1
|
Boehm T. Understanding vertebrate immunity through comparative immunology. Nat Rev Immunol 2024:10.1038/s41577-024-01083-9. [PMID: 39317775 DOI: 10.1038/s41577-024-01083-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2024] [Indexed: 09/26/2024]
Abstract
Evolutionary immunology has entered a new era. Classical studies, using just a handful of model animal species, combined with clinical observations, provided an outline of how innate and adaptive immunity work together to ensure tissue homeostasis and to coordinate the fight against infections. However, revolutionary advances in cellular and molecular biology, genomics and methods of genetic modification now offer unprecedented opportunities. They provide immunologists with the possibility to consider, at unprecedented scale, the impact of the astounding phenotypic diversity of vertebrates on immune system function. This Perspective is intended to highlight some of the many interesting, but largely unexplored, biological phenomena that are related to immune function among the roughly 60,000 existing vertebrate species. Importantly, hypotheses arising from such wide-ranging comparative studies can be tested in representative and genetically tractable species. The emerging general principles and the discovery of their evolutionarily selected variations may inspire the future development of novel therapeutic strategies for human immune disorders.
Collapse
Affiliation(s)
- Thomas Boehm
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, University Medical Center, Freiburg, Germany.
- Max Planck Institute for Biology Tübingen, Tübingen, Germany.
| |
Collapse
|
2
|
Sirsi S, Rodriguez D, Forstner MRJ. Using genome-wide data to ascertain taxonomic status and assess population genetic structure for Houston toads (Bufo [= Anaxyrus] houstonensis). Sci Rep 2024; 14:3306. [PMID: 38332325 PMCID: PMC10853240 DOI: 10.1038/s41598-024-53705-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 02/04/2024] [Indexed: 02/10/2024] Open
Abstract
The Houston toad (Bufo [= Anaxyrus] houstonensis) is an endangered amphibian with a small geographic range. Land-use changes have primarily driven decline in B. houstonensis with population supplementation predominant among efforts to reduce its current extinction risk. However, there has been historic uncertainty regarding the evolutionary and conservation significance of B. houstonensis. To this end, we used 1170 genome-wide nuclear DNA markers to examine phylogenetic relationships between our focal taxon, representatives of the Nearctic B. americanus group, and B. nebulifer, a sympatric Middle American species. Phylogenetic analyses indicate B. houstonensis is a taxon that is distinct from B. americanus. We corroborated such genetic distinctiveness with an admixture analysis that provided support for recent reproductive isolation between B. americanus and B. houstonensis. However, ABBA-BABA tests for ancient admixture indicated historic gene flow between Nearctic species while no signal of historic gene flow was detected between Nearctic and Middle-American species. We used an admixture analysis to recognize four Management Units (MU) based on observed genetic differentiation within B. houstonensis and recommend captive propagation, population supplementation, and habitat restoration efforts specific to each MU. Our results re-affirm the evolutionary novelty of an endangered relict.
Collapse
Affiliation(s)
- Shashwat Sirsi
- Department of Biology, Texas State University, 601 University Drive, San Marcos, TX, 78666, USA.
| | - David Rodriguez
- Department of Biology, Texas State University, 601 University Drive, San Marcos, TX, 78666, USA
| | - Michael R J Forstner
- Department of Biology, Texas State University, 601 University Drive, San Marcos, TX, 78666, USA
| |
Collapse
|
3
|
Chondrelli N, Kuehn E, Meurling S, Cortázar-Chinarro M, Laurila A, Höglund J. Batrachochytrium dendrobatidis strain affects transcriptomic response in liver but not skin in latitudinal populations of the common toad (Bufo bufo). Sci Rep 2024; 14:2495. [PMID: 38291226 PMCID: PMC10828426 DOI: 10.1038/s41598-024-52975-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/25/2024] [Indexed: 02/01/2024] Open
Abstract
Batrachochytrium dendrobatidis (Bd) is a fungal pathogen that has decimated amphibian populations worldwide for several decades. We examined the changes in gene expression in response to Bd infection in two populations of the common toad, Bufo bufo, in a laboratory experiment. We collected B. bufo eggs in southern and northern Sweden, and infected the laboratory-raised metamorphs with two strains of the global panzoonotic lineage Bd-GPL. Differential expression analysis showed significant differences between infected and control individuals in both liver and skin. The skin samples showed no discernible differences in gene expression between the two strains used, while liver samples were differentiated by strain, with one of the strains eliciting no immune response from infected toads. Immune system genes were overexpressed in skin samples from surviving infected individuals, while in liver samples the pattern was more diffuse. Splitting samples by population revealed a stronger immune response in northern individuals. Differences in transcriptional regulation between populations are particularly relevant to study in Swedish amphibians, which may have experienced varying exposure to Bd. Earlier exposure to this pathogen and subsequent adaptation or selection pressure may contribute to the survival of some populations over others, while standing genetic diversity in different populations may also affect the infection outcome.
Collapse
Affiliation(s)
- Niki Chondrelli
- Animal Ecology/Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden.
| | - Emily Kuehn
- Animal Ecology/Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Sara Meurling
- Animal Ecology/Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Maria Cortázar-Chinarro
- Animal Ecology/Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
- MEMEG/Department of Biology, Faculty of Science, Lund University, Lund, Sweden
| | - Anssi Laurila
- Animal Ecology/Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Jacob Höglund
- Animal Ecology/Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| |
Collapse
|
4
|
Ferreira JS, Bruschi DP. Tracking the Diversity and Chromosomal Distribution of the Olfactory Receptor Gene Repertoires of Three Anurans Species. J Mol Evol 2023; 91:793-805. [PMID: 37906255 DOI: 10.1007/s00239-023-10135-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 10/02/2023] [Indexed: 11/02/2023]
Abstract
Olfaction is a crucial capability for most vertebrates and is realized through olfactory receptors in the nasal cavity. The enormous diversity of olfactory receptors has been created by gene duplication, following a birth-and-death model of evolution. The olfactory receptor genes of the amphibians have received relatively little attention up to now, although recent studies have increased the number of species for which data are available. This study analyzed the diversity and chromosomal distribution of the OR genes of three anuran species (Engystomops pustulosus, Bufo bufo and Hymenochirus boettgeri). The OR genes were identified through searches for homologies, and sequence filtering and alignment using bioinformatic tools and scripts. A high diversity of OR genes was found in all three species, ranging from 917 in B. bufo to 1194 in H. boettgeri, and a total of 2076 OR genes in E. pustulosus. Six OR groups were recognized using an evolutionary gene tree analysis. While E. pustulosus has one of the highest numbers of genes of the gamma group (which detect airborne odorants) yet recorded in an anuran, B. bufo presented the smallest number of pseudogene sequences ever identified, with no pseudogenes in either the beta or epsilon groups. Although H. boettgeri shares many morphological adaptations for an aquatic lifestyle with Xenopus, and presented a similar number of genes related to the detection of water-soluble odorants, it had comparatively far fewer genes related to the detection of airborne odorants. This study is the first to describe the complete OR repertoire of the three study species and represents an important contribution to the understanding of the evolution and function of the sense of smell in vertebrates.
Collapse
Affiliation(s)
- Johnny Sousa Ferreira
- Laboratório de Citogenética Evolutiva e Conservação Animal (LabCECA), Departamento de Genética, Universidade Federal do Paraná (UFPR), Paraná, Brazil
| | - Daniel Pacheco Bruschi
- Laboratório de Citogenética Evolutiva e Conservação Animal (LabCECA), Departamento de Genética, Universidade Federal do Paraná (UFPR), Paraná, Brazil.
| |
Collapse
|
5
|
Bertola LV, Hoskin CJ, Jones DB, Zenger KR, McKnight DT, Higgie M. The first linkage map for Australo-Papuan Treefrogs (family: Pelodryadidae) reveals the sex-determination system of the Green-eyed Treefrog (Litoria serrata). Heredity (Edinb) 2023; 131:263-272. [PMID: 37542195 PMCID: PMC10539516 DOI: 10.1038/s41437-023-00642-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 08/06/2023] Open
Abstract
Amphibians represent a useful taxon to study the evolution of sex determination because of their highly variable sex-determination systems. However, the sex-determination system for many amphibian families remains unknown, in part because of a lack of genomic resources. Here, using an F1 family of Green-eyed Treefrogs (Litoria serrata), we produce the first genetic linkage map for any Australo-Papuan Treefrogs (family: Pelodryadidae). The resulting linkage map contains 8662 SNPs across 13 linkage groups. Using an independent set of sexed adults, we identify a small region in linkage group 6 matching an XY sex-determination system. These results suggest Litoria serrata possesses a male heterogametic system, with a candidate sex-determination locus on linkage group 6. Furthermore, this linkage map represents the first genomic resource for Australo-Papuan Treefrogs, an ecologically diverse family of over 220 species.
Collapse
Affiliation(s)
- Lorenzo V Bertola
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia.
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD, 4811, Australia.
| | - Conrad J Hoskin
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
| | - David B Jones
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
- Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, QLD, 4811, Australia
| | - Kyall R Zenger
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
- Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, QLD, 4811, Australia
| | - Donald T McKnight
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
- Department of Environment and Genetics, School of Agriculture, Biomedicine and Environment, West Wodonga, La Trobe University, Melbourne, VIC, 3690, Australia
| | - Megan Higgie
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD, 4811, Australia
| |
Collapse
|
6
|
van Riemsdijk I, Arntzen JW, Bucciarelli GM, McCartney-Melstad E, Rafajlović M, Scott PA, Toffelmier E, Shaffer HB, Wielstra B. Two transects reveal remarkable variation in gene flow on opposite ends of a European toad hybrid zone. Heredity (Edinb) 2023; 131:15-24. [PMID: 37106116 PMCID: PMC10313803 DOI: 10.1038/s41437-023-00617-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 03/27/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Speciation entails a reduction in gene flow between lineages. The rates at which genomic regions become isolated varies across space and time. Barrier markers are linked to putative genes involved in (processes of) reproductive isolation, and, when observed over two transects, indicate species-wide processes. In contrast, transect-specific putative barrier markers suggest local processes. We studied two widely separated transects along the 900 km hybrid zone between Bufo bufo and B. spinosus, in northern and southern France, for ~1200 RADseq markers. We used genomic and geographic cline analyses to identify barrier markers based on their restricted introgression, and found that some markers are transect-specific, while others are shared between transects. Twenty-six barrier markers were shared across both transects, of which some are clustered in the same chromosomal region, suggesting that their associated genes are involved in reduced gene flow across the entire hybrid zone. Transect-specific barrier markers were twice as numerous in the southern than in the northern transect, suggesting that the overall barrier effect is weaker in northern France. We hypothesize that this is consistent with a longer period of secondary contact in southern France. The smaller number of introgressed genes in the northern transect shows considerably more gene flow towards the southern (B. spinosus) than the northern species (B. bufo). We hypothesize that hybrid zone movement in northern France and hybrid zone stability in southern France explain this pattern. The Bufo hybrid zone provides an excellent opportunity to separate a general barrier effect from localized gene flow-reducing conditions.
Collapse
Affiliation(s)
- I van Riemsdijk
- Naturalis Biodiversity Center, Leiden, the Netherlands.
- Institute of Biology Leiden, Leiden University, Leiden, the Netherlands.
- Institute for Evolution and Ecology, Plant Evolutionary Ecology, Tübingen University, Tübingen, Germany.
| | - J W Arntzen
- Naturalis Biodiversity Center, Leiden, the Netherlands
- Institute of Biology Leiden, Leiden University, Leiden, the Netherlands
| | - G M Bucciarelli
- Department of Ecology and Evolutionary Biology, UCLA, Los Angeles, CA, USA
- La Kretz Center for California Conservation Science, Institute of the Environment and Sustainability, UCLA, Los Angeles, CA, USA
- Institute of the Environment, UC Davis, Davis, CA, USA
- Department of Wildlife, Fish, and Conservation Biology, UC Davis, Davis, CA, USA
| | - E McCartney-Melstad
- Department of Ecology and Evolutionary Biology, UCLA, Los Angeles, CA, USA
- La Kretz Center for California Conservation Science, Institute of the Environment and Sustainability, UCLA, Los Angeles, CA, USA
| | - M Rafajlović
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
- The Linnaeus Centre for Marine Evolutionary Biology, University of Gothenburg, Gothenburg, Sweden
| | - P A Scott
- Department of Ecology and Evolutionary Biology, UCLA, Los Angeles, CA, USA
- Natural Sciences Collegium, Eckerd College, 4200 54 Ave S, St Petersburg, FL, 33711, USA
| | - E Toffelmier
- Department of Ecology and Evolutionary Biology, UCLA, Los Angeles, CA, USA
- La Kretz Center for California Conservation Science, Institute of the Environment and Sustainability, UCLA, Los Angeles, CA, USA
| | - H B Shaffer
- Department of Ecology and Evolutionary Biology, UCLA, Los Angeles, CA, USA
- La Kretz Center for California Conservation Science, Institute of the Environment and Sustainability, UCLA, Los Angeles, CA, USA
| | - B Wielstra
- Naturalis Biodiversity Center, Leiden, the Netherlands
- Institute of Biology Leiden, Leiden University, Leiden, the Netherlands
| |
Collapse
|
7
|
Maier PA, Vandergast AG, Bohonak AJ. Using landscape genomics to delineate future adaptive potential for climate change in the Yosemite toad ( Anaxyrus canorus). Evol Appl 2023; 16:74-97. [PMID: 36699123 PMCID: PMC9850018 DOI: 10.1111/eva.13511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 11/05/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022] Open
Abstract
An essential goal in conservation biology is delineating population units that maximize the probability of species persisting into the future and adapting to future environmental change. However, future-facing conservation concerns are often addressed using retrospective patterns that could be irrelevant. We recommend a novel landscape genomics framework for delineating future "Geminate Evolutionary Units" (GEUs) in a focal species: (1) identify loci under environmental selection, (2) model and map adaptive conservation units that may spawn future lineages, (3) forecast relative selection pressures on each future lineage, and (4) estimate their fitness and likelihood of persistence using geo-genomic simulations. Using this process, we delineated conservation units for the Yosemite toad (Anaxyrus canorus), a U.S. federally threatened species that is highly vulnerable to climate change. We used a genome-wide dataset, redundancy analysis, and Bayesian association methods to identify 24 candidate loci responding to climatic selection (R 2 ranging from 0.09 to 0.52), after controlling for demographic structure. Candidate loci included genes such as MAP3K5, involved in cellular response to environmental change. We then forecasted future genomic response to climate change using the multivariate machine learning algorithm Gradient Forests. Based on all available evidence, we found three GEUs in Yosemite National Park, reflecting contrasting adaptive optima: YF-North (high winter snowpack with moderate summer rainfall), YF-East (low to moderate snowpack with high summer rainfall), and YF-Low-Elevation (low snowpack and rainfall). Simulations under the RCP 8.5 climate change scenario suggest that the species will decline by 29% over 90 years, but the highly diverse YF-East lineage will be least impacted for two reasons: (1) geographically it will be sheltered from the largest climatic selection pressures, and (2) its standing genetic diversity will promote a faster adaptive response. Our approach provides a comprehensive strategy for protecting imperiled non-model species with genomic data alone and has wide applicability to other declining species.
Collapse
Affiliation(s)
- Paul A. Maier
- Department of BiologySan Diego State UniversitySan DiegoCaliforniaUSA
- FamilyTreeDNAGene by GeneHoustonTexasUSA
| | - Amy G. Vandergast
- Western Ecological Research CenterU.S. Geological SurveySan DiegoCaliforniaUSA
| | - Andrew J. Bohonak
- Department of BiologySan Diego State UniversitySan DiegoCaliforniaUSA
| |
Collapse
|
8
|
Andrade P, Lyra ML, Zina J, Bastos DFO, Brunetti AE, Baêta D, Afonso S, Brunes TO, Taucce PPG, Carneiro M, Haddad CFB, Sequeira F. Draft genome and multi-tissue transcriptome assemblies of the Neotropical leaf-frog Phyllomedusa bahiana. G3 (BETHESDA, MD.) 2022; 12:jkac270. [PMID: 36205610 PMCID: PMC9713437 DOI: 10.1093/g3journal/jkac270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/07/2022] [Indexed: 12/05/2022]
Abstract
Amphibians are increasingly threatened worldwide, but the availability of genomic resources that could be crucial for implementing informed conservation practices lags well behind that for other vertebrate groups. Here, we describe draft de novo genome, mitogenome, and transcriptome assemblies for the Neotropical leaf-frog Phyllomedusa bahiana native to the Brazilian Atlantic Forest and Caatinga. We used a combination of PacBio long reads and Illumina sequencing to produce a 4.74-Gbp contig-level genome assembly, which has a contiguity comparable to other recent nonchromosome level assemblies. The assembled mitogenome comprises 16,239 bp and the gene content and arrangement are similar to other Neobratrachia. RNA-sequencing from 8 tissues resulted in a highly complete (86.3%) reference transcriptome. We further use whole-genome resequencing data from P. bahiana and from its sister species Phyllomedusa burmeisteri, to demonstrate how our assembly can be used as a backbone for population genomics studies within the P. burmeisteri species group. Our assemblies thus represent important additions to the catalog of genomic resources available from amphibians.
Collapse
Affiliation(s)
- Pedro Andrade
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão 4485-661, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão 4485-661, Portugal
| | - Mariana L Lyra
- Departamento de Biodiversidade and Centro de Aquicultura, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Rio Claro 13506-900, Brazil
| | - Juliana Zina
- Departamento de Ciências Biológicas, Universidade Estadual do Sudoeste da Bahia, Jequié 45206-190, Brazil
| | - Deivson F O Bastos
- Departamento de Ciências Biológicas, Universidade Estadual do Sudoeste da Bahia, Jequié 45206-190, Brazil
| | - Andrés E Brunetti
- Laboratory of Evolutionary Genetics, Institute of Subtropical Biology, National University of Misiones (UNaM-CONICET) Posadas N3300LQH, Misiones, Argentina
| | - Délio Baêta
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão 4485-661, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão 4485-661, Portugal
- Departamento de Biodiversidade and Centro de Aquicultura, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Rio Claro 13506-900, Brazil
| | - Sandra Afonso
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão 4485-661, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão 4485-661, Portugal
| | - Tuliana O Brunes
- Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo 05508-090, Brazil
| | - Pedro P G Taucce
- Departamento de Biodiversidade and Centro de Aquicultura, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Rio Claro 13506-900, Brazil
| | - Miguel Carneiro
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão 4485-661, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão 4485-661, Portugal
| | - Célio F B Haddad
- Departamento de Biodiversidade and Centro de Aquicultura, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Rio Claro 13506-900, Brazil
| | - Fernando Sequeira
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão 4485-661, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão 4485-661, Portugal
| |
Collapse
|
9
|
Smith D, O'Brien D, Hall J, Sergeant C, Brookes LM, Harrison XA, Garner TWJ, Jehle R. Challenging a host-pathogen paradigm: Susceptibility to chytridiomycosis is decoupled from genetic erosion. J Evol Biol 2022; 35:589-598. [PMID: 35167143 PMCID: PMC9306973 DOI: 10.1111/jeb.13987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 02/07/2022] [Indexed: 11/26/2022]
Abstract
The putatively positive association between host genetic diversity and the ability to defend against pathogens has long attracted the attention of evolutionary biologists. Chytridiomycosis, a disease caused by the chytrid fungus Batrachochytrium dendrobatidis (Bd), has emerged in recent decades as a cause of dramatic declines and extinctions across the amphibian clade. Bd susceptibility can vary widely across populations of the same species, but the relationship between standing genetic diversity and susceptibility has remained notably underexplored so far. Here, we focus on a putatively Bd-naive system of two mainland and two island populations of the common toad (Bufo bufo) at the edge of the species' range and use controlled infection experiments and dd-RAD sequencing of >10 000 SNPs across 95 individuals to characterize the role of host population identity, genetic variation and individual body mass in mediating host response to the pathogen. We found strong genetic differentiation between populations and marked variation in their susceptibility to Bd. This variation was not, however, governed by isolation-mediated genetic erosion, and individual heterozygosity was even found to be negatively correlated with survival. Individual survival during infection experiments was strongly positively related to body mass, which itself was unrelated to population of origin or heterozygosity. Our findings underscore the general importance of context-dependency when assessing the role of host genetic variation for the ability of defence against pathogens.
Collapse
Affiliation(s)
- Donal Smith
- School of Science, Engineering and EnvironmentUniversity of SalfordSalfordUK
- Institute of ZoologyZoological Society of LondonLondonUK
| | | | | | - Chris Sergeant
- Institute of ZoologyZoological Society of LondonLondonUK
| | - Lola M. Brookes
- Institute of ZoologyZoological Society of LondonLondonUK
- Highland Amphibian and Reptile ProjectDingwallUK
- MRC Centre for Global Infectious Disease AnalysisImperial College School of Public HealthLondonUK
- Royal Veterinary CollegeHatfieldUK
| | - Xavier A. Harrison
- Institute of ZoologyZoological Society of LondonLondonUK
- Centre for Ecology and ConservationUniversity of ExeterExeterUK
| | | | - Robert Jehle
- School of Science, Engineering and EnvironmentUniversity of SalfordSalfordUK
| |
Collapse
|