1
|
Jäger R, Geyer SH, Kavirayani A, Kiss MG, Waltenberger E, Rülicke T, Binder CJ, Weninger WJ, Kralovics R. Effects of Tulp4 deficiency on murine embryonic development and adult phenotype. Microsc Res Tech 2024; 87:854-866. [PMID: 38115643 DOI: 10.1002/jemt.24476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/08/2023] [Indexed: 12/21/2023]
Abstract
Genetically engineered mouse models have the potential to unravel fundamental biological processes and provide mechanistic insights into the pathogenesis of human diseases. We have previously observed that germline genetic variation at the TULP4 locus influences clinical characteristics in patients with myeloproliferative neoplasms. To elucidate the role of TULP4 in pathological and physiological processes in vivo, we generated a Tulp4 knockout mouse model. Systemic Tulp4 deficiency exerted a strong impact on embryonic development in both Tulp4 homozygous null (Tulp4-/-) and heterozygous (Tulp4+/-) knockout mice, the former exhibiting perinatal lethality. High-resolution episcopic microscopy (HREM) of day 14.5 embryos allowed for the identification of multiple developmental defects in Tulp4-/- mice, including severe heart defects. Moreover, in Tulp4+/- embryos HREM revealed abnormalities of several organ systems, which per se do not affect prenatal or postnatal survival. In adult Tulp4+/- mice, extensive examinations of hematopoietic and cardiovascular features, involving histopathological surveys of multiple tissues as well as blood counts and immunophenotyping, did not provide evidence for anomalies as observed in corresponding embryos. Finally, evaluating a potential obesity-related phenotype as reported for other TULP family members revealed a trend for increased body weight of Tulp4+/- mice. RESEARCH HIGHLIGHTS: To study the role of the TULP4 gene in vivo, we generated a Tulp4 knockout mouse model. Correlative analyses involving HREM revealed a strong impact of Tulp4 deficiency on murine embryonic development.
Collapse
Affiliation(s)
- Roland Jäger
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Stefan H Geyer
- Division of Anatomy, Center for Anatomy and Cell Biology, Medical Imaging Cluster, Medical University of Vienna, Vienna, Austria
| | - Anoop Kavirayani
- Vienna BioCenter Core Facilities GmbH, Austrian BioImaging/CMI, Vienna, Austria
| | - Máté G Kiss
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Elisabeth Waltenberger
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Thomas Rülicke
- Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Wolfgang J Weninger
- Division of Anatomy, Center for Anatomy and Cell Biology, Medical Imaging Cluster, Medical University of Vienna, Vienna, Austria
| | - Robert Kralovics
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
2
|
Turgut NE, Boynukalin FK, Gultomruk M, Yarkiner Z, Abali R, Bahceci M. The number of prior pregnancy losses does not impact euploidy rates in young patients with idiopathic recurrent pregnancy loss. Arch Gynecol Obstet 2023; 308:1567-1575. [PMID: 37466688 DOI: 10.1007/s00404-023-07155-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 07/10/2023] [Indexed: 07/20/2023]
Abstract
PURPOSE Our study aimed to determine the possible factors that might impact the probability of obtaining a euploid blastocyst following intracytoplasmic sperm injection (ICSI) and preimplantation genetic testing for aneuploidy (PGT-A) procedures in idiopathic recurrent pregnancy loss (RPL) patients. METHODS This single-center retrospective cohort analysis included 180 oocyte retrieval cycles of 166 women under 35 years old and those diagnosed with idiopathic RPL according to American Society of Reproductive Medicine (ASRM) guidelines. Trophectoderm biopsy and next-generation sequencing (NGS) were the techniques used. Patients were stratified by the number of previous losses (Group A: 2, Group B: 3, and Group C: > 3). RESULTS Baseline and embryological characteristics showed no statistically significant differences. The euploidy rate per analyzed blastocyst was comparable within the groups (63.3%, 58.2%, and 58.5%; p = 0.477). Logistic regression analyses confirmed that only the trophectoderm scores of A and B increased the probability of obtaining a euploid embryo [OR: 1.82, 95% CI (1.120-2.956), p: 0.016]. CONCLUSION It is concluded that there was no correlation between the number of previous losses and the chance of finding at least one euploid embryo in ICSI cycles of women younger than 35 years.
Collapse
Affiliation(s)
- Niyazi Emre Turgut
- Infertility Department, Bahceci Fulya IVF Center, Teşvikiye Mahallesi, Hakki Yeten Caddesi, Terrace Plaza, M3/11, Şişli, 34394, Istanbul, Turkey.
- Faculty of Health Sciences, Istanbul Gelisim University, Istanbul, Turkey.
| | - Fazilet Kubra Boynukalin
- Infertility Department, Bahceci Fulya IVF Center, Teşvikiye Mahallesi, Hakki Yeten Caddesi, Terrace Plaza, M3/11, Şişli, 34394, Istanbul, Turkey
- Department of Obstetrics and Gynecology, Uskudar University, Istanbul, Turkey
| | - Meral Gultomruk
- Infertility Department, Bahceci Fulya IVF Center, Teşvikiye Mahallesi, Hakki Yeten Caddesi, Terrace Plaza, M3/11, Şişli, 34394, Istanbul, Turkey
| | - Zalihe Yarkiner
- Faculty of Arts and Sciences, Department of Basic Sciences, Cyprus International, Kyrenia, Cyprus
| | - Remzi Abali
- Infertility Department, Bahceci Fulya IVF Center, Teşvikiye Mahallesi, Hakki Yeten Caddesi, Terrace Plaza, M3/11, Şişli, 34394, Istanbul, Turkey
| | - Mustafa Bahceci
- Infertility Department, Bahceci Fulya IVF Center, Teşvikiye Mahallesi, Hakki Yeten Caddesi, Terrace Plaza, M3/11, Şişli, 34394, Istanbul, Turkey
| |
Collapse
|
3
|
Holroyd NA, Walsh C, Gourmet L, Walker-Samuel S. Quantitative Image Processing for Three-Dimensional Episcopic Images of Biological Structures: Current State and Future Directions. Biomedicines 2023; 11:909. [PMID: 36979887 PMCID: PMC10045950 DOI: 10.3390/biomedicines11030909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/03/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Episcopic imaging using techniques such as High Resolution Episcopic Microscopy (HREM) and its variants, allows biological samples to be visualized in three dimensions over a large field of view. Quantitative analysis of episcopic image data is undertaken using a range of methods. In this systematic review, we look at trends in quantitative analysis of episcopic images and discuss avenues for further research. Papers published between 2011 and 2022 were analyzed for details about quantitative analysis approaches, methods of image annotation and choice of image processing software. It is shown that quantitative processing is becoming more common in episcopic microscopy and that manual annotation is the predominant method of image analysis. Our meta-analysis highlights where tools and methods require further development in this field, and we discuss what this means for the future of quantitative episcopic imaging, as well as how annotation and quantification may be automated and standardized across the field.
Collapse
Affiliation(s)
| | - Claire Walsh
- Centre for Computational Medicine, University College London, London WC1E 6DD, UK
- Department of Mechanical Engineering, University College London, London WC1E 7JE, UK
| | - Lucie Gourmet
- Centre for Computational Medicine, University College London, London WC1E 6DD, UK
| | - Simon Walker-Samuel
- Centre for Computational Medicine, University College London, London WC1E 6DD, UK
| |
Collapse
|
4
|
Chee JM, Lanoue L, Clary D, Higgins K, Bower L, Flenniken A, Guo R, Adams DJ, Bosch F, Braun RE, Brown SDM, Chin HJG, Dickinson ME, Hsu CW, Dobbie M, Gao X, Galande S, Grobler A, Heaney JD, Herault Y, de Angelis MH, Mammano F, Nutter LMJ, Parkinson H, Qin C, Shiroishi T, Sedlacek R, Seong JK, Xu Y, Brooks B, McKerlie C, Lloyd KCK, Westerberg H, Moshiri A. Genome-wide screening reveals the genetic basis of mammalian embryonic eye development. BMC Biol 2023; 21:22. [PMID: 36737727 PMCID: PMC9898963 DOI: 10.1186/s12915-022-01475-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 11/23/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Microphthalmia, anophthalmia, and coloboma (MAC) spectrum disease encompasses a group of eye malformations which play a role in childhood visual impairment. Although the predominant cause of eye malformations is known to be heritable in nature, with 80% of cases displaying loss-of-function mutations in the ocular developmental genes OTX2 or SOX2, the genetic abnormalities underlying the remaining cases of MAC are incompletely understood. This study intended to identify the novel genes and pathways required for early eye development. Additionally, pathways involved in eye formation during embryogenesis are also incompletely understood. This study aims to identify the novel genes and pathways required for early eye development through systematic forward screening of the mammalian genome. RESULTS Query of the International Mouse Phenotyping Consortium (IMPC) database (data release 17.0, August 01, 2022) identified 74 unique knockout lines (genes) with genetically associated eye defects in mouse embryos. The vast majority of eye abnormalities were small or absent eyes, findings most relevant to MAC spectrum disease in humans. A literature search showed that 27 of the 74 lines had previously published knockout mouse models, of which only 15 had ocular defects identified in the original publications. These 12 previously published gene knockouts with no reported ocular abnormalities and the 47 unpublished knockouts with ocular abnormalities identified by the IMPC represent 59 genes not previously associated with early eye development in mice. Of these 59, we identified 19 genes with a reported human eye phenotype. Overall, mining of the IMPC data yielded 40 previously unimplicated genes linked to mammalian eye development. Bioinformatic analysis showed that several of the IMPC genes colocalized to several protein anabolic and pluripotency pathways in early eye development. Of note, our analysis suggests that the serine-glycine pathway producing glycine, a mitochondrial one-carbon donator to folate one-carbon metabolism (FOCM), is essential for eye formation. CONCLUSIONS Using genome-wide phenotype screening of single-gene knockout mouse lines, STRING analysis, and bioinformatic methods, this study identified genes heretofore unassociated with MAC phenotypes providing models to research novel molecular and cellular mechanisms involved in eye development. These findings have the potential to hasten the diagnosis and treatment of this congenital blinding disease.
Collapse
Affiliation(s)
- Justine M Chee
- Oakland University William Beaumont School of Medicine, Rochester, MI, USA
| | - Louise Lanoue
- Mouse Biology Program, University of California Davis, Davis, CA, USA
| | - Dave Clary
- Mouse Biology Program, University of California Davis, Davis, CA, USA
| | - Kendall Higgins
- University of Miami: Miller School of Medicine, Miami, FL, USA
| | - Lynette Bower
- Mouse Biology Program, University of California Davis, Davis, CA, USA
| | - Ann Flenniken
- The Centre for Phenogenomics, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada
| | - Ruolin Guo
- The Centre for Phenogenomics, Toronto, ON, Canada
- The Hospital for Sick Children, Toronto, ON, Canada
| | - David J Adams
- The Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Fatima Bosch
- Centre of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Steve D M Brown
- Medical Research Council Harwell Institute, Mammalian Genetics Unit and Mary Lyon Centre, Harwell Campus, Oxfordshire, UK
| | - H-J Genie Chin
- National Laboratory Animal Center, National Applied Research Laboratories (NARLabs), Taipei City, Taiwan
| | - Mary E Dickinson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Chih-Wei Hsu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Michael Dobbie
- Phenomics Australia, The John Curtin School of Medical Research, Canberra, Australia
| | - Xiang Gao
- Nanjing Biomedical Research Institute, Nanjing University, Nanjing, China
| | - Sanjeev Galande
- Indian Institutes of Science Education and Research, Pune, India
| | - Anne Grobler
- Faculty of Health Sciences, PCDDP North-West University, Potchefstroom, South Africa
| | - Jason D Heaney
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Yann Herault
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Illkirch, France
| | - Martin Hrabe de Angelis
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Fabio Mammano
- Monterotondo Mouse Clinic, Italian National Research Council (CNR), Monterotondo Scalo, Italy
| | - Lauryl M J Nutter
- The Centre for Phenogenomics, Toronto, ON, Canada
- The Hospital for Sick Children, Toronto, ON, Canada
| | - Helen Parkinson
- European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - Chuan Qin
- National Laboratory Animal Center, National Applied Research Laboratories, Beijing, China
| | | | - Radislav Sedlacek
- Czech Center for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic
| | - J-K Seong
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Ying Xu
- CAM-SU Genomic Resource Center, Soochow University, Suzhou, China
| | - Brian Brooks
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, NIH, Bethesda, MD, 20892, USA
| | - Colin McKerlie
- The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine & Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - K C Kent Lloyd
- Mouse Biology Program, University of California Davis, Davis, CA, USA
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA, USA
| | - Henrik Westerberg
- Medical Research Council Harwell Institute, Mammalian Genetics Unit and Mary Lyon Centre, Harwell Campus, Oxfordshire, UK
| | - Ala Moshiri
- Department of Ophthalmology & Vision Science, School of Medicine, University of California Davis, Sacramento, CA, USA.
- UC Davis Eye Center, 4860 Y St., Ste. 2400, Sacramento, CA, 95817, USA.
| |
Collapse
|
5
|
Smogavec M, Gerykova Bujalkova M, Lehner R, Neesen J, Behunova J, Yerlikaya-Schatten G, Reischer T, Altmann R, Weis D, Duba HC, Laccone F. Singleton exome sequencing of 90 fetuses with ultrasound anomalies revealing novel disease-causing variants and genotype-phenotype correlations. Eur J Hum Genet 2022; 30:428-438. [PMID: 34974531 PMCID: PMC8991249 DOI: 10.1038/s41431-021-01012-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 10/25/2021] [Accepted: 11/15/2021] [Indexed: 11/08/2022] Open
Abstract
Exome sequencing has been increasingly implemented in prenatal genetic testing for fetuses with morphological abnormalities but normal rapid aneuploidy detection and microarray analysis. We present a retrospective study of 90 fetuses with different abnormal ultrasound findings, in which we employed the singleton exome sequencing (sES; 75 fetuses) or to a lesser extent (15 fetuses) a multigene panel analysis of 6713 genes as a primary tool for the detection of monogenic diseases. The detection rate of pathogenic or likely pathogenic variants in this study was 34.4%. The highest diagnostic rate of 56% was in fetuses with multiple anomalies, followed by cases with skeletal or renal abnormalities (diagnostic rate of 50%, respectively). We report 20 novel disease-causing variants in different known disease-associated genes and new genotype-phenotype associations for the genes KMT2D, MN1, CDK10, and EXOC3L2. Based on our data, we postulate that sES of fetal index cases with a concurrent sampling of parental probes for targeted testing of the origin of detected fetal variants could be a suitable tool to obtain reliable and rapid prenatal results, particularly in situations where a trio analysis is not possible.
Collapse
Affiliation(s)
- Mateja Smogavec
- Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria.
| | | | - Reinhard Lehner
- Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - Jürgen Neesen
- Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - Jana Behunova
- Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - Gülen Yerlikaya-Schatten
- Division of Obstetrics and Feto-Maternal Medicine, Department of Obstetrics and Gynaecology, Medical University of Vienna, Vienna, Austria
| | - Theresa Reischer
- Division of Obstetrics and Feto-Maternal Medicine, Department of Obstetrics and Gynaecology, Medical University of Vienna, Vienna, Austria
| | - Reinhard Altmann
- Department of Prenatal Medicine, Kepler University Hospital, School of Medicine, Johannes Kepler University, Linz, Austria
| | - Denisa Weis
- Department of Medical Genetics, Kepler University Hospital, School of Medicine, Johannes Kepler University, Linz, Austria
| | - Hans-Christoph Duba
- Department of Medical Genetics, Kepler University Hospital, School of Medicine, Johannes Kepler University, Linz, Austria
| | - Franco Laccone
- Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
6
|
Characterization of Lymphatic Vasculature Using Whole-Mount Immunostaining of Mouse Embryonic Dorsal Skin. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2441:77-83. [PMID: 35099729 DOI: 10.1007/978-1-0716-2059-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Understanding the development of the lymphatic vasculature is essential to the understanding of how these vessels function in health and disease. High-resolution imaging of histological techniques such as immunostaining of sectioned tissue provides a snapshot into lymphatic vessel morphogenesis, patterning, and organization. Whole-mount staining of embryonic dermal vasculature allows for a deeper analysis and characterization of the developing lymphatic vascular network.
Collapse
|
7
|
Artefacts in Volume Data Generated with High Resolution Episcopic Microscopy (HREM). Biomedicines 2021; 9:biomedicines9111711. [PMID: 34829939 PMCID: PMC8615656 DOI: 10.3390/biomedicines9111711] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 11/23/2022] Open
Abstract
High resolution episcopic microscopy (HREM) produces digital volume data by physically sectioning histologically processed specimens, while capturing images of the subsequently exposed block faces. Our study aims to systematically define the spectrum of typical artefacts inherent to HREM data and to research their effect on the interpretation of the phenotype of wildtype and mutant mouse embryos. A total of 607 (198 wildtypes, 409 mutants) HREM data sets of mouse embryos harvested at embryonic day (E) 14.5 were systematically and comprehensively examined. The specimens had been processed according to essentially identical protocols. Each data set comprised 2000 to 4000 single digital images. Voxel dimensions were 3 × 3 × 3 µm3. Using 3D volume models and virtual resections, we identified a number of characteristic artefacts and grouped them according to their most likely causality. Furthermore, we highlight those that affect the interpretation of embryo data and provide examples for artefacts mimicking tissue defects and structural pathologies. Our results aid in optimizing specimen preparation and data generation, are vital for the correct interpretation of HREM data and allow distinguishing tissue defects and pathologies from harmless artificial alterations. In particular, they enable correct diagnosis of pathologies in mouse embryos serving as models for deciphering the mechanisms of developmental disorders.
Collapse
|
8
|
Wendling O, Hentsch D, Jacobs H, Lemercier N, Taubert S, Pertuy F, Vonesch JL, Sorg T, Di Michele M, Le Cam L, Rosahl T, Carballo-Jane E, Liu M, Mu J, Mark M, Herault Y. High Resolution Episcopic Microscopy for Qualitative and Quantitative Data in Phenotyping Altered Embryos and Adult Mice Using the New "Histo3D" System. Biomedicines 2021; 9:767. [PMID: 34356832 PMCID: PMC8301480 DOI: 10.3390/biomedicines9070767] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 12/27/2022] Open
Abstract
3D imaging in animal models, during development or in adults, facilitates the identification of structural morphological changes that cannot be achieved with traditional 2D histological staining. Through the reconstruction of whole embryos or a region-of-interest, specific changes are better delimited and can be easily quantified. We focused here on high-resolution episcopic microscopy (HREM), and its potential for visualizing and quantifying the organ systems of normal and genetically altered embryos and adult organisms. Although the technique is based on episcopic images, these are of high resolution and are close to histological quality. The images reflect the tissue structure and densities revealed by histology, albeit in a grayscale color map. HREM technology permits researchers to take advantage of serial 2D aligned stacks of images to perform 3D reconstructions. Three-dimensional visualization allows for an appreciation of topology and morphology that is difficult to achieve with classical histological studies. The nature of the data lends itself to novel forms of computational analysis that permit the accurate quantitation and comparison of individual embryos in a manner that is impossible with histology. Here, we have developed a new HREM prototype consisting of the assembly of a Leica Biosystems Nanocut rotary microtome with optics and a camera. We describe some examples of applications in the prenatal and adult lifestage of the mouse to show the added value of HREM for phenotyping experimental cohorts to compare and quantify structure volumes. At prenatal stages, segmentations and 3D reconstructions allowed the quantification of neural tissue and ventricular system volumes of normal brains at E14.5 and E16.5 stages. 3D representations of normal cranial and peripheric nerves at E15.5 and of the normal urogenital system from stages E11.5 to E14.5 were also performed. We also present a methodology to quantify the volume of the atherosclerotic plaques of ApoEtm1Unc/tm1Unc mutant mice and illustrate a 3D reconstruction of knee ligaments in adult mice.
Collapse
Affiliation(s)
- Olivia Wendling
- CNRS, INSERM, CELPHEDIA, PHENOMIN-Institut Clinique de la Souris (ICS), Université de Strasbourg, 1 Rue Laurent Fries, 67404 Illkirch Graffenstaden, France; (O.W.); (H.J.); (F.P.); (T.S.); (M.M.)
- CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, 1 Rue Laurent Fries, 67404 Illkirch Graffenstaden, France; (D.H.); (S.T.); (J.-L.V.)
| | - Didier Hentsch
- CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, 1 Rue Laurent Fries, 67404 Illkirch Graffenstaden, France; (D.H.); (S.T.); (J.-L.V.)
| | - Hugues Jacobs
- CNRS, INSERM, CELPHEDIA, PHENOMIN-Institut Clinique de la Souris (ICS), Université de Strasbourg, 1 Rue Laurent Fries, 67404 Illkirch Graffenstaden, France; (O.W.); (H.J.); (F.P.); (T.S.); (M.M.)
| | | | - Serge Taubert
- CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, 1 Rue Laurent Fries, 67404 Illkirch Graffenstaden, France; (D.H.); (S.T.); (J.-L.V.)
| | - Fabien Pertuy
- CNRS, INSERM, CELPHEDIA, PHENOMIN-Institut Clinique de la Souris (ICS), Université de Strasbourg, 1 Rue Laurent Fries, 67404 Illkirch Graffenstaden, France; (O.W.); (H.J.); (F.P.); (T.S.); (M.M.)
| | - Jean-Luc Vonesch
- CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, 1 Rue Laurent Fries, 67404 Illkirch Graffenstaden, France; (D.H.); (S.T.); (J.-L.V.)
| | - Tania Sorg
- CNRS, INSERM, CELPHEDIA, PHENOMIN-Institut Clinique de la Souris (ICS), Université de Strasbourg, 1 Rue Laurent Fries, 67404 Illkirch Graffenstaden, France; (O.W.); (H.J.); (F.P.); (T.S.); (M.M.)
| | - Michela Di Michele
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université Montpellier, 34298 Montpellier, France; (M.D.M.); (L.L.C.)
- Institut Régional du Cancer de Montpellier (ICM), Université Montpellier, 34298 Montpellier, France
| | - Laurent Le Cam
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université Montpellier, 34298 Montpellier, France; (M.D.M.); (L.L.C.)
- Institut Régional du Cancer de Montpellier (ICM), Université Montpellier, 34298 Montpellier, France
| | - Thomas Rosahl
- Merck & Co. Inc., Kenilworth, NJ 07033, USA; (T.R.); (E.C.-J.); (M.L.); (J.M.)
| | - Ester Carballo-Jane
- Merck & Co. Inc., Kenilworth, NJ 07033, USA; (T.R.); (E.C.-J.); (M.L.); (J.M.)
| | - Mindy Liu
- Merck & Co. Inc., Kenilworth, NJ 07033, USA; (T.R.); (E.C.-J.); (M.L.); (J.M.)
| | - James Mu
- Merck & Co. Inc., Kenilworth, NJ 07033, USA; (T.R.); (E.C.-J.); (M.L.); (J.M.)
| | - Manuel Mark
- CNRS, INSERM, CELPHEDIA, PHENOMIN-Institut Clinique de la Souris (ICS), Université de Strasbourg, 1 Rue Laurent Fries, 67404 Illkirch Graffenstaden, France; (O.W.); (H.J.); (F.P.); (T.S.); (M.M.)
- CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, 1 Rue Laurent Fries, 67404 Illkirch Graffenstaden, France; (D.H.); (S.T.); (J.-L.V.)
- Service de Biologie de la Reproduction, Hôpitaux Universitaires de Strasbourg (HUS), CEDEX, 67091 Strasbourg, France
| | - Yann Herault
- CNRS, INSERM, CELPHEDIA, PHENOMIN-Institut Clinique de la Souris (ICS), Université de Strasbourg, 1 Rue Laurent Fries, 67404 Illkirch Graffenstaden, France; (O.W.); (H.J.); (F.P.); (T.S.); (M.M.)
- CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, 1 Rue Laurent Fries, 67404 Illkirch Graffenstaden, France; (D.H.); (S.T.); (J.-L.V.)
| |
Collapse
|
9
|
Kalisch-Smith JI, Ved N, Szumska D, Munro J, Troup M, Harris SE, Rodriguez-Caro H, Jacquemot A, Miller JJ, Stuart EM, Wolna M, Hardman E, Prin F, Lana-Elola E, Aoidi R, Fisher EMC, Tybulewicz VLJ, Mohun TJ, Lakhal-Littleton S, De Val S, Giannoulatou E, Sparrow DB. Maternal iron deficiency perturbs embryonic cardiovascular development in mice. Nat Commun 2021; 12:3447. [PMID: 34103494 PMCID: PMC8187484 DOI: 10.1038/s41467-021-23660-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 05/07/2021] [Indexed: 02/05/2023] Open
Abstract
Congenital heart disease (CHD) is the most common class of human birth defects, with a prevalence of 0.9% of births. However, two-thirds of cases have an unknown cause, and many of these are thought to be caused by in utero exposure to environmental teratogens. Here we identify a potential teratogen causing CHD in mice: maternal iron deficiency (ID). We show that maternal ID in mice causes severe cardiovascular defects in the offspring. These defects likely arise from increased retinoic acid signalling in ID embryos. The defects can be prevented by iron administration in early pregnancy. It has also been proposed that teratogen exposure may potentiate the effects of genetic predisposition to CHD through gene-environment interaction. Here we show that maternal ID increases the severity of heart and craniofacial defects in a mouse model of Down syndrome. It will be important to understand if the effects of maternal ID seen here in mice may have clinical implications for women.
Collapse
Affiliation(s)
- Jacinta I Kalisch-Smith
- Department of Physiology, Anatomy and Genetics, BHF Centre of Research Excellence, University of Oxford, Oxford, UK
| | - Nikita Ved
- Department of Physiology, Anatomy and Genetics, BHF Centre of Research Excellence, University of Oxford, Oxford, UK
| | - Dorota Szumska
- Department of Physiology, Anatomy and Genetics, BHF Centre of Research Excellence, University of Oxford, Oxford, UK
| | - Jacob Munro
- Victor Chang Cardiac Research Institute, Molecular, Structural and Computational Biology Division, Sydney, NSW, Australia
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Michael Troup
- Victor Chang Cardiac Research Institute, Molecular, Structural and Computational Biology Division, Sydney, NSW, Australia
| | - Shelley E Harris
- Department of Physiology, Anatomy and Genetics, BHF Centre of Research Excellence, University of Oxford, Oxford, UK
- Institute of Developmental Sciences, University of Southampton, Southampton, UK
| | - Helena Rodriguez-Caro
- Department of Physiology, Anatomy and Genetics, BHF Centre of Research Excellence, University of Oxford, Oxford, UK
| | - Aimée Jacquemot
- Department of Physiology, Anatomy and Genetics, BHF Centre of Research Excellence, University of Oxford, Oxford, UK
- Ealing Hospital, London, UK
| | - Jack J Miller
- Department of Physiology, Anatomy and Genetics, BHF Centre of Research Excellence, University of Oxford, Oxford, UK
- Department of Physics, Clarendon Laboratory, University of Oxford, Oxford, UK
- Oxford Centre for Clinical Magnetic Resonance Research, John Radcliffe Hospital, Oxford, UK
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Eleanor M Stuart
- Department of Physiology, Anatomy and Genetics, BHF Centre of Research Excellence, University of Oxford, Oxford, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Magda Wolna
- Department of Physiology, Anatomy and Genetics, BHF Centre of Research Excellence, University of Oxford, Oxford, UK
| | - Emily Hardman
- Heart Development Laboratory, The Francis Crick Institute, London, UK
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Fabrice Prin
- Heart Development Laboratory, The Francis Crick Institute, London, UK
- Advanced Light Microscopy Facility, The Francis Crick Institute, London, UK
| | - Eva Lana-Elola
- Immune Cell Biology and Down Syndrome Laboratory, The Francis Crick Institute, London, UK
| | - Rifdat Aoidi
- Immune Cell Biology and Down Syndrome Laboratory, The Francis Crick Institute, London, UK
| | | | - Victor L J Tybulewicz
- Immune Cell Biology and Down Syndrome Laboratory, The Francis Crick Institute, London, UK
- Imperial College London, London, UK
| | - Timothy J Mohun
- Heart Development Laboratory, The Francis Crick Institute, London, UK
| | - Samira Lakhal-Littleton
- Department of Physiology, Anatomy and Genetics, BHF Centre of Research Excellence, University of Oxford, Oxford, UK
| | - Sarah De Val
- Department of Physiology, Anatomy and Genetics, BHF Centre of Research Excellence, University of Oxford, Oxford, UK
- Ludwig Institute for Cancer Research Limited, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Eleni Giannoulatou
- Victor Chang Cardiac Research Institute, Molecular, Structural and Computational Biology Division, Sydney, NSW, Australia
- St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Duncan B Sparrow
- Department of Physiology, Anatomy and Genetics, BHF Centre of Research Excellence, University of Oxford, Oxford, UK.
| |
Collapse
|
10
|
Horner NR, Venkataraman S, Armit C, Casero R, Brown JM, Wong MD, van Eede MC, Henkelman RM, Johnson S, Teboul L, Wells S, Brown SD, Westerberg H, Mallon AM. LAMA: automated image analysis for the developmental phenotyping of mouse embryos. Development 2021; 148:dev192955. [PMID: 33574040 PMCID: PMC8015254 DOI: 10.1242/dev.192955] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 12/21/2020] [Indexed: 11/20/2022]
Abstract
Advanced 3D imaging modalities, such as micro-computed tomography (micro-CT), have been incorporated into the high-throughput embryo pipeline of the International Mouse Phenotyping Consortium (IMPC). This project generates large volumes of raw data that cannot be immediately exploited without significant resources of personnel and expertise. Thus, rapid automated annotation is crucial to ensure that 3D imaging data can be integrated with other multi-dimensional phenotyping data. We present an automated computational mouse embryo phenotyping pipeline that harnesses the large amount of wild-type control data available in the IMPC embryo pipeline in order to address issues of low mutant sample number as well as incomplete penetrance and variable expressivity. We also investigate the effect of developmental substage on automated phenotyping results. Designed primarily for developmental biologists, our software performs image pre-processing, registration, statistical analysis and segmentation of embryo images. We also present a novel anatomical E14.5 embryo atlas average and, using it with LAMA, show that we can uncover known and novel dysmorphology from two IMPC knockout lines.
Collapse
Affiliation(s)
- Neil R Horner
- Medical Research Council Harwell Institute, Harwell OX11 0RD, UK
| | - Shanmugasundaram Venkataraman
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine (IGMM), University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Chris Armit
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine (IGMM), University of Edinburgh, Edinburgh EH4 2XU, UK
- BGI Hong Kong, 26/F, Kings Wing Plaza 2, 1 On Kwan Street, Shek Mun, New Territories, Hong Kong
| | - Ramón Casero
- Medical Research Council Harwell Institute, Harwell OX11 0RD, UK
| | - James M Brown
- School of Computer Science, University of Lincoln, Lincoln LN6 7TS
| | - Michael D Wong
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario M5T 3H7, Canada
| | - Matthijs C van Eede
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario M5T 3H7, Canada
| | - R Mark Henkelman
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario M5T 3H7, Canada
| | - Sara Johnson
- Medical Research Council Harwell Institute, Harwell OX11 0RD, UK
| | - Lydia Teboul
- Medical Research Council Harwell Institute, Harwell OX11 0RD, UK
| | - Sara Wells
- Medical Research Council Harwell Institute, Harwell OX11 0RD, UK
| | - Steve D Brown
- Medical Research Council Harwell Institute, Harwell OX11 0RD, UK
| | | | - Ann-Marie Mallon
- Medical Research Council Harwell Institute, Harwell OX11 0RD, UK
| |
Collapse
|
11
|
Reissig LF, Seyedian Moghaddam A, Prin F, Wilson R, Galli A, Tudor C, White JK, Geyer SH, Mohun TJ, Weninger WJ. Hypoglossal Nerve Abnormalities as Biomarkers for Central Nervous System Defects in Mouse Lines Producing Embryonically Lethal Offspring. Front Neuroanat 2021; 15:625716. [PMID: 33584208 PMCID: PMC7876247 DOI: 10.3389/fnana.2021.625716] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/04/2021] [Indexed: 12/15/2022] Open
Abstract
An essential step in researching human central nervous system (CNS) disorders is the search for appropriate mouse models that can be used to investigate both genetic and environmental factors underlying the etiology of such conditions. Identification of murine models relies upon detailed pre- and post-natal phenotyping since profound defects are not only the result of gross malformations but can be the result of small or subtle morphological abnormalities. The difficulties in identifying such defects are compounded by the finding that many mouse lines show quite a variable penetrance of phenotypes. As a result, without analysis of large numbers, such phenotypes are easily missed. Indeed for null mutations, around one-third have proved to be pre- or perinatally lethal, their analysis resting entirely upon phenotyping of accessible embryonic stages.To simplify the identification of potentially useful mouse mutants, we have conducted three-dimensional phenotype analysis of approximately 500 homozygous null mutant embryos, produced from targeting a variety of mouse genes and harvested at embryonic day 14.5 as part of the "Deciphering the Mechanisms of Developmental Disorders" www.dmdd.org.uk program. We have searched for anatomical features that have the potential to serve as biomarkers for CNS defects in such genetically modified lines. Our analysis identified two promising biomarker candidates. Hypoglossal nerve (HGN) abnormalities (absent, thin, and abnormal topology) and abnormal morphology or topology of head arteries are both frequently associated with the full spectrum of morphological CNS defects, ranging from exencephaly to more subtle defects such as abnormal nerve cell migration. Statistical analysis confirmed that HGN abnormalities (especially those scored absent or thin) indeed showed a significant correlation with CNS defect phenotypes. These results demonstrate that null mutant lines showing HGN abnormalities are also highly likely to produce CNS defects whose identification may be difficult as a result of morphological subtlety or low genetic penetrance.
Collapse
Affiliation(s)
- Lukas F. Reissig
- Department of Anatomy, MIC, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Atieh Seyedian Moghaddam
- Department of Anatomy, MIC, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Fabrice Prin
- The Francis Crick Institute, London, United Kingdom
| | | | - Antonella Galli
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Catherine Tudor
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Jaqueline K. White
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Stefan H. Geyer
- Department of Anatomy, MIC, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | | | - Wolfgang J. Weninger
- Department of Anatomy, MIC, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
12
|
Reissig LF, Herdina AN, Rose J, Maurer-Gesek B, Lane JL, Prin F, Wilson R, Hardman E, Galli A, Tudor C, Tuck E, Icoresi-Mazzeo C, White JK, Ryder E, Gleeson D, Adams DJ, Geyer SH, Mohun TJ, Weninger WJ. The Col4a2em1(IMPC)Wtsi mouse line: lessons from the Deciphering the Mechanisms of Developmental Disorders program. Biol Open 2019; 8:bio.042895. [PMID: 31331924 PMCID: PMC6737985 DOI: 10.1242/bio.042895] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The Deciphering the Mechanisms of Developmental Disorders (DMDD) program uses a systematic and standardised approach to characterise the phenotype of embryos stemming from mouse lines, which produce embryonically lethal offspring. Our study aims to provide detailed phenotype descriptions of homozygous Col4a2em1(IMPC)Wtsi mutants produced in DMDD and harvested at embryonic day 14.5. This shall provide new information on the role Col4a2 plays in organogenesis and demonstrate the capacity of the DMDD database for identifying models for researching inherited disorders. The DMDD Col4a2em1(IMPC)Wtsi mutants survived organogenesis and thus revealed the full spectrum of organs and tissues, the development of which depends on Col4a2 encoded proteins. They showed defects in the brain, cranial nerves, visual system, lungs, endocrine glands, skeleton, subepithelial tissues and mild to severe cardiovascular malformations. Together, this makes the DMDD Col4a2em1(IMPC)Wtsi line a useful model for identifying the spectrum of defects and for researching the mechanisms underlying autosomal dominant porencephaly 2 (OMIM # 614483), a rare human disease. Thus we demonstrate the general capacity of the DMDD approach and webpage as a valuable source for identifying mouse models for rare diseases. Summary: We define the spectrum of phenotypic abnormalities linked with Col4a2 disruption and demonstrate the opportunities the Deciphering the Mechanisms of Developmental Disorders (DMDD) program offers for exploring rare human diseases.
Collapse
Affiliation(s)
- Lukas F Reissig
- Division of Anatomy, MIC, Medical University of Vienna, Waehringer Str. 13, 1090 Vienna, Austria
| | - Anna Nele Herdina
- Division of Anatomy, MIC, Medical University of Vienna, Waehringer Str. 13, 1090 Vienna, Austria
| | - Julia Rose
- Division of Anatomy, MIC, Medical University of Vienna, Waehringer Str. 13, 1090 Vienna, Austria
| | - Barbara Maurer-Gesek
- Division of Anatomy, MIC, Medical University of Vienna, Waehringer Str. 13, 1090 Vienna, Austria
| | - Jenna L Lane
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Fabrice Prin
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Robert Wilson
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Emily Hardman
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Antonella Galli
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Catherine Tudor
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Elizabeth Tuck
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | | | - Jacqueline K White
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Ed Ryder
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Diane Gleeson
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - David J Adams
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Stefan H Geyer
- Division of Anatomy, MIC, Medical University of Vienna, Waehringer Str. 13, 1090 Vienna, Austria
| | - Timothy J Mohun
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Wolfgang J Weninger
- Division of Anatomy, MIC, Medical University of Vienna, Waehringer Str. 13, 1090 Vienna, Austria
| |
Collapse
|
13
|
Collins JE, White RJ, Staudt N, Sealy IM, Packham I, Wali N, Tudor C, Mazzeo C, Green A, Siragher E, Ryder E, White JK, Papatheodoru I, Tang A, Füllgrabe A, Billis K, Geyer SH, Weninger WJ, Galli A, Hemberger M, Stemple DL, Robertson E, Smith JC, Mohun T, Adams DJ, Busch-Nentwich EM. Common and distinct transcriptional signatures of mammalian embryonic lethality. Nat Commun 2019; 10:2792. [PMID: 31243271 PMCID: PMC6594971 DOI: 10.1038/s41467-019-10642-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 05/22/2019] [Indexed: 12/20/2022] Open
Abstract
The Deciphering the Mechanisms of Developmental Disorders programme has analysed the morphological and molecular phenotypes of embryonic and perinatal lethal mouse mutant lines in order to investigate the causes of embryonic lethality. Here we show that individual whole-embryo RNA-seq of 73 mouse mutant lines (>1000 transcriptomes) identifies transcriptional events underlying embryonic lethality and associates previously uncharacterised genes with specific pathways and tissues. For example, our data suggest that Hmgxb3 is involved in DNA-damage repair and cell-cycle regulation. Further, we separate embryonic delay signatures from mutant line-specific transcriptional changes by developing a baseline mRNA expression catalogue of wild-type mice during early embryogenesis (4-36 somites). Analysis of transcription outside coding sequence identifies deregulation of repetitive elements in Morc2a mutants and a gene involved in gene-specific splicing. Collectively, this work provides a large scale resource to further our understanding of early embryonic developmental disorders.
Collapse
Affiliation(s)
- John E Collins
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - Richard J White
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Nicole Staudt
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - Ian M Sealy
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Ian Packham
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - Neha Wali
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - Catherine Tudor
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - Cecilia Mazzeo
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - Angela Green
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - Emma Siragher
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - Edward Ryder
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - Jacqueline K White
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| | - Irene Papatheodoru
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, CB10 1SD, UK
| | - Amy Tang
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, CB10 1SD, UK
| | - Anja Füllgrabe
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, CB10 1SD, UK
| | - Konstantinos Billis
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, CB10 1SD, UK
| | - Stefan H Geyer
- Division of Anatomy, MIC, Medical University of Vienna, Waehringerstr. 13, 1090, Wien, Austria
| | - Wolfgang J Weninger
- Division of Anatomy, MIC, Medical University of Vienna, Waehringerstr. 13, 1090, Wien, Austria
| | - Antonella Galli
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - Myriam Hemberger
- The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK
- Centre for Trophoblast Research, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK
- Departments of Biochemistry & Molecular Biology and Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Derek L Stemple
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
- Camena Bioscience, The Science Village, Chesterford Research Park, Cambridge, CB10 1XL, UK
| | - Elizabeth Robertson
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - James C Smith
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Timothy Mohun
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - David J Adams
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - Elisabeth M Busch-Nentwich
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK.
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK.
| |
Collapse
|
14
|
Brommage R, Powell DR, Vogel P. Predicting human disease mutations and identifying drug targets from mouse gene knockout phenotyping campaigns. Dis Model Mech 2019; 12:dmm038224. [PMID: 31064765 PMCID: PMC6550044 DOI: 10.1242/dmm.038224] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Two large-scale mouse gene knockout phenotyping campaigns have provided extensive data on the functions of thousands of mammalian genes. The ongoing International Mouse Phenotyping Consortium (IMPC), with the goal of examining all ∼20,000 mouse genes, has examined 5115 genes since 2011, and phenotypic data from several analyses are available on the IMPC website (www.mousephenotype.org). Mutant mice having at least one human genetic disease-associated phenotype are available for 185 IMPC genes. Lexicon Pharmaceuticals' Genome5000™ campaign performed similar analyses between 2000 and the end of 2008 focusing on the druggable genome, including enzymes, receptors, transporters, channels and secreted proteins. Mutants (4654 genes, with 3762 viable adult homozygous lines) with therapeutically interesting phenotypes were studied extensively. Importantly, phenotypes for 29 Lexicon mouse gene knockouts were published prior to observations of similar phenotypes resulting from homologous mutations in human genetic disorders. Knockout mouse phenotypes for an additional 30 genes mimicked previously published human genetic disorders. Several of these models have helped develop effective treatments for human diseases. For example, studying Tph1 knockout mice (lacking peripheral serotonin) aided the development of telotristat ethyl, an approved treatment for carcinoid syndrome. Sglt1 (also known as Slc5a1) and Sglt2 (also known as Slc5a2) knockout mice were employed to develop sotagliflozin, a dual SGLT1/SGLT2 inhibitor having success in clinical trials for diabetes. Clinical trials evaluating inhibitors of AAK1 (neuropathic pain) and SGLT1 (diabetes) are underway. The research community can take advantage of these unbiased analyses of gene function in mice, including the minimally studied 'ignorome' genes.
Collapse
Affiliation(s)
- Robert Brommage
- Department of Metabolism Research, Lexicon Pharmaceuticals, 8800 Technology Forest Place, The Woodlands, TX 77381, USA
| | - David R Powell
- Department of Metabolism Research, Lexicon Pharmaceuticals, 8800 Technology Forest Place, The Woodlands, TX 77381, USA
| | - Peter Vogel
- St. Jude Children's Research Hospital, Pathology, MS 250, Room C5036A, 262 Danny Thomas Place, Memphis, TN 38105, USA
| |
Collapse
|
15
|
Fonseca CL, Malaby HLH, Sepaniac LA, Martin W, Byers C, Czechanski A, Messinger D, Tang M, Ohi R, Reinholdt LG, Stumpff J. Mitotic chromosome alignment ensures mitotic fidelity by promoting interchromosomal compaction during anaphase. J Cell Biol 2019; 218:1148-1163. [PMID: 30733233 PMCID: PMC6446859 DOI: 10.1083/jcb.201807228] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/21/2018] [Accepted: 01/09/2019] [Indexed: 01/27/2023] Open
Abstract
Chromosome alignment at the equator of the mitotic spindle is a highly conserved step during cell division; however, its importance to genomic stability and cellular fitness is not understood. Normal mammalian somatic cells lacking KIF18A function complete cell division without aligning chromosomes. These alignment-deficient cells display normal chromosome copy numbers in vitro and in vivo, suggesting that chromosome alignment is largely dispensable for maintenance of euploidy. However, we find that loss of chromosome alignment leads to interchromosomal compaction defects during anaphase, abnormal organization of chromosomes into a single nucleus at mitotic exit, and the formation of micronuclei in vitro and in vivo. These defects slow cell proliferation and are associated with impaired postnatal growth and survival in mice. Our studies support a model in which the alignment of mitotic chromosomes promotes proper organization of chromosomes into a single nucleus and continued proliferation by ensuring that chromosomes segregate as a compact mass during anaphase.
Collapse
Affiliation(s)
- Cindy L Fonseca
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT
| | - Heidi L H Malaby
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT
| | - Leslie A Sepaniac
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT
| | | | | | | | - Dana Messinger
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT
| | - Mary Tang
- Department of Pathology, University of Vermont, Burlington, VT
| | - Ryoma Ohi
- Department of Cell and Developmental Biology, Vanderbilt University Medical School, Nashville, TN
- The Life Sciences Institute, University of Michigan Medical School, Ann Arbor, MI
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI
| | | | - Jason Stumpff
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT
| |
Collapse
|
16
|
Visualising the Cardiovascular System of Embryos of Biomedical Model Organisms with High Resolution Episcopic Microscopy (HREM). J Cardiovasc Dev Dis 2018; 5:jcdd5040058. [PMID: 30558275 PMCID: PMC6306920 DOI: 10.3390/jcdd5040058] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 12/09/2018] [Accepted: 12/11/2018] [Indexed: 12/17/2022] Open
Abstract
The article will briefly introduce the high-resolution episcopic microscopy (HREM) technique and will focus on its potential for researching cardiovascular development and remodelling in embryos of biomedical model organisms. It will demonstrate the capacity of HREM for analysing the cardiovascular system of normally developed and genetically or experimentally malformed zebrafish, frog, chick and mouse embryos in the context of the whole specimen and will exemplarily show the possibilities HREM offers for comprehensive visualisation of the vasculature of adult human skin. Finally, it will provide examples of the successful application of HREM for identifying cardiovascular malformations in genetically altered mouse embryos produced in the deciphering the mechanisms of developmental disorders (DMDD) program.
Collapse
|
17
|
Guidi LG, Velayos‐Baeza A, Martinez‐Garay I, Monaco AP, Paracchini S, Bishop DVM, Molnár Z. The neuronal migration hypothesis of dyslexia: A critical evaluation 30 years on. Eur J Neurosci 2018; 48:3212-3233. [PMID: 30218584 PMCID: PMC6282621 DOI: 10.1111/ejn.14149] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/06/2018] [Accepted: 08/13/2018] [Indexed: 12/29/2022]
Abstract
The capacity for language is one of the key features underlying the complexity of human cognition and its evolution. However, little is known about the neurobiological mechanisms that mediate normal or impaired linguistic ability. For developmental dyslexia, early postmortem studies conducted in the 1980s linked the disorder to subtle defects in the migration of neurons in the developing neocortex. These early studies were reinforced by human genetic analyses that identified dyslexia susceptibility genes and subsequent evidence of their involvement in neuronal migration. In this review, we examine recent experimental evidence that does not support the link between dyslexia and neuronal migration. We critically evaluate gene function studies conducted in rodent models and draw attention to the lack of robust evidence from histopathological and imaging studies in humans. Our review suggests that the neuronal migration hypothesis of dyslexia should be reconsidered, and the neurobiological basis of dyslexia should be approached with a fresh start.
Collapse
Affiliation(s)
- Luiz G. Guidi
- Department of Physiology, Anatomy, and GeneticsUniversity of OxfordOxfordUK
- Wellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
| | - Antonio Velayos‐Baeza
- Department of Physiology, Anatomy, and GeneticsUniversity of OxfordOxfordUK
- Wellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
| | - Isabel Martinez‐Garay
- Department of Physiology, Anatomy, and GeneticsUniversity of OxfordOxfordUK
- Division of NeuroscienceSchool of BiosciencesCardiff UniversityCardiffUK
| | | | | | | | - Zoltán Molnár
- Department of Physiology, Anatomy, and GeneticsUniversity of OxfordOxfordUK
| |
Collapse
|
18
|
Boschen KE, Gong H, Murdaugh LB, Parnell SE. Knockdown of Mns1 Increases Susceptibility to Craniofacial Defects Following Gastrulation-Stage Alcohol Exposure in Mice. Alcohol Clin Exp Res 2018; 42:2136-2143. [PMID: 30129265 PMCID: PMC6214710 DOI: 10.1111/acer.13876] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 08/16/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND MNS1 (meiosis-specific nuclear structural protein 1) is necessary for motile cilia function, such as sperm flagella or those found in the embryonic primitive node. While little is known regarding the function or expression pattern of MNS1 in the embryo, co-immunoprecipitation experiments in sperm have determined that MNS1 interacts with ciliary proteins, which are also important during development. Establishment of morphogenic gradients is dependent on normal ciliary motion in the primitive node beginning during gastrulation (gestational day [GD] 7 in the mouse, second-third week of pregnancy in humans), a critical window for face, eye, and brain development and particularly susceptible to perturbations of developmental signals. The current study investigates the role of Mns1 in craniofacial defects associated with gastrulation-stage alcohol exposure. METHODS On GD7, pregnant Mns1+/- dams were administered 2 doses of ethanol (5.8 g/kg total) or vehicle 4 hours apart to target gastrulation. On GD17, fetuses were examined for ocular defects by scoring each eye on a scale from 1 to 7 (1 = normal, 2 to 7 = defects escalating in severity). Craniofacial and brain abnormalities were also assessed. RESULTS Prenatal alcohol exposure (PAE) significantly increased the rate of defects in wild-type fetuses, as PAE fetuses had an incidence rate of 41.18% compared to a 10% incidence rate in controls. Furthermore, PAE interacted with genotype to significantly increase the defect rate and severity in Mns1+/- (64.29%) and Mns1-/- mice (92.31%). PAE Mns1-/- fetuses with severe eye defects also presented with craniofacial dysmorphologies characteristic of fetal alcohol syndrome and midline tissue loss in the brain, palate, and nasal septum. CONCLUSIONS These data demonstrate that a partial or complete knockdown of Mns1 interacts with PAE to increase the susceptibility to ocular defects and correlating craniofacial and brain anomalies, likely though interaction of alcohol with motile cilia function. These results further our understanding of genetic risk factors that may underlie susceptibility to teratogenic exposures.
Collapse
Affiliation(s)
- Karen E. Boschen
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC 27599
| | - Henry Gong
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC 27599
| | - Laura B. Murdaugh
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC 27599
| | - Scott E. Parnell
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC 27599
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599
| |
Collapse
|
19
|
Geyer SH, Reissig LF, Hüsemann M, Höfle C, Wilson R, Prin F, Szumska D, Galli A, Adams DJ, White J, Mohun TJ, Weninger WJ. Morphology, topology and dimensions of the heart and arteries of genetically normal and mutant mouse embryos at stages S21-S23. J Anat 2017; 231:600-614. [PMID: 28776665 PMCID: PMC5603791 DOI: 10.1111/joa.12663] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2017] [Indexed: 12/23/2022] Open
Abstract
Accurate identification of abnormalities in the mouse embryo depends not only on comparisons with appropriate, developmental stage‐matched controls, but also on an appreciation of the range of anatomical variation that can be expected during normal development. Here we present a morphological, topological and metric analysis of the heart and arteries of mouse embryos harvested on embryonic day (E)14.5, based on digital volume data of whole embryos analysed by high‐resolution episcopic microscopy (HREM). By comparing data from 206 genetically normal embryos, we have analysed the range and frequency of normal anatomical variations in the heart and major arteries across Theiler stages S21–S23. Using this, we have identified abnormalities in these structures among 298 embryos from mutant mouse lines carrying embryonic lethal gene mutations produced for the Deciphering the Mechanisms of Developmental Disorders (DMDD) programme. We present examples of both commonly occurring abnormal phenotypes and novel pathologies that most likely alter haemodynamics in these genetically altered mouse embryos. Our findings offer a reference baseline for identifying accurately abnormalities of the heart and arteries in embryos that have largely completed organogenesis.
Collapse
Affiliation(s)
- Stefan H Geyer
- Division of Anatomy & MIC, Medical University of Vienna, Vienna, Austria
| | - Lukas F Reissig
- Division of Anatomy & MIC, Medical University of Vienna, Vienna, Austria
| | - Markus Hüsemann
- Division of Anatomy & MIC, Medical University of Vienna, Vienna, Austria
| | - Cordula Höfle
- Division of Anatomy & MIC, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Geyer SH, Maurer-Gesek B, Reissig LF, Weninger WJ. High-resolution Episcopic Microscopy (HREM) - Simple and Robust Protocols for Processing and Visualizing Organic Materials. J Vis Exp 2017. [PMID: 28715372 PMCID: PMC5609318 DOI: 10.3791/56071] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
We provide simple protocols for generating digital volume data with the high-resolution episcopic microscopy (HREM) method. HREM is capable of imaging organic materials with volumes up to 5 x 5 x 7 mm3 in typical numeric resolutions between 1 x 1 x 1 and 5 x 5 x 5 µm3. Specimens are embedded in methacrylate resin and sectioned on a microtome. After each section an image of the block surface is captured with a digital video camera that sits on the phototube connected to the compound microscope head. The optical axis passes through a green fluorescent protein (GFP) filter cube and is aligned with a position, at which the bock holder arm comes to rest after each section. In this way, a series of inherently aligned digital images, displaying subsequent block surfaces are produced. Loading such an image series in three-dimensional (3D) visualization software facilitates the immediate conversion to digital volume data, which permit virtual sectioning in various orthogonal and oblique planes and the creation of volume and surface rendered computer models. We present three simple, tissue specific protocols for processing various groups of organic specimens, including mouse, chick, quail, frog and zebra fish embryos, human biopsy material, uncoated paper and skin replacement material.
Collapse
Affiliation(s)
- Stefan H Geyer
- Division of Anatomy, Center for Anatomy and Cell Biology & MIC, Medical University of Vienna
| | - Barbara Maurer-Gesek
- Division of Anatomy, Center for Anatomy and Cell Biology & MIC, Medical University of Vienna
| | - Lukas F Reissig
- Division of Anatomy, Center for Anatomy and Cell Biology & MIC, Medical University of Vienna
| | - Wolfgang J Weninger
- Division of Anatomy, Center for Anatomy and Cell Biology & MIC, Medical University of Vienna;
| |
Collapse
|