadh
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, 1988, Najran 61441, Saudi Arabia
| | - Taoufiq Benali
- Environment and Health Team, Polydisciplinary Faculty of Safi, Cadi Ayyad University, Sidi Bouzid B.P. 4162, Morocco
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat 10100, Morocco
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai 71800, Malaysia
| | - Long Chiau Ming
- Pengiran Anak Puteri Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong BE1410, Brunei
| | | |
Collapse
|
23
|
Al-Mansour M. Treatment Landscape of Relapsed/Refractory Mantle Cell Lymphoma: An Updated Review. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2022; 22:e1019-e1031. [PMID: 36068158 DOI: 10.1016/j.clml.2022.07.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/22/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Mantle cell lymphoma (MCL) accounts for nearly 2-6% of all non-Hodgkin lymphoma (NHL) cases, with a steady incidence increase over the past few decades. Although many patients achieve an adequate response to the upfront treatment, the short duration of remission with rapid relapse is challenging during MCL management. In this regard, there is no consensus on the best treatment options for relapsed/refractory (R/R) disease, and the international guidelines demonstrate wide variations in the recommended approaches. The last decade has witnessed the introduction of new agents in the treatment landscape of R/R MCL. Since the introduction of Bruton's tyrosine kinase (BTK) inhibitors, the treatment algorithm and response of R/R MCL patients have dramatically changed. Nevertheless, BTK resistance is common, necessitating further investigations to develop novel agents with a more durable response. Novel agents targeting the B-cell receptor (BCR) signaling have exhibited clinical activity and a well-tolerable safety profile. However, as the responses to these novel agents are still modest in most clinical trials, combination strategies were investigated in pre-clinical and early clinical settings to determine whether the combination of novel agents would exhibit a better durable response than single agents. In this report, we provide an updated literature review that covers recent clinical data about the safety and efficacy of novel therapies for the management of R/R MCL.
Collapse
Affiliation(s)
- Mubarak Al-Mansour
- Adult Medical Oncology, Princess Noorah Oncology Center, Jeddah, Saudi Arabia; College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia.
| |
Collapse
|
24
|
Ali ES, Mitra K, Akter S, Ramproshad S, Mondal B, Khan IN, Islam MT, Sharifi-Rad J, Calina D, Cho WC. Recent advances and limitations of mTOR inhibitors in the treatment of cancer. Cancer Cell Int 2022; 22:284. [PMID: 36109789 PMCID: PMC9476305 DOI: 10.1186/s12935-022-02706-8] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
The PI3K-Akt-mechanistic (formerly mammalian) target of the rapamycin (mTOR) signaling pathway is important in a variety of biological activities, including cellular proliferation, survival, metabolism, autophagy, and immunity. Abnormal PI3K-Akt-mTOR signalling activation can promote transformation by creating a cellular environment conducive to it. Deregulation of such a system in terms of genetic mutations and amplification has been related to several human cancers. Consequently, mTOR has been recognized as a key target for the treatment of cancer, especially for treating cancers with elevated mTOR signaling due to genetic or metabolic disorders. In vitro and in vivo, rapamycin which is an immunosuppressant agent actively suppresses the activity of mTOR and reduces cancer cell growth. As a result, various sirolimus-derived compounds have now been established as therapies for cancer, and now these medications are being investigated in clinical studies. In this updated review, we discuss the usage of sirolimus-derived compounds and other drugs in several preclinical or clinical studies as well as explain some of the challenges involved in targeting mTOR for treating various human cancers.
Collapse
|
25
|
Parmar UM, Jalgaonkar MP, Kulkarni YA, Oza MJ. Autophagy-nutrient sensing pathways in diabetic complications. Pharmacol Res 2022; 184:106408. [PMID: 35988870 DOI: 10.1016/j.phrs.2022.106408] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/05/2022] [Accepted: 08/16/2022] [Indexed: 11/24/2022]
Abstract
The incidence of diabetes has been increasing in recent decades which is affecting the population of both, developed and developing countries. Diabetes is associated with micro and macrovascular complications which predominantly result from hyperglycemia and disrupted metabolic pathways. Persistent hyperglycemia leads to increased reactive oxygen species (ROS) generation, formation of misfolded and abnormal proteins, and disruption of normal cellular functioning. The inability to maintain metabolic homeostasis under excessive energy and nutrient input, which induces insulin resistance, is a crucial feature during the transition from obesity to diabetes. According to various study reports, redox alterations, intracellular stress and chronic inflammation responses have all been linked to dysregulated energy metabolism and insulin resistance. Autophagy has been considered a cleansing mechanism to prevent these anomalies and restore cellular homeostasis. However, disrupted autophagy has been linked to the pathogenesis of metabolic disorders such as obesity and diabetes. Recent studies have reported that the regulation of autophagy has a beneficial role against these conditions. When there is plenty of food, nutrient-sensing pathways activate anabolism and storage, but the shortage of food activates homeostatic mechanisms like autophagy, which mobilises internal stockpiles. These nutrient-sensing pathways are well conserved in eukaryotes and are involved in the regulation of autophagy which includes SIRT1, mTOR and AMPK. The current review focuses on the role of SIRT1, mTOR and AMPK in regulating autophagy and suggests autophagy along with these nutrient-sensing pathways as potential therapeutic targets in reducing the progression of various diabetic complications.
Collapse
Affiliation(s)
- Urvi M Parmar
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai 400056, India
| | - Manjiri P Jalgaonkar
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai 400056, India
| | - Yogesh A Kulkarni
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, Mumbai 400056, India
| | - Manisha J Oza
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai 400056, India.
| |
Collapse
|
26
|
Marash I, Leibman‐Markus M, Gupta R, Avni A, Bar M. TOR inhibition primes immunity and pathogen resistance in tomato in a salicylic acid-dependent manner. MOLECULAR PLANT PATHOLOGY 2022; 23:1035-1047. [PMID: 35441436 PMCID: PMC9190978 DOI: 10.1111/mpp.13207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 02/08/2022] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
All organisms need to sense and process information about the availability of nutrients, energy status, and environmental cues to determine the best time for growth and development. The conserved target of rapamycin (TOR) protein kinase has a central role in sensing and perceiving nutritional information. TOR connects environmental information about nutrient availability to developmental and metabolic processes to maintain cellular homeostasis. Under favourable energy conditions, TOR is activated and promotes anabolic processes such as cell division, while suppressing catabolic processes. Conversely, when nutrients are limited or environmental stresses are present, TOR is inactivated, and catabolic processes are promoted. Given the central role of TOR in regulating metabolism, several previous works have examined whether TOR is wired to plant defence. To date, the mechanisms by which TOR influences plant defence are not entirely clear. Here, we addressed this question by testing the effect of inhibiting TOR on immunity and pathogen resistance in tomato. Examining which hormonal defence pathways are influenced by TOR, we show that tomato immune responses and disease resistance to several pathogens increase on TOR inhibition, and that TOR inhibition-mediated resistance probably requires a functional salicylic acid, but not jasmonic acid, pathway. Our results support the notion that TOR is a master regulator of the development-defence switch in plants.
Collapse
Affiliation(s)
- Iftah Marash
- Department of Plant Pathology and Weed ResearchAgricultural Research OrganizationVolcani InstituteBet DaganIsrael
- School of Plant Science and Food SecurityTel‐Aviv UniversityTel‐AvivIsrael
| | - Meirav Leibman‐Markus
- Department of Plant Pathology and Weed ResearchAgricultural Research OrganizationVolcani InstituteBet DaganIsrael
| | - Rupali Gupta
- Department of Plant Pathology and Weed ResearchAgricultural Research OrganizationVolcani InstituteBet DaganIsrael
| | - Adi Avni
- School of Plant Science and Food SecurityTel‐Aviv UniversityTel‐AvivIsrael
| | - Maya Bar
- Department of Plant Pathology and Weed ResearchAgricultural Research OrganizationVolcani InstituteBet DaganIsrael
| |
Collapse
|
27
|
Li X, Wang J, Lin W, Yuan Q, Lu Y, Wang H, Chen Y, Chen L, Dai P, Long H, Li X. circEXOC6B interacting with RRAGB, an mTORC1 activator, inhibits the progression of colorectal cancer by antagonizing the HIF1A-RRAGB-mTORC1 positive feedback loop. Mol Cancer 2022; 21:135. [PMID: 35739524 PMCID: PMC9219196 DOI: 10.1186/s12943-022-01600-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND In recent years, an increasing number of studies have indicated that circular RNA plays crucial roles in regulating tumor development and chemoresistance. Using two high-throughput RNA sequence datasets, we previously found that circEXOC6B was downregulated in colon cancer. However, its role and mechanism in colorectal cancer (CRC) remained unknown. METHODS Real-time quantitative PCR was used to examine the expression of circEXOC6B in CRC tissues. In vivo and in vitro functional experiments were performed to determine the suppressor role of circEXOC6B in CRC progression. RNA pull-down, mass spectrometry, RNA-binding protein immunoprecipitation, co-immunoprecipitation, fluorescence in situ hybridization, and immunofluorescence were applied to investigate the possible mechanisms connecting circEXOC6B to CRC growth and 5-fluorouracil-induced apoptosis. Chromatin immunoprecipitation, dual-luciferase assay, western blot, and immunohistochemistry were used to explore the mechanisms underlying the HIF1A regulation of RRAGB transcription. RESULTS circEXOC6B was downregulated in CRC tissues, and its lower expression was associated with poor prognosis of patients. Functional experiments showed that circEXOC6B inhibited growth and increased the 5-fluorouracil-induced apoptosis of CRC cells in vitro and in vivo. Mechanistically, circEXOC6B inhibited the heterodimer formation of RRAGB by binding to it, thereby suppressing the mTORC1 pathway and HIF1A level. In addition, HIF1A upregulated the transcription of RRAGB by binding to its promoter region. Altogether, the results demonstrated that a HIF1A-RRAGB-mTORC1 positive feedback loop drives tumor progression in CRC, which could be interrupted by circEXOC6B. CONCLUSIONS circEXOC6B inhibits the progression of CRC and enhances the chemosensitivity of CRC cells to 5-fluorouracil by antagonizing the HIF1A-RRAGB-mTORC1 positive feedback loop. circEXOC6B is a possible therapeutic target for CRC treatment.
Collapse
Affiliation(s)
- Xiaomin Li
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Department of Pathology, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
| | - Jianjun Wang
- Department of Histology and Embryology, Wannan Medical College, Wuhu, 241002, Anhui Province, China
| | - Weihao Lin
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Department of Pathology, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
| | - Qinzi Yuan
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Department of Pathology, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
| | - Yanxia Lu
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Department of Pathology, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
| | - Haowei Wang
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Department of Pathology, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
| | - Yujia Chen
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Department of Pathology, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
| | - Lixia Chen
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Department of Pathology, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
| | - Peiling Dai
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Department of Pathology, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
| | - Huaicheng Long
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Department of Pathology, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
| | - Xuenong Li
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Department of Pathology, Southern Medical University, Guangzhou, 510515, Guangdong Province, China.
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China.
| |
Collapse
|
28
|
Yang M, Lu Y, Piao W, Jin H. The Translational Regulation in mTOR Pathway. Biomolecules 2022; 12:biom12060802. [PMID: 35740927 PMCID: PMC9221026 DOI: 10.3390/biom12060802] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/23/2022] [Accepted: 05/30/2022] [Indexed: 12/12/2022] Open
Abstract
The mechanistic/mammalian target of rapamycin (mTOR) plays a master role in cell proliferation and growth in response to insulin, amino acids, energy levels, and oxygen. mTOR can coordinate upstream signals with downstream effectors, including transcriptional and translational apparatuses to regulate fundamental cellular processes such as energy utilization, protein synthesis, autophagy, cell growth, and proliferation. Of the above, protein synthesis is highly energy-consuming; thus, mRNA translation is under the tight and immediate control of mTOR signaling. The translational regulation driven by mTOR signaling mainly relies on eukaryotic translation initiation factor 4E (eIF4E)-binding protein (4E-BP), ribosomal protein S6 kinase (S6K), and its downstream players, which are significant in rapid cellular response to environmental change. mTOR signaling not only controls the general mRNA translation, but preferential mRNA translation as well. This means that mTOR signaling shows the stronger selectivity to particular target mRNAs. Some evidence has supported the contribution of 4E-BP and La-related proteins 1 (LARP1) to such translational regulation. In this review, we summarize the mTOR pathway and mainly focus on mTOR-mediated mRNA translational regulation. We introduce the major components of mTOR signaling and their functions in translational control in a general or particular manner, and describe how the specificity of regulation is coordinated. Furthermore, we summarize recent research progress and propose additional ideas for reference. Because the mTOR pathway is on the center of cell growth and metabolism, comprehensively understanding this pathway will contribute to the therapy of related diseases, including cancers, type 2 diabetes, obesity, and neurodegeneration.
Collapse
Affiliation(s)
| | | | | | - Hua Jin
- Correspondence: (W.P.); (H.J.)
| |
Collapse
|
29
|
Kawashima S, Joachim K, Abdelrahim M, Abudayyeh A, Jhaveri KD, Murakami N. Immune checkpoint inhibitors for solid organ transplant recipients: clinical updates. KOREAN JOURNAL OF TRANSPLANTATION 2022; 36:82-98. [PMID: 35919193 PMCID: PMC9296977 DOI: 10.4285/kjt.22.0013] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 11/22/2022] Open
Abstract
Transplant care continues to advance with increasing clinical experience and improvements in immunosuppressive therapy. As the population ages and long-term survival improves, transplant patient care has become more complex due to comorbidities, frailty, and the increased prevalence of cancer posttransplantation. Immune checkpoint inhibitors (ICIs) have become a standard treatment option for many cancers in non-transplant patients, but the use of ICIs in transplant patients is challenging due to the possibility of disrupting immune tolerance. However, over the past few years, ICIs have gradually started to be used in transplant patients as well. In this study, we review the current use of ICIs after all solid organ transplantation procedures (kidney, liver, heart, and lung). Increasing data suggest that the type and number of immunosuppressants may affect the risk of rejection after immunotherapy. Immunotherapy for cancer in transplant patients may be a feasible option for selected patients; however, prospective trials in specific organ transplant recipients are needed.
Collapse
Affiliation(s)
- Shun Kawashima
- Transplantation Research Center, Division of Renal Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Kole Joachim
- Transplantation Research Center, Division of Renal Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Maen Abdelrahim
- Section of GI Oncology, Department of Medical Oncology, Houston Methodist Cancer Center, Houston, TX, USA
| | - Ala Abudayyeh
- Section of Nephrology, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kenar D. Jhaveri
- Division of Kidney Diseases and Hypertension, Donald and Barbara Zucker School of Medicine at Hofstra/ Northwell, Great Neck, NY, USA
- Department of Internal Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, USA
| | - Naoka Murakami
- Transplantation Research Center, Division of Renal Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
30
|
Leclercq G, Steinhoff N, Haegel H, De Marco D, Bacac M, Klein C. Novel strategies for the mitigation of cytokine release syndrome induced by T cell engaging therapies with a focus on the use of kinase inhibitors. Oncoimmunology 2022; 11:2083479. [PMID: 35694193 PMCID: PMC9176235 DOI: 10.1080/2162402x.2022.2083479] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/16/2022] [Accepted: 05/25/2022] [Indexed: 11/03/2022] Open
Abstract
T cell engaging therapies, like CAR-T cells and T cell engagers, redirect T cells toward tumor cells, facilitating the formation of a cytotoxic synapse and resulting in subsequent tumor cell killing. T cell receptor or CAR-T downstream signaling triggers a release of pro-inflammatory cytokines, which can induce a Cytokine Release Syndrome (CRS). The incidence of CRS is still hardly predictable among individuals and remains one of the major dose-limiting safety liabilities associated with on-target activity of T cell engaging therapies. This emphasizes the need to elaborate mitigation strategies, which reduce cytokine release while retaining efficacy. Here, we review pre-clinical and clinical approaches applied for the management of CRS symptoms in the context of T cell engaging therapies, highlighting the use of tyrosine kinase inhibitors as an emerging mitigation strategy. In particular, we focus on the effects of Bruton's tyrosine kinase (BTK), Src family including Lck, mammalian target of rapamycin (mTOR) and Janus tyrosine kinase (JAK) inhibitors on T cell functionality and cytokine release, to provide a rationale for their use as mitigation strategies against CRS in the context of T cell engaging therapies.
Collapse
Affiliation(s)
- Gabrielle Leclercq
- Oncology Disease Therapeutic Area, Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development, pRED, Schlieren, Switzerland
| | - Nathalie Steinhoff
- Oncology Disease Therapeutic Area, Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development, pRED, Schlieren, Switzerland
| | - Hélène Haegel
- Phamaceutical Sciences, Roche Innovation Center Basel, Roche Pharmaceutical Research and Early Development, pRED, Basel, Switzerland
| | - Donata De Marco
- Phamaceutical Sciences, Roche Innovation Center Basel, Roche Pharmaceutical Research and Early Development, pRED, Basel, Switzerland
| | - Marina Bacac
- Oncology Disease Therapeutic Area, Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development, pRED, Schlieren, Switzerland
| | - Christian Klein
- Oncology Disease Therapeutic Area, Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development, pRED, Schlieren, Switzerland
| |
Collapse
|
31
|
Alam M, Shima H, Matsuo Y, Long NC, Matsumoto M, Ishii Y, Sato N, Sugiyama T, Nobuta R, Hashimoto S, Liu L, Kaneko MK, Kato Y, Inada T, Igarashi K. mTORC1-independent translation control in mammalian cells by methionine adenosyltransferase 2A and S-adenosylmethionine. J Biol Chem 2022; 298:102084. [PMID: 35636512 PMCID: PMC9243181 DOI: 10.1016/j.jbc.2022.102084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 11/21/2022] Open
Abstract
Methionine adenosyltransferase (MAT) catalyzes the synthesis of S-adenosylmethionine (SAM). As the sole methyl-donor for methylation of DNA, RNA, and proteins, SAM levels affect gene expression by changing methylation patterns. Expression of MAT2A, the catalytic subunit of isozyme MAT2, is positively correlated with proliferation of cancer cells; however, how MAT2A promotes cell proliferation is largely unknown. Given that the protein synthesis is induced in proliferating cells and that RNA and protein components of translation machinery are methylated, we tested here whether MAT2 and SAM are coupled with protein synthesis. By measuring ongoing protein translation via puromycin labeling, we revealed that MAT2A depletion or chemical inhibition reduced protein synthesis in HeLa and Hepa1 cells. Furthermore, overexpression of MAT2A enhanced protein synthesis, indicating that SAM is limiting under normal culture conditions. In addition, MAT2 inhibition did not accompany reduction in mechanistic target of rapamycin complex 1 activity but nevertheless reduced polysome formation. Polysome-bound RNA sequencing revealed that MAT2 inhibition decreased translation efficiency of some fraction of mRNAs. MAT2A was also found to interact with the proteins involved in rRNA processing and ribosome biogenesis; depletion or inhibition of MAT2 reduced 18S rRNA processing. Finally, quantitative mass spectrometry revealed that some translation factors were dynamically methylated in response to the activity of MAT2A. These observations suggest that cells possess an mTOR-independent regulatory mechanism that tunes translation in response to the levels of SAM. Such a system may acclimate cells for survival when SAM synthesis is reduced, whereas it may support proliferation when SAM is sufficient.
Collapse
Affiliation(s)
- Mahabub Alam
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Animal Science and Nutrition, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Hiroki Shima
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoshitaka Matsuo
- Division of RNA and Gene Regulation, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Nguyen Chi Long
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mitsuyo Matsumoto
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yusho Ishii
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Nichika Sato
- Division of RNA and Gene Regulation, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Takato Sugiyama
- Laboratory of Gene Regulation, Department of Molecular Biopharmacy and Genetics, Tohoku University Graduate School of Pharmaceutical Science, Sendai, Japan
| | - Risa Nobuta
- Laboratory of Gene Regulation, Department of Molecular Biopharmacy and Genetics, Tohoku University Graduate School of Pharmaceutical Science, Sendai, Japan
| | - Satoshi Hashimoto
- Laboratory of Gene Regulation, Department of Molecular Biopharmacy and Genetics, Tohoku University Graduate School of Pharmaceutical Science, Sendai, Japan
| | - Liang Liu
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Toshifumi Inada
- Division of RNA and Gene Regulation, Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| | - Kazuhiko Igarashi
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan.
| |
Collapse
|
32
|
Oleksak P, Nepovimova E, Chrienova Z, Musilek K, Patocka J, Kuca K. Contemporary mTOR inhibitor scaffolds to diseases breakdown: A patent review (2015–2021). Eur J Med Chem 2022; 238:114498. [DOI: 10.1016/j.ejmech.2022.114498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/16/2022] [Accepted: 05/26/2022] [Indexed: 02/06/2023]
|
33
|
Hsu CH, Lee KJ, Chiu YH, Huang KC, Wang GS, Chen LP, Liao KW, Lin CS. The Lysosome in Malignant Melanoma: Biology, Function and Therapeutic Applications. Cells 2022; 11:1492. [PMID: 35563798 PMCID: PMC9103375 DOI: 10.3390/cells11091492] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 02/04/2023] Open
Abstract
Lysosomes are membrane-bound vesicles that play roles in the degradation and recycling of cellular waste and homeostasis maintenance within cells. False alterations of lysosomal functions can lead to broad detrimental effects and cause various diseases, including cancers. Cancer cells that are rapidly proliferative and invasive are highly dependent on effective lysosomal function. Malignant melanoma is the most lethal form of skin cancer, with high metastasis characteristics, drug resistance, and aggressiveness. It is critical to understand the role of lysosomes in melanoma pathogenesis in order to improve the outcomes of melanoma patients. In this mini-review, we compile our current knowledge of lysosomes' role in tumorigenesis, progression, therapy resistance, and the current treatment strategies related to lysosomes in melanoma.
Collapse
Affiliation(s)
- Chia-Hsin Hsu
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan;
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Keng-Jung Lee
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA;
| | - Yi-Han Chiu
- Department of Microbiology, Soochow University, Taipei 10617, Taiwan;
| | - Kuo-Ching Huang
- Holistic Education Center, Mackay Medical College, New Taipei City 25245, Taiwan;
| | - Guo-Shou Wang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan; (G.-S.W.); (K.-W.L.)
| | - Lei-Po Chen
- Ph.D. Degree Program of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan;
| | - Kuang-Wen Liao
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan; (G.-S.W.); (K.-W.L.)
| | - Chen-Si Lin
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan;
| |
Collapse
|
34
|
Hou J, He Z, Liu T, Chen D, Wang B, Wen Q, Zheng X. Evolution of Molecular Targeted Cancer Therapy: Mechanisms of Drug Resistance and Novel Opportunities Identified by CRISPR-Cas9 Screening. Front Oncol 2022; 12:755053. [PMID: 35372044 PMCID: PMC8970599 DOI: 10.3389/fonc.2022.755053] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 02/17/2022] [Indexed: 12/14/2022] Open
Abstract
Molecular targeted therapy has revolutionized the landscape of cancer treatment due to better therapeutic responses and less systemic toxicity. However, therapeutic resistance is a major challenge in clinical settings that hinders continuous clinical benefits for cancer patients. In this regard, unraveling the mechanisms of drug resistance may identify new druggable genetic alterations for molecularly targeted therapies, thus contributing to improved therapeutic efficacies. The recent rapid development of novel methodologies including CRISPR-Cas9 screening technology and patient-derived models provides powerful tools to dissect the underlying mechanisms of resistance to targeted cancer therapies. In this review, we updated therapeutic targets undergoing preclinical and clinical evaluation for various cancer types. More importantly, we provided comprehensive elaboration of high throughput CRISPR-Cas9 screening in deciphering potential mechanisms of unresponsiveness to molecularly targeted therapies, which will shed light on the discovery of novel opportunities for designing next-generation anti-cancer drugs.
Collapse
Affiliation(s)
- Jue Hou
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Zongsheng He
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Tian Liu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Dongfeng Chen
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Bin Wang
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Qinglian Wen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xi Zheng
- Department of Gastroenterology, Chongqing University Cancer Hospital, Chongqing, China
| |
Collapse
|
35
|
An amino acid-defined diet impairs tumour growth in mice by promoting endoplasmic reticulum stress and mTOR inhibition. Mol Metab 2022; 60:101478. [PMID: 35367410 PMCID: PMC9014392 DOI: 10.1016/j.molmet.2022.101478] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/10/2022] [Accepted: 03/17/2022] [Indexed: 12/17/2022] Open
|
36
|
Dutta N, Pemmaraju DB, Ghosh S, Ali A, Mondal A, Majumder C, Nelson VK, Mandal SC, Misra AK, Rengan AK, Ravichandiran V, Che CT, Gurova KV, Gudkov AV, Pal M. Alkaloid-rich fraction of Ervatamia coronaria sensitizes colorectal cancer through modulating AMPK and mTOR signalling pathways. JOURNAL OF ETHNOPHARMACOLOGY 2022; 283:114666. [PMID: 34592338 DOI: 10.1016/j.jep.2021.114666] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/12/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ervatamia coronaria, a popular garden plant in India and some other parts of the world is known traditionally for its anti-inflammatory and anti-cancer properties. The molecular bases of these functions remain poorly understood. AIM OF THE STUDY Efficacies of the existing therapies for colorectal cancer (CRC) are limited by their life-threatening side effects and unaffordability. Therefore, identifying a safer, efficient, and affordable therapeutic is urgent. We studied the anti-CRC activity of an alkaloid-rich fraction of E. coronaria leaf extracts (AFE) and associated underlying mechanism. MATERIALS AND METHODS Activity guided solvant fractionation was adopted to identify the activity in AFE. Different cell lines, and tumor grown in syngeneic mice were used to understand the anti-CRC effect. Methodologies such as LCMS, MTT, RT-qPCR, immunoblot, immunohistochemistry were employed to understand the molecular basis of its activity. RESULTS We showed that AFE, which carries about six major compounds, is highly toxic to colorectal cancer (CRC) cells. AFE induced cell cycle arrest at G1 phase and p21 and p27 genes, while those of CDK2, CDK-4, cyclin-D, and cyclin-E genes were downregulated in HCT116 cells. It predominantly induced apoptosis in HCT116p53+/+ cells while the HCT116p53-/- cells under the same treatment condition died by autophagy. Notably, AFE induced upregulation of AMPK phosphorylation, and inhibition of both of the mTOR complexes as indicated by inhibition of phosphorylation of S6K1, 4EBP1, and AKT. Furthermore, AFE inhibited mTOR-driven conversion of cells from reversible cell cycle arrest to senescence (geroconversion) as well as ERK activity. AFE activity was independent of ROS produced, and did not primarily target the cellular DNA or cytoskeleton. AFE also efficiently regressed CT26-derived solid tumor in Balb/c mice acting alone or in synergy with 5FU through inducing autophagy as a major mechanism of action as indicated by upregulation of Beclin 1 and phospho-AMPK, and inhibition of phospho-S6K1 levels in the tumor tissue lysates. CONCLUSION AFE induced CRC death through activation of both apoptotic and autophagy pathways without affecting the normal cells. This study provided a logical basis for consideration of AFE in future therapy regimen to overcome the limitations associated with existing anti-CRC chemotherapy.
Collapse
Affiliation(s)
- Naibedya Dutta
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | - Deepak Bharadwaj Pemmaraju
- Division of Molecular Medicine, Bose Institute, Kolkata, India; Department of Biomedical Engineering, IIT, Hyderabad, India
| | - Suvranil Ghosh
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | - Asif Ali
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | - Ayan Mondal
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | | | - Vinod K Nelson
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Subhash C Mandal
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Anup K Misra
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | | | | | - Chun-Tao Che
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, USA
| | - Katerina V Gurova
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Andrei V Gudkov
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Mahadeb Pal
- Division of Molecular Medicine, Bose Institute, Kolkata, India.
| |
Collapse
|
37
|
Almansour NM. Triple-Negative Breast Cancer: A Brief Review About Epidemiology, Risk Factors, Signaling Pathways, Treatment and Role of Artificial Intelligence. Front Mol Biosci 2022; 9:836417. [PMID: 35145999 PMCID: PMC8824427 DOI: 10.3389/fmolb.2022.836417] [Citation(s) in RCA: 152] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/07/2022] [Indexed: 12/12/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a kind of breast cancer that lacks estrogen, progesterone, and human epidermal growth factor receptor 2. This cancer is responsible for more than 15-20% of all breast cancers and is of particular research interest as it is therapeutically challenging mainly because of its low response to therapeutics and highly invasive nature. The non-availability of specific treatment options for TNBC is usually managed by conventional therapy, which often leads to relapse. The focus of this review is to provide up-to-date information related to TNBC epidemiology, risk factors, metastasis, different signaling pathways, and the pathways that can be blocked, immune suppressive cells of the TNBC microenvironment, current and investigation therapies, prognosis, and the role of artificial intelligence in TNBC diagnosis. The data presented in this paper may be helpful for researchers working in the field to obtain general and particular information to advance the understanding of TNBC and provide suitable disease management in the future.
Collapse
Affiliation(s)
- Nahlah Makki Almansour
- Department of Biology, College of Science, University of Hafr Al Batin, Hafr Al Batin, Saudi Arabia
| |
Collapse
|
38
|
Sadria M, Seo D, Layton AT. The mixed blessing of AMPK signaling in Cancer treatments. BMC Cancer 2022; 22:105. [PMID: 35078427 PMCID: PMC8786626 DOI: 10.1186/s12885-022-09211-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 01/17/2022] [Indexed: 12/19/2022] Open
Abstract
Background Nutrient acquisition and metabolism pathways are altered in cancer cells to meet bioenergetic and biosynthetic demands. A major regulator of cellular metabolism and energy homeostasis, in normal and cancer cells, is AMP-activated protein kinase (AMPK). AMPK influences cell growth via its modulation of the mechanistic target of Rapamycin (mTOR) pathway, specifically, by inhibiting mTOR complex mTORC1, which facilitates cell proliferation, and by activating mTORC2 and cell survival. Given its conflicting roles, the effects of AMPK activation in cancer can be counter intuitive. Prior to the establishment of cancer, AMPK acts as a tumor suppressor. However, following the onset of cancer, AMPK has been shown to either suppress or promote cancer, depending on cell type or state. Methods To unravel the controversial roles of AMPK in cancer, we developed a computational model to simulate the effects of pharmacological maneuvers that target key metabolic signalling nodes, with a specific focus on AMPK, mTORC, and their modulators. Specifically, we constructed an ordinary differential equation-based mechanistic model of AMPK-mTORC signaling, and parametrized the model based on existing experimental data. Results Model simulations were conducted to yield the following predictions: (i) increasing AMPK activity has opposite effects on mTORC depending on the nutrient availability; (ii) indirect inhibition of AMPK activity through inhibition of sirtuin 1 (SIRT1) only has an effect on mTORC activity under conditions of low nutrient availability; (iii) the balance between cell proliferation and survival exhibits an intricate dependence on DEP domain-containing mTOR-interacting protein (DEPTOR) abundance and AMPK activity; (iv) simultaneous direct inhibition of mTORC2 and activation of AMPK is a potential strategy for suppressing both cell survival and proliferation. Conclusions Taken together, model simulations clarify the competing effects and the roles of key metabolic signalling pathways in tumorigenesis, which may yield insights on innovative therapeutic strategies. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09211-1.
Collapse
|
39
|
Effect of FKBP12-Derived Intracellular Peptides on Rapamycin-Induced FKBP-FRB Interaction and Autophagy. Cells 2022; 11:cells11030385. [PMID: 35159195 PMCID: PMC8834644 DOI: 10.3390/cells11030385] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 02/04/2023] Open
Abstract
Intracellular peptides (InPeps) generated by proteasomes were previously suggested as putative natural regulators of protein-protein interactions (PPI). Here, the main aim was to investigate the intracellular effects of intracellular peptide VFDVELL (VFD7) and related peptides on PPI. The internalization of the peptides was achieved using a C-terminus covalently bound cell-penetrating peptide (cpp; YGRKKRRQRRR). The possible inhibition of PPI was investigated using a NanoBiT® luciferase structural complementation reporter system, with a pair of plasmids vectors each encoding, simultaneously, either FK506-binding protein (FKBP) or FKBP-binding domain (FRB) of mechanistic target of rapamycin complex 1 (mTORC1). The interaction of FKBP-FRB within cells occurs under rapamycin induction. Results shown that rapamycin-induced interaction between FKBP-FRB within human embryonic kidney 293 (HEK293) cells was inhibited by VFD7-cpp (10-500 nM) and FDVELLYGRKKRRQRRR (VFD6-cpp; 1-500 nM); additional VFD7-cpp derivatives were either less or not effective in inhibiting FKBP-FRB interaction induced by rapamycin. Molecular dynamics simulations suggested that selected peptides, such as VFD7-cpp, VFD6-cpp, VFAVELLYGRKKKRRQRRR (VFA7-cpp), and VFEVELLYGRKKKRRQRRR (VFA7-cpp), bind to FKBP and to FRB protein surfaces. However, only VFD7-cpp and VFD6-cpp induced changes on FKBP structure, which could help with understanding their mechanism of PPI inhibition. InPeps extracted from HEK293 cells were found mainly associated with macromolecular components (i.e., proteins and/or nucleic acids), contributing to understanding InPeps' intracellular proteolytic stability and mechanism of action-inhibiting PPI within cells. In a model of cell death induced by hypoxia-reoxygenation, VFD6-cpp (1 µM) increased the viability of mouse embryonic fibroblasts cells (MEF) expressing mTORC1-regulated autophagy-related gene 5 (Atg5), but not in autophagy-deficient MEF cells lacking the expression of Atg5. These data suggest that VFD6-cpp could have therapeutic applications reducing undesired side effects of rapamycin long-term treatments. In summary, the present report provides further evidence that InPeps have biological significance and could be valuable tools for the rational design of therapeutic molecules targeting intracellular PPI.
Collapse
|
40
|
Yu PC, Huang CH, Kuo CJ, Liang PH, Wang LHC, Pan MYC, Chang SY, Chao TL, Ieong SM, Fang JT, Huang HC, Juan HF. Drug Repurposing for the Identification of Compounds with Anti-SARS-CoV-2 Capability via Multiple Targets. Pharmaceutics 2022; 14:176. [PMID: 35057070 PMCID: PMC8779140 DOI: 10.3390/pharmaceutics14010176] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/27/2021] [Accepted: 01/07/2022] [Indexed: 02/07/2023] Open
Abstract
Since 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been rapidly spreading worldwide, causing hundreds of millions of infections. Despite the development of vaccines, insufficient protection remains a concern. Therefore, the screening of drugs for the treatment of coronavirus disease 2019 (COVID-19) is reasonable and necessary. This study utilized bioinformatics for the selection of compounds approved by the U.S. Food and Drug Administration with therapeutic potential in this setting. In addition, the inhibitory effect of these compounds on the enzyme activity of transmembrane protease serine 2 (TMPRSS2), papain-like protease (PLpro), and 3C-like protease (3CLpro) was evaluated. Furthermore, the capability of compounds to attach to the spike-receptor-binding domain (RBD) was considered an important factor in the present assessment. Finally, the antiviral potency of compounds was validated using a plaque reduction assay. Our funnel strategy revealed that tamoxifen possesses an anti-SARS-CoV-2 property owing to its inhibitory performance in multiple assays. The proposed time-saving and feasible strategy may accelerate drug screening for COVID-19 and other diseases.
Collapse
Affiliation(s)
- Pei-Chen Yu
- Department of Life Science and Institute of Molecular and Cellular Biology, National Taiwan University, Taipei 10617, Taiwan;
| | - Chen-Hao Huang
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan;
| | - Chih-Jung Kuo
- Department of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan;
| | - Po-Huang Liang
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan;
- Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
| | - Lily Hui-Ching Wang
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 30004, Taiwan; (L.H.-C.W.); (M.Y.-C.P.)
| | - Max Yu-Chen Pan
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 30004, Taiwan; (L.H.-C.W.); (M.Y.-C.P.)
| | - Sui-Yuan Chang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, Taipei 10048, Taiwan; (S.-Y.C.); (T.-L.C.); (S.-M.I.); (J.-T.F.)
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan
| | - Tai-Ling Chao
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, Taipei 10048, Taiwan; (S.-Y.C.); (T.-L.C.); (S.-M.I.); (J.-T.F.)
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Si-Man Ieong
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, Taipei 10048, Taiwan; (S.-Y.C.); (T.-L.C.); (S.-M.I.); (J.-T.F.)
| | - Jun-Tung Fang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, Taipei 10048, Taiwan; (S.-Y.C.); (T.-L.C.); (S.-M.I.); (J.-T.F.)
| | - Hsuan-Cheng Huang
- Institute of Biomedical Informatics, National Yang Ming Chaio Tung University, Taipei 11230, Taiwan
| | - Hsueh-Fen Juan
- Department of Life Science and Institute of Molecular and Cellular Biology, National Taiwan University, Taipei 10617, Taiwan;
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan;
- Center for Computational and Systems Biology, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
41
|
AlRowis R, Aldawood A, AlOtaibi M, Alnasser E, AlSaif I, Aljaber A, Natto Z. Medication-Related Osteonecrosis of the Jaw (MRONJ): A Review of Pathophysiology, Risk Factors, Preventive Measures and Treatment Strategies. Saudi Dent J 2022; 34:202-210. [PMID: 35935720 PMCID: PMC9346931 DOI: 10.1016/j.sdentj.2022.01.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 01/03/2022] [Accepted: 01/12/2022] [Indexed: 12/05/2022] Open
Abstract
Medication-related osteonecrosis of the jaw (MRONJ) is a major problem that can occur in people taking certain medications such bisphosphonates and denosumab. It can be used to treat osteoporosis or cancer. Bisphosphonate exposure, dental diseases and procedures, age, sex, anatomical factors, medical issues, and hereditary factors are all variables that enhance the risk of MRONJ. Even though MRONJ and antiresorptive medications have a close association, the pathophysiology of MRONJ is unknown. Careful dental preparation and oral hygiene instructions significantly minimize the risk of osteonecrosis of the jaw (ONJ). It is ideal to start antiresorptive treatment after the completion of required dental treatment; it is not contraindicated and carries low risk in patients who are on oral antiresorptive medications for less than three years. Drug holidays are one proposed solution to address MRONJ. However, there is still inadequate evidence to support their effectiveness. The objectives of this literature review are to recognize the main diagnostic principles and risk factors and to review the pathophysiology, protective procedures and treatment modalities related to MRONJ. The following topics are covered in the review: epidemiology, diagnostic criteria, risk factors, pathogenesis and mechanism, MRONJ staging and symptoms, clinical and radiographic findings, treatment strategies, prevention and drug holiday.
Collapse
Affiliation(s)
- Raed AlRowis
- Department of Periodontics and Community Dentistry, College of Dentistry, King Saud University, Saudi Arabia
| | | | | | - Essam Alnasser
- Intern. College of Dentistry, King Saud University, Saudi Arabia
| | - Ibrahim AlSaif
- Intern. College of Dentistry, King Saud University, Saudi Arabia
| | - Abdullah Aljaber
- Intern. College of Dentistry, King Saud University, Saudi Arabia
| | - Zuhair Natto
- Department of Dental Public Health, School of Dentistry, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| |
Collapse
|
42
|
Bracic Tomazic S, Schatz C, Haybaeck J. Translational Regulation in Hepatocellular Carcinogenesis. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:4359-4369. [PMID: 34703211 PMCID: PMC8523516 DOI: 10.2147/dddt.s255582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 10/04/2021] [Indexed: 12/17/2022]
Abstract
The mortality of hepatocellular carcinoma (HCC) is distributed unevenly worldwide. One of the major causes is hepatitis B or hepatitis C virus infection and the development and progression of liver cirrhosis. The carcinogenesis of HCC is among others regulated via the mTOR (mechanistic target of rapamycin) signaling pathway and represents a possible method of targeted treatment. The aim of our article was to address the most recent clinical advances and findings of basic studies on the mTOR signaling pathway and the involved factors. Risk factors play a key role in dysregulation of the signaling pathway, where both mTORCs are upregulated and protein synthesis is altered. eIFs and, to a lesser extent, eEFs play an essential role in this process. Whether the factor will be upregulated or downregulated, among others, depends on hepatitis B/C virus infection. The amount of a particular factor in a patient sample lets us know whether HCC recurrence will occur, what is the likelihood of chemoresistance, and what outcome is predicted for patients with an increased value. Our analysis shows that in addition to mTOR, eIF3, eIF4, and eIF5 play an important role, as they can serve as biomarkers for non- and virus-related HCC.
Collapse
Affiliation(s)
- Suzana Bracic Tomazic
- Department of Pathology, Hospital Graz II, Graz, 8020, Austria.,Faculty of Medicine, University of Maribor, Maribor, 2000, Slovenia
| | - Christoph Schatz
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, Innsbruck, 6020, Austria
| | - Johannes Haybaeck
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, Innsbruck, 6020, Austria.,Diagnostic & Research Center for Molecular BioMedicine, Institute of Pathology, Medical University Graz, Graz, 8010, Austria
| |
Collapse
|
43
|
Sun L, Yan Y, Lv H, Li J, Wang Z, Wang K, Wang L, Li Y, Jiang H, Zhang Y. Rapamycin targets STAT3 and impacts c-Myc to suppress tumor growth. Cell Chem Biol 2021; 29:373-385.e6. [PMID: 34706270 DOI: 10.1016/j.chembiol.2021.10.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/28/2021] [Accepted: 10/01/2021] [Indexed: 12/25/2022]
Abstract
Rapamycin is widely recognized as an inhibitor of mTOR, and has been approved for clinical use as an immunosuppressant. Its potencies in anti-cancer, anti-aging, and neurodegenerative diseases are emergingly established. The exploration of other targets of rapamycin will further elucidate its underlying mechanisms of action. In this study, we use a chemical proteomics strategy that has identified STAT3, a transcription factor considered to be undruggable, as a direct functional protein target of rapamycin. Together with other multi-dimensional proteomics data, we show that rapamycin treatment in cell culture significantly inhibits c-Myc-regulated gene expression. Furthermore, we show that rapamycin suppresses tumor growth along with a decreased expression of STAT3 and c-Myc in an in vivo xenograft mouse model for hepatocellular carcinoma. Our data suggest that rapamycin acts directly on STAT3 to decrease its transcription activity, providing important information for the pharmacological and pharmaceutical development of STAT3 inhibitors for cancer therapy.
Collapse
Affiliation(s)
- Le Sun
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Road, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Yan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Road, Shanghai 201210, China
| | - Heng Lv
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Road, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianlong Li
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Road, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiyuan Wang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Road, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kun Wang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Road, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Wang
- ShanghaiTech University, Shanghai 201210, China
| | - Yunxia Li
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Road, Shanghai 201210, China
| | - Hong Jiang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Road, Shanghai 201210, China
| | - Yaoyang Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Road, Shanghai 201210, China.
| |
Collapse
|
44
|
Giordano F, Lenna S, Rampado R, Brozovich A, Hirase T, Tognon MG, Martini F, Agostini M, Yustein JT, Taraballi F. Nanodelivery Systems Face Challenges and Limitations in Bone Diseases Management. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Federica Giordano
- Center for Musculoskeletal Regeneration Houston Methodist Academic Institute, Houston Methodist 6670 Bertner Ave Houston TX 77030 USA
- Orthopedics and Sports Medicine Houston Methodist Hospital Houston Methodist, 6565 Fannin Street Houston TX 77030 USA
| | - Stefania Lenna
- Center for Musculoskeletal Regeneration Houston Methodist Academic Institute, Houston Methodist 6670 Bertner Ave Houston TX 77030 USA
- Orthopedics and Sports Medicine Houston Methodist Hospital Houston Methodist, 6565 Fannin Street Houston TX 77030 USA
| | - Riccardo Rampado
- Center for Musculoskeletal Regeneration Houston Methodist Academic Institute, Houston Methodist 6670 Bertner Ave Houston TX 77030 USA
- Orthopedics and Sports Medicine Houston Methodist Hospital Houston Methodist, 6565 Fannin Street Houston TX 77030 USA
- First Surgical Clinic Section, Department of Surgical Oncological and Gastroenterological Sciences, University of Padua Padua 35124 Italy
- Nano‐Inspired Biomedicine Laboratory Institute of Pediatric Research—Città della Speranza Padua Italy
| | - Ava Brozovich
- Center for Musculoskeletal Regeneration Houston Methodist Academic Institute, Houston Methodist 6670 Bertner Ave Houston TX 77030 USA
- Orthopedics and Sports Medicine Houston Methodist Hospital Houston Methodist, 6565 Fannin Street Houston TX 77030 USA
- Texas A&M College of Medicine 8447 Highway 47 Bryan TX 77807 USA
| | - Takashi Hirase
- Center for Musculoskeletal Regeneration Houston Methodist Academic Institute, Houston Methodist 6670 Bertner Ave Houston TX 77030 USA
- Orthopedics and Sports Medicine Houston Methodist Hospital Houston Methodist, 6565 Fannin Street Houston TX 77030 USA
| | - Mauro G. Tognon
- Section of Experimental Medicine, Department of Medical Sciences, School of Medicine University of Ferrara Ferrara Italy
| | - Fernanda Martini
- Section of Experimental Medicine, Department of Medical Sciences, School of Medicine University of Ferrara Ferrara Italy
| | - Marco Agostini
- First Surgical Clinic Section, Department of Surgical Oncological and Gastroenterological Sciences, University of Padua Padua 35124 Italy
- Nano‐Inspired Biomedicine Laboratory Institute of Pediatric Research—Città della Speranza Padua Italy
| | - Jason T. Yustein
- Texas Children's Cancer and Hematology Centers and The Faris D. Virani Ewing Sarcoma Center Baylor College of Medicine Houston TX 77030 USA
| | - Francesca Taraballi
- Center for Musculoskeletal Regeneration Houston Methodist Academic Institute, Houston Methodist 6670 Bertner Ave Houston TX 77030 USA
- Orthopedics and Sports Medicine Houston Methodist Hospital Houston Methodist, 6565 Fannin Street Houston TX 77030 USA
| |
Collapse
|
45
|
Braun C, Weichhart T. mTOR-dependent immunometabolism as Achilles' heel of anticancer therapy. Eur J Immunol 2021; 51:3161-3175. [PMID: 34648202 DOI: 10.1002/eji.202149270] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/07/2021] [Accepted: 10/06/2021] [Indexed: 12/14/2022]
Abstract
Immune cells are important constituents of the tumor microenvironment and essential in eradicating tumor cells during conventional therapies or novel immunotherapies. The mechanistic target of rapamycin (mTOR) signaling pathway senses the intra- and extracellular nutrient status, growth factor supply, and cell stress-related changes to coordinate cellular metabolism and activation dictating effector and memory functions in mainly all hematopoietic immune cells. In addition, the mTOR complex 1 (mTORC1) and mTORC2 are frequently deregulated and become activated in cancer cells to drive cell transformation, survival, neovascularization, and invasion. In this review, we provide an overview of the influence of mTOR complexes on immune and cancer cell function and metabolism. We discuss how mTOR inhibitors aiming to target cancer cells will influence immunometabolic cell functions participating either in antitumor responses or favoring tumor cell progression in individual immune cells. We suggest immunometabolism as the weak spot of anticancer therapy and propose to evaluate patients according to their predominant immune cell subtype in the cancer tissue. Advances in metabolic drug development that hold promise for more effective treatments in different types of cancer will have to consider their effects on the immune system.
Collapse
Affiliation(s)
- Clarissa Braun
- Center of Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria.,Clinical Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Thomas Weichhart
- Center of Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
46
|
Shams R, Ito Y, Miyatake H. Mapping of mTOR drug targets: Featured platforms for anti-cancer drug discovery. Pharmacol Ther 2021; 232:108012. [PMID: 34624427 DOI: 10.1016/j.pharmthera.2021.108012] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/25/2021] [Accepted: 09/28/2021] [Indexed: 12/12/2022]
Abstract
The mammalian/mechanistic target of rapamycin (mTOR) is a regulatory protein kinase involved in cell growth and proliferation. mTOR is usually assembled in two different complexes with different regulatory mechanisms, mTOR complex 1 (mTORC1) and mTORC2, which are involved in different functions such as cell proliferation and cytoskeleton assembly, respectively. In cancer cells, mTOR is hyperactivated in response to metabolic alterations and/or oncogenic signals to overcome the stressful microenvironments. Therefore, recent research progress for mTOR inhibition involves a variety of compounds that have been developed to disturb the metabolic processes of cancer cells through mTOR inhibition. In addition to competitive or allosteric inhibition, a new inhibition strategy that emerged mTOR complexes destabilization has recently been a concern. Here, we review the history of mTOR and its inhibition, along with the timeline of the mTOR inhibitors. We also introduce prospective drug targets to inhibit mTOR by disrupting the complexation of the components with peptides and small molecules.
Collapse
Affiliation(s)
- Raef Shams
- Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, RIKEN, Wako, Saitama 351-0198, Japan; Department of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan.
| | - Yoshihiro Ito
- Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, RIKEN, Wako, Saitama 351-0198, Japan; Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, RIKEN, Wako, Saitama 351-0198, Japan
| | - Hideyuki Miyatake
- Department of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan; Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, RIKEN, Wako, Saitama 351-0198, Japan.
| |
Collapse
|
47
|
Venkataraman V, Massoth LR, Sullivan RJ, Friedmann AM. Secondary histiocytic sarcoma with BRAF V600E mutation responsive to MAPK-targeted therapy presenting with recurrence with mTOR mutation responsive to mTOR-targeted therapy. Pediatr Blood Cancer 2021; 68:e29166. [PMID: 34061432 DOI: 10.1002/pbc.29166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/13/2021] [Accepted: 05/19/2021] [Indexed: 12/16/2022]
Affiliation(s)
- Vinayak Venkataraman
- Departments of Medicine and Pediatrics, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Lucas R Massoth
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Ryan J Sullivan
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Alison M Friedmann
- Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
48
|
Fleyshman DI, Wakshlag JJ, Huson HJ, Loftus JP, Olby NJ, Brodsky L, Gudkov AV, Andrianova EL. Development of infrastructure for a systemic multidisciplinary approach to study aging in retired sled dogs. Aging (Albany NY) 2021; 13:21814-21837. [PMID: 34587118 PMCID: PMC8507265 DOI: 10.18632/aging.203600] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/25/2021] [Indexed: 12/14/2022]
Abstract
Canines represent a valuable model for mammalian aging studies as large animals with short lifespans, allowing longitudinal analyses within a reasonable time frame. Moreover, they develop a spectrum of aging-related diseases resembling that of humans, are exposed to similar environments, and have been reasonably well studied in terms of physiology and genetics. To overcome substantial variables that complicate studies of privately-owned household dogs, we have focused on a more uniform population composed of retired Alaskan sled dogs that shared similar lifestyles, including exposure to natural stresses, and are less prone to breed-specific biases than a pure breed population. To reduce variability even further, we have collected a population of 103 retired (8-11 years-old) sled dogs from multiple North American kennels in a specialized research facility named Vaika. Vaika dogs are maintained under standardized conditions with professional veterinary care and participate in a multidisciplinary program to assess the longitudinal dynamics of aging. The established Vaika infrastructure enables periodic gathering of quantitative data reflecting physical, physiological, immunological, neurological, and cognitive decline, as well as monitoring of aging-associated genetic and epigenetic alterations occurring in somatic cells. In addition, we assess the development of age-related diseases such as arthritis and cancer. In-depth data analysis, including artificial intelligence-based approaches, will build a comprehensive, integrated model of canine aging and potentially identify aging biomarkers that will allow use of this model for future testing of antiaging therapies.
Collapse
Affiliation(s)
| | - Joseph J Wakshlag
- Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Heather J Huson
- Cornell University College of Agriculture and Life Sciences, Ithaca, NY 14853, USA
| | - John P Loftus
- Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Natasha J Olby
- North Carolina State University College of Veterinary Medicine, Raleigh, NC 27606, USA
| | - Leonid Brodsky
- Tauber Bioinformatic Research Center, University of Haifa, Haifa, Israel
| | - Andrei V Gudkov
- Vaika, Inc., East Aurora, NY 14052, USA.,Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | | |
Collapse
|
49
|
Yang G, Francis D, Krycer JR, Larance M, Zhang Z, Novotny CJ, Diaz-Vegas A, Shokat KM, James DE. Dissecting the biology of mTORC1 beyond rapamycin. Sci Signal 2021; 14:eabe0161. [PMID: 34546793 DOI: 10.1126/scisignal.abe0161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Guang Yang
- University of Sydney, School of life and Environmental Sciences, Charles Perkins Centre, Sydney, New South Wales 2006, Australia
| | - Deanne Francis
- University of Sydney, School of life and Environmental Sciences, Charles Perkins Centre, Sydney, New South Wales 2006, Australia
| | - James R Krycer
- University of Sydney, School of life and Environmental Sciences, Charles Perkins Centre, Sydney, New South Wales 2006, Australia
| | - Mark Larance
- University of Sydney, School of life and Environmental Sciences, Charles Perkins Centre, Sydney, New South Wales 2006, Australia
| | - Ziyang Zhang
- Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, University of California, San Francisco, 600 16th Street, San Francisco, CA 94143, USA
| | - Chris J Novotny
- Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, University of California, San Francisco, 600 16th Street, San Francisco, CA 94143, USA
| | - Alexis Diaz-Vegas
- University of Sydney, School of life and Environmental Sciences, Charles Perkins Centre, Sydney, New South Wales 2006, Australia
| | - Kevan M Shokat
- Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, University of California, San Francisco, 600 16th Street, San Francisco, CA 94143, USA
| | - David E James
- University of Sydney, School of life and Environmental Sciences, Charles Perkins Centre, Sydney, New South Wales 2006, Australia.,University of Sydney, Sydney Medical School, Sydney, New South Wales 2006, Australia
| |
Collapse
|
50
|
Pullen RL. Renal cell carcinoma, part 3. Nursing 2021; 51:30-38. [PMID: 34463651 DOI: 10.1097/01.nurse.0000769804.33935.a1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
ABSTRACT Renal cell carcinoma (RCC) accounts for most renal malignancies. This article, the last in a three-part series, presents treatment options for RCC using the American Joint Committee on Cancer Tumor, Node, and Metastasis staging system as a framework, as well as nursing-care options for patients undergoing partial or radical nephrectomy.
Collapse
Affiliation(s)
- Richard L Pullen
- Richard L. Pullen is a professor of nursing at Texas Tech University Health Sciences Center School of Nursing in Lubbock, Tex., and a member of the Nursing2021 editorial board
| |
Collapse
|