1
|
Fijardo M, Kwan JYY, Bissey PA, Citrin DE, Yip KW, Liu FF. The clinical manifestations and molecular pathogenesis of radiation fibrosis. EBioMedicine 2024; 103:105089. [PMID: 38579363 PMCID: PMC11002813 DOI: 10.1016/j.ebiom.2024.105089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/25/2024] [Accepted: 03/12/2024] [Indexed: 04/07/2024] Open
Abstract
Advances in radiation techniques have enabled the precise delivery of higher doses of radiotherapy to tumours, while sparing surrounding healthy tissues. Consequently, the incidence of radiation toxicities has declined, and will likely continue to improve as radiotherapy further evolves. Nonetheless, ionizing radiation elicits tissue-specific toxicities that gradually develop into radiation-induced fibrosis, a common long-term side-effect of radiotherapy. Radiation fibrosis is characterized by an aberrant wound repair process, which promotes the deposition of extensive scar tissue, clinically manifesting as a loss of elasticity, tissue thickening, and organ-specific functional consequences. In addition to improving the existing technologies and guidelines directing the administration of radiotherapy, understanding the pathogenesis underlying radiation fibrosis is essential for the success of cancer treatments. This review integrates the principles for radiotherapy dosimetry to minimize off-target effects, the tissue-specific clinical manifestations, the key cellular and molecular drivers of radiation fibrosis, and emerging therapeutic opportunities for both prevention and treatment.
Collapse
Affiliation(s)
- Mackenzie Fijardo
- Research Institute, Princess Margaret Cancer Centre, Toronto, Ontario, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Jennifer Yin Yee Kwan
- Research Institute, Princess Margaret Cancer Centre, Toronto, Ontario, Canada; Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Ontario, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | | | - Deborah E Citrin
- Radiation Oncology Branch, National Cancer Institute, Bethesda, MD, United States of America
| | - Kenneth W Yip
- Research Institute, Princess Margaret Cancer Centre, Toronto, Ontario, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Fei-Fei Liu
- Research Institute, Princess Margaret Cancer Centre, Toronto, Ontario, Canada; Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Ontario, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
2
|
Karapetyan L, Iheagwara UK, Olson AC, Chmura SJ, Skinner HK, Luke JJ. Radiation dose, schedule, and novel systemic targets for radio-immunotherapy combinations. J Natl Cancer Inst 2023; 115:1278-1293. [PMID: 37348864 PMCID: PMC10637035 DOI: 10.1093/jnci/djad118] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/09/2023] [Accepted: 06/16/2023] [Indexed: 06/24/2023] Open
Abstract
Immunotherapy combinations are being investigated to expand the benefit of immune checkpoint blockade across many cancer types. Radiation combinations, in particular using stereotactic body radiotherapy, are of keen interest because of underlying mechanistic rationale, safety, and availability as a standard of care in certain cancers. In addition to direct tumor cytotoxicity, radiation therapy has immunomodulatory effects such as induction of immunogenic cell death, enhancement of antigen presentation, and expansion of the T-cell receptor repertoire as well as recruitment and increased activity of tumor-specific effector CD8+ cells. Combinations of radiation with cytokines and/or chemokines and anti-programmed death 1 and anticytotoxic T-lymphocyte antigen 4 therapies have demonstrated safety and feasibility, as well as the potential to improve long-term outcomes and possibly induce out of irradiated field or abscopal responses. Novel immunoradiotherapy combinations represent a promising therapeutic approach to overcome radioresistance and further enhance systemic immunotherapy. Potential benefits include reversing CD8+ T-cell exhaustion, inhibiting myeloid-derived suppressor cells, and reversing M2 macrophage polarization as well as decreasing levels of colony-stimulating factor-1 and transforming growth factor-β. Here, we discuss current data and mechanistic rationale for combining novel immunotherapy agents with radiation therapy.
Collapse
Affiliation(s)
- Lilit Karapetyan
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Uzoma K Iheagwara
- Department of Medicine, University of Pittsburgh Medical Center and Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Adam C Olson
- Department of Medicine, University of Pittsburgh Medical Center and Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Steven J Chmura
- Department of Radiation Oncology, University of Chicago, Chicago, IL, USA
| | - Heath K Skinner
- Department of Medicine, University of Pittsburgh Medical Center and Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jason J Luke
- Department of Medicine, University of Pittsburgh Medical Center and Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
3
|
Radiation-Induced Salivary Gland Dysfunction: Mechanisms, Therapeutics and Future Directions. J Clin Med 2020; 9:jcm9124095. [PMID: 33353023 PMCID: PMC7767137 DOI: 10.3390/jcm9124095] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/17/2020] [Accepted: 12/17/2020] [Indexed: 12/14/2022] Open
Abstract
Salivary glands sustain collateral damage following radiotherapy (RT) to treat cancers of the head and neck, leading to complications, including mucositis, xerostomia and hyposalivation. Despite salivary gland-sparing techniques and modified dosing strategies, long-term hypofunction remains a significant problem. Current therapeutic interventions provide temporary symptom relief, but do not address irreversible glandular damage. In this review, we summarize the current understanding of mechanisms involved in RT-induced hyposalivation and provide a framework for future mechanistic studies. One glaring gap in published studies investigating RT-induced mechanisms of salivary gland dysfunction concerns the effect of irradiation on adjacent non-irradiated tissue via paracrine, autocrine and direct cell-cell interactions, coined the bystander effect in other models of RT-induced damage. We hypothesize that purinergic receptor signaling involving P2 nucleotide receptors may play a key role in mediating the bystander effect. We also discuss promising new therapeutic approaches to prevent salivary gland damage due to RT.
Collapse
|
4
|
Drobin K, Marczyk M, Halle M, Danielsson D, Papiez A, Sangsuwan T, Bendes A, Hong MG, Qundos U, Harms-Ringdahl M, Wersäll P, Polanska J, Schwenk JM, Haghdoost S. Molecular Profiling for Predictors of Radiosensitivity in Patients with Breast or Head-and-Neck Cancer. Cancers (Basel) 2020; 12:cancers12030753. [PMID: 32235817 PMCID: PMC7140105 DOI: 10.3390/cancers12030753] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/13/2020] [Accepted: 03/16/2020] [Indexed: 02/07/2023] Open
Abstract
Nearly half of all cancers are treated with radiotherapy alone or in combination with other treatments, where damage to normal tissues is a limiting factor for the treatment. Radiotherapy-induced adverse health effects, mostly of importance for cancer patients with long-term survival, may appear during or long time after finishing radiotherapy and depend on the patient’s radiosensitivity. Currently, there is no assay available that can reliably predict the individual’s response to radiotherapy. We profiled two study sets from breast (n = 29) and head-and-neck cancer patients (n = 74) that included radiosensitive patients and matched radioresistant controls.. We studied 55 single nucleotide polymorphisms (SNPs) in 33 genes by DNA genotyping and 130 circulating proteins by affinity-based plasma proteomics. In both study sets, we discovered several plasma proteins with the predictive power to find radiosensitive patients (adjusted p < 0.05) and validated the two most predictive proteins (THPO and STIM1) by sandwich immunoassays. By integrating genotypic and proteomic data into an analysis model, it was found that the proteins CHIT1, PDGFB, PNKD, RP2, SERPINC1, SLC4A, STIM1, and THPO, as well as the VEGFA gene variant rs69947, predicted radiosensitivity of our breast cancer (AUC = 0.76) and head-and-neck cancer (AUC = 0.89) patients. In conclusion, circulating proteins and a SNP variant of VEGFA suggest that processes such as vascular growth capacity, immune response, DNA repair and oxidative stress/hypoxia may be involved in an individual’s risk of experiencing radiation-induced toxicity.
Collapse
Affiliation(s)
- Kimi Drobin
- Affinity Proteomics, Science for Life Laboratory, Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH – Royal Institute of Technology, Tomtebodavägen 23, 171 65 Stockholm, Sweden; (K.D.); (A.B.); (M.-G.H.); (U.Q.); (J.M.S.)
| | - Michal Marczyk
- Yale Cancer Center, Department of Internal Medicine, Yale University School of Medicine, 06511 New Haven, CT, USA;
- Department of Data Science and Engineering, Silesian University of Technology, 44-100 Gliwice, Poland; (A.P.); (J.P.)
| | - Martin Halle
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 17176, Stockholm, Sweden;
- Reconstructive Plastic Surgery, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Daniel Danielsson
- Department of Clinical Science, Intervention and Technology, Division of ENT Diseases, Karolinska Institutet, 14186 Stockholm, Sweden;
- Department of Oral and Maxillofacial Surgery, Karolinska University Hospital, 17176, Stockholm, Sweden
| | - Anna Papiez
- Department of Data Science and Engineering, Silesian University of Technology, 44-100 Gliwice, Poland; (A.P.); (J.P.)
| | - Traimate Sangsuwan
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute Stockholm University, 10691 Stockholm, Sweden; (T.S.); (M.H.-R.)
| | - Annika Bendes
- Affinity Proteomics, Science for Life Laboratory, Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH – Royal Institute of Technology, Tomtebodavägen 23, 171 65 Stockholm, Sweden; (K.D.); (A.B.); (M.-G.H.); (U.Q.); (J.M.S.)
| | - Mun-Gwan Hong
- Affinity Proteomics, Science for Life Laboratory, Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH – Royal Institute of Technology, Tomtebodavägen 23, 171 65 Stockholm, Sweden; (K.D.); (A.B.); (M.-G.H.); (U.Q.); (J.M.S.)
| | - Ulrika Qundos
- Affinity Proteomics, Science for Life Laboratory, Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH – Royal Institute of Technology, Tomtebodavägen 23, 171 65 Stockholm, Sweden; (K.D.); (A.B.); (M.-G.H.); (U.Q.); (J.M.S.)
| | - Mats Harms-Ringdahl
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute Stockholm University, 10691 Stockholm, Sweden; (T.S.); (M.H.-R.)
| | - Peter Wersäll
- Department of Radiotherapy, Karolinska University Hospital, 17176 Stockholm, Sweden;
| | - Joanna Polanska
- Department of Data Science and Engineering, Silesian University of Technology, 44-100 Gliwice, Poland; (A.P.); (J.P.)
| | - Jochen M. Schwenk
- Affinity Proteomics, Science for Life Laboratory, Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH – Royal Institute of Technology, Tomtebodavägen 23, 171 65 Stockholm, Sweden; (K.D.); (A.B.); (M.-G.H.); (U.Q.); (J.M.S.)
| | - Siamak Haghdoost
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute Stockholm University, 10691 Stockholm, Sweden; (T.S.); (M.H.-R.)
- University of Caen Normandy, Department of medicine, Cimap-Laria, Advanced Resource Center for HADrontherapy in Europe (ARCHADE), 14076 Caen, France
- Correspondence:
| |
Collapse
|
5
|
Ahsen OO, Liang K, Lee HC, Wang Z, Fujimoto JG, Mashimo H. Assessment of chronic radiation proctopathy and radiofrequency ablation treatment follow-up with optical coherence tomography angiography: A pilot study. World J Gastroenterol 2019; 25:1997-2009. [PMID: 31086467 PMCID: PMC6487379 DOI: 10.3748/wjg.v25.i16.1997] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 02/12/2019] [Accepted: 02/16/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Chronic radiation proctopathy (CRP) occurs as a result of pelvic radiation therapy and is associated with formation of abnormal vasculature that may lead to persistent rectal bleeding. While incidence is declining due to refinement of radiation delivery techniques, CRP remains one of the major complications of pelvic radiation therapy and significantly affects patient quality of life. Radiofrequency ablation (RFA) is an emerging treatment modality for eradicating abnormal vasculature associated with CRP. However, questions remain regarding CRP pathophysiology and optimal disease management.
AIM To study feasibility of optical coherence tomography angiography (OCTA) for investigating subsurface vascular alterations in CRP and response to RFA treatment.
METHODS Two patients with normal rectum and 8 patients referred for, or undergoing endoscopic RFA treatment for CRP were imaged with a prototype ultrahigh-speed optical coherence tomography (OCT) system over 15 OCT/colonoscopy visits (2 normal patients, 5 RFA-naïve patients, 8 RFA-follow-up visits). OCT and OCTA was performed by placing the OCT catheter onto the dentate line and rectum without endoscopic guidance. OCTA enabled depth-resolved microvasculature imaging using motion contrast from flowing blood, without requiring injected dyes. OCTA features of normal and abnormal microvasculature were assessed in the mucosa and submucosa. Blinded reading of OCTA images was performed to assess the association of abnormal rectal microvasculature with CRP and RFA treatment, and rectal telangiectasia density endoscopic scoring.
RESULTS OCTA/OCT images are intrinsically co-registered and enabled depth-resolved visualization of microvasculature in the mucosa and submucosa. OCTA visualized normal vascular patterns with regular honeycomb patterns vs abnormal vasculature with distorted honeycomb patterns and ectatic/tortuous microvasculature in the rectal mucosa. Normal arterioles and venules < 200 μm in diameter versus abnormal heterogenous enlarged arterioles and venules > 200 μm in diameter were visualized in the rectal submucosa. Abnormal mucosal vasculature occurred in 0 of 2 normal patients and 3 of 5 RFA-naïve patients, while abnormal submucosal vasculature occurred more often, in 1 of 2 normal patients and 5 of 5 RFA-naïve patients. After RFA treatment, vascular abnormalities decreased, with abnormal mucosal vasculature observed in 0 of 8 RFA-follow-up visits and abnormal submucosal vasculature observed in only and 2 of 8 RFA-follow-up visits.
CONCLUSION OCTA visualizes depth-resolved microvascular abnormalities in CRP, allowing assessment of superficial features which are endoscopically visible as well as deeper vasculature which cannot be seen endoscopically. OCTA/OCT of the rectum can be performed in conjunction with, or independently from endoscopy. Further studies are warranted to investigate if OCTA/OCT can elucidate pathophysiology of CRP or improve management.
Collapse
Affiliation(s)
- Osman Oguz Ahsen
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Kaicheng Liang
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Hsiang-Chieh Lee
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Zhao Wang
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - James G Fujimoto
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Hiroshi Mashimo
- Gastroenterology Section, VA Boston Healthcare System, Harvard School of Medicine, Boston, MA 02130, United States
| |
Collapse
|
6
|
Lennon S, Oweida A, Milner D, Phan AV, Bhatia S, Van Court B, Darragh L, Mueller AC, Raben D, Martínez-Torrecuadrada JL, Pitts TM, Somerset H, Jordan KR, Hansen KC, Williams J, Messersmith WA, Schulick RD, Owens P, Goodman KA, Karam SD. Pancreatic Tumor Microenvironment Modulation by EphB4-ephrinB2 Inhibition and Radiation Combination. Clin Cancer Res 2019; 25:3352-3365. [PMID: 30944125 DOI: 10.1158/1078-0432.ccr-18-2811] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 12/14/2018] [Accepted: 02/15/2019] [Indexed: 12/19/2022]
Abstract
PURPOSE A driving factor in pancreatic ductal adenocarcinoma (PDAC) treatment resistance is the tumor microenvironment, which is highly immunosuppressive. One potent immunologic adjuvant is radiotherapy. Radiation, however, has also been shown to induce immunosuppressive factors, which can contribute to tumor progression and formation of fibrotic tumor stroma. To capitalize on the immunogenic effects of radiation and obtain a durable tumor response, radiation must be rationally combined with targeted therapies to mitigate the influx of immunosuppressive cells and fibrosis. One such target is ephrinB2, which is overexpressed in PDAC and correlates negatively with prognosis.Experimental Design: On the basis of previous studies of ephrinB2 ligand-EphB4 receptor signaling, we hypothesized that inhibition of ephrinB2-EphB4 combined with radiation can regulate the microenvironment response postradiation, leading to increased tumor control in PDAC. This hypothesis was explored using both cell lines and in vivo human and mouse tumor models. RESULTS Our data show this treatment regimen significantly reduces regulatory T-cell, macrophage, and neutrophil infiltration and stromal fibrosis, enhances effector T-cell activation, and decreases tumor growth. Furthermore, our data show that depletion of regulatory T cells in combination with radiation reduces tumor growth and fibrosis. CONCLUSIONS These are the first findings to suggest that in PDAC, ephrinB2-EphB4 interaction has a profibrotic, protumorigenic role, presenting a novel and promising therapeutic target.
Collapse
Affiliation(s)
- Shelby Lennon
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Ayman Oweida
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Dallin Milner
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Andy V Phan
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Shilpa Bhatia
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Benjamin Van Court
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Laurel Darragh
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Adam C Mueller
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - David Raben
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Jorge L Martínez-Torrecuadrada
- Crystallography and Protein Engineering Unit, Structural Biology Programme, Spanish National Cancer Centre (CNIO), Madrid, Spain
| | - Todd M Pitts
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Hilary Somerset
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Kimberly R Jordan
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Kirk C Hansen
- Department of Biochemistry, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Jason Williams
- Department of Biochemistry, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Wells A Messersmith
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Richard D Schulick
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado.,Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Philip Owens
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado.,Research Service, Department of Veterans Affairs, Denver, Colorado
| | - Karyn A Goodman
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Sana D Karam
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
| |
Collapse
|
7
|
Darragh LB, Oweida AJ, Karam SD. Overcoming Resistance to Combination Radiation-Immunotherapy: A Focus on Contributing Pathways Within the Tumor Microenvironment. Front Immunol 2019; 9:3154. [PMID: 30766539 PMCID: PMC6366147 DOI: 10.3389/fimmu.2018.03154] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 12/20/2018] [Indexed: 12/19/2022] Open
Abstract
Radiation therapy has been used for many years to treat tumors based on its DNA-damage-mediated ability to kill cells. More recently, RT has been shown to exert beneficial modulatory effects on immune responses, such as triggering immunogenic cell death, enhancing antigen presentation, and activating cytotoxic T cells. Consequently, combining radiation therapy with immunotherapy represents an important area of research. Thus far, immune-checkpoint inhibitors targeting programmed death-ligand 1 (PD-L1), programmed cell death protein 1 (PD-1), and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) have been the focus of many research studies and clinical trials. The available data suggest that such immunotherapies are enhanced when combined with radiation therapy. However, treatment resistance, intrinsic or acquired, is still prevalent. Various theories as to how to enhance these combination therapies to overcome treatment resistance have been proposed. In this review, we focus on the principles surrounding radiation therapy's positive and negative effects on the tumor microenvironment. We explore mechanisms underlying radiation therapy's synergistic and antagonistic effects on immune responses and provide a base of knowledge for radio-immunology combination therapies to overcome treatment resistance. We provide evidence for targeting regulatory T cells, tumor-associated macrophages, and cancer-associated fibroblasts in combination radio-immunotherapies to improve cancer treatment.
Collapse
Affiliation(s)
| | | | - Sana D. Karam
- Department of Radiation Oncology, School of Medicine, University of Colorado, Aurora, CO, United States
| |
Collapse
|
8
|
Liu Q, Sun Y, Lv Y, Le Z, Xin Y, Zhang P, Liu Y. TERT alleviates irradiation-induced late rectal injury by reducing hypoxia-induced ROS levels through the activation of NF-κB and autophagy. Int J Mol Med 2016; 38:785-93. [PMID: 27431814 PMCID: PMC4990283 DOI: 10.3892/ijmm.2016.2673] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 06/28/2016] [Indexed: 12/11/2022] Open
Abstract
The hypoxic microenvironment which is present following irradiation has been proven to promote radiation-induced injury to normal tissues. Previous studies have demonstrated that telomerase reverse transcriptase (TERT) is regulated by hypoxia, and that it plays a protective role in the process of wound repair. However, its effects on radiation-induced injury remain unclear. In this study, we examined the effects of human TERT on irradiation-induced late rectal injury in fibroblasts under hypoxic conditions. We also performed in vivo experiments. The rectums of 5-week-old female C57BL/6N mice were irradiated locally with a single dose of 25 Gy. We then examined the fibrotic changes using hematoxylin and eosin staining, and Masson's staining. The expression of hypoxia inducible factor-1α (HIF-1α) and TERT was analyzed by immunohistochemistry. In in vitro experiments, apoptosis, reactive oxygen species (ROS) production and the autophagy level induced by exposure to hypoxia were assayed in fibroblasts. The association between TERT, nuclear factor-κB (NF-κB) and the autophagy level was examined by western blot analysis. The antioxidant effects of TERT were examined on the basis of the ratio of glutathione to glutathione disulfide (GSH/GSSG) and mitochondrial membrane potential. Rectal fibrosis was induced significantly at 12 weeks following irradiation. The HIF-1α and TERT expression levels increased in the fibrotic region. The TERT-overexpressing fibroblasts (transfected with an hTERT-expressing lentiviral vector) exhibited reduced apoptosis, reduced ROS production, a higher autophagy level, a higher GSH/GSSG ratio and stable mitochondrial membrane potential compared with the fibroblasts in which TERT had been silenced by siRNA. NF-κB was activated by TERT, and the inhibition of TERT reduced the autophagy level in the fibroblasts. These results demonstrate that TERT decreases cellular ROS production, while maintaining mitochondrial function and protecting the cells from hypoxia-induced apoptosis, which may thus attenuate the effects of irradiation-induced hypoxia on rectal injury following irradiation.
Collapse
Affiliation(s)
- Qi Liu
- Cancer Research Institute, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Yong Sun
- Cancer Research Institute, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Yuefeng Lv
- Department of Obstetrics, Shiyan Taihe Hospital, Hubei University of Medcine, Shiyan, Hubei 442000, P.R. China
| | - Ziyu Le
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Yuhu Xin
- Cancer Research Institute, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Ping Zhang
- Cancer Research Institute, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Yong Liu
- Cancer Research Institute, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| |
Collapse
|
9
|
Mrozek S, Luzi A, Gonzalez L, Kerhuel L, Fourcade O, Geeraerts T. Cerebral and extracerebral vulnerability to hypoxic insults after diffuse traumatic brain injury in rats. Brain Res 2016; 1646:334-341. [PMID: 27302136 DOI: 10.1016/j.brainres.2016.06.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/03/2016] [Accepted: 06/04/2016] [Indexed: 11/30/2022]
Abstract
The post-traumatic brain vulnerability suggests that after traumatic brain injury (TBI), the brain may be more susceptible to posttraumatic hypoxic insults. This concept could be extended to 'peripheral' organs, as non-neurologic organ failure is common after TBI. This study aims to characterize and quantify cerebral and extracerebral tissue hypoxia with pimonidazole resulting from a standardized hypoxia-hypotension (HH) phase occurring after a diffuse experimental TBI in rats. Rats were allocated to Sham (n=5), TBI (n=7), HH (n=7) and TBI+HH (n=7) groups. Then, pimonidazole was injected and brain, liver, heart and kidneys were analysed. In the cerebral cortex, post-treatment hypoxia was higher in TBI+HH group than Sham group (p=0.003), HH group (p=0.003) and TBI group (p=0.002). Large trends in thalamus, hippocampus and striatum for the TBI+HH group compared to the other groups were observed. For the heart and liver, the 4 groups were comparable. For the kidneys, post-treatment hypoxia was higher in the TBI group compared to the Sham and HH groups, but not more than TBI+HH group. This study reveals that a posttraumatic hypoxic insult occurring after a severe TBI has major hypoxic consequences on brain structures. However, TBI by itself appears to induce renal hypoxia that is not enhanced by posttraumatic hypoxic insult.
Collapse
Affiliation(s)
- Ségolène Mrozek
- Equipe d'accueil' Modélisation de l'aggression tissulaire et nociceptive', University Toulouse 3 Paul Sabatier, Toulouse, France; Departement of Anesthesiology and Critical Care, University Hospital of Toulouse, Toulouse, France.
| | - Aymeric Luzi
- Equipe d'accueil' Modélisation de l'aggression tissulaire et nociceptive', University Toulouse 3 Paul Sabatier, Toulouse, France; Departement of Anesthesiology and Critical Care, University Hospital of Toulouse, Toulouse, France.
| | - Leslie Gonzalez
- Equipe d'accueil' Modélisation de l'aggression tissulaire et nociceptive', University Toulouse 3 Paul Sabatier, Toulouse, France; Departement of Anesthesiology and Critical Care, University Hospital of Toulouse, Toulouse, France.
| | - Lionel Kerhuel
- Equipe d'accueil' Modélisation de l'aggression tissulaire et nociceptive', University Toulouse 3 Paul Sabatier, Toulouse, France; Departement of Anesthesiology and Critical Care, University Hospital of Toulouse, Toulouse, France.
| | - Olivier Fourcade
- Equipe d'accueil' Modélisation de l'aggression tissulaire et nociceptive', University Toulouse 3 Paul Sabatier, Toulouse, France; Departement of Anesthesiology and Critical Care, University Hospital of Toulouse, Toulouse, France.
| | - Thomas Geeraerts
- Equipe d'accueil' Modélisation de l'aggression tissulaire et nociceptive', University Toulouse 3 Paul Sabatier, Toulouse, France; Departement of Anesthesiology and Critical Care, University Hospital of Toulouse, Toulouse, France.
| |
Collapse
|
10
|
Zhang K, He X, Zhou Y, Gao L, Qi Z, Chen J, Gao X. Atorvastatin Ameliorates Radiation-Induced Cardiac Fibrosis in Rats. Radiat Res 2015; 184:611-20. [DOI: 10.1667/rr14075.1] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
11
|
Young KH, Gough MJ, Crittenden M. Tumor immune remodeling by TGFβ inhibition improves the efficacy of radiation therapy. Oncoimmunology 2014; 4:e955696. [PMID: 25949887 DOI: 10.4161/21624011.2014.955696] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 08/13/2014] [Indexed: 11/19/2022] Open
Abstract
The tumor immune environment has been linked to prognosis in patients with a range of malignancies. Recently, we demonstrated in pre-clinical models that modifying the tumor immune environment using a small-molecule inhibitor of TGFb significantly improved outcome to subsequent radiation therapy. These data suggest that this and other immunotherapies may be used to remodel the tumor before conventional cancer therapies to improve outcomes.
Collapse
Affiliation(s)
- Kristina H Young
- Department of Radiation Medicine; Oregon Health & Science University ; Portland, OR, USA
| | - Michael J Gough
- Earle A. Chiles Research Institute; Providence Portland Medical Center ; Portland, OR, USA
| | - Marka Crittenden
- Earle A. Chiles Research Institute; Providence Portland Medical Center ; Portland, OR, USA ; The Oregon Clinic ; Portland, OR, USA
| |
Collapse
|
12
|
Young KH, Newell P, Cottam B, Friedman D, Savage T, Baird JR, Akporiaye E, Gough MJ, Crittenden M. TGFβ inhibition prior to hypofractionated radiation enhances efficacy in preclinical models. Cancer Immunol Res 2014; 2:1011-22. [PMID: 25047233 DOI: 10.1158/2326-6066.cir-13-0207] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The immune infiltrate in colorectal cancer has been correlated with outcome, such that individuals with higher infiltrations of T cells have increased survival independent of the disease stage. For patients with lower immune infiltrates, overall survival is limited. Because the patients with colorectal cancer studied have received conventional cancer therapies, these data may indicate that the pretreatment tumor environment increases the efficacy of treatments such as chemotherapy, surgery, and radiotherapy. This study was designed to test the hypothesis that an improved immune environment in the tumor at the time of treatment will increase the efficacy of radiotherapy. We demonstrate that inhibition of TGFβ using the orally available small-molecule inhibitor SM16 improved the immune environment of tumors in mice and significantly improved the efficacy of subsequent radiotherapy. This effect was not due to changes in radiosensitivity, epithelial-mesenchymal transition, or changes in vascular function in the tumor; rather, this effect was dependent on adaptive immunity and resulted in long-term protective immunity in cured mice. These data demonstrate that immunotherapy is an option to improve the immune status of patients with poor tumor infiltrates and that pretreatment improves the efficacy of radiotherapy.
Collapse
MESH Headings
- Adaptive Immunity/drug effects
- Adaptive Immunity/immunology
- Animals
- Antineoplastic Agents/therapeutic use
- Azabicyclo Compounds/therapeutic use
- Chemotherapy, Adjuvant/methods
- Colorectal Neoplasms/drug therapy
- Colorectal Neoplasms/immunology
- Colorectal Neoplasms/radiotherapy
- Drug Evaluation, Preclinical/methods
- Female
- Kaplan-Meier Estimate
- Lymphocytes, Tumor-Infiltrating/drug effects
- Lymphocytes, Tumor-Infiltrating/immunology
- Mammary Neoplasms, Experimental/drug therapy
- Mammary Neoplasms, Experimental/immunology
- Mammary Neoplasms, Experimental/radiotherapy
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Neoadjuvant Therapy/methods
- Neoplasm Transplantation
- Radiation Tolerance/drug effects
- Transforming Growth Factor beta/antagonists & inhibitors
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Kristina H Young
- Department of Radiation Medicine, Oregon Health and Science University, Portland, Oregon
| | - Pippa Newell
- Earle A. Chiles Research Institute, Providence Portland Medical Center, Portland, Oregon. The Oregon Clinic, Portland, Oregon
| | - Benjamin Cottam
- Earle A. Chiles Research Institute, Providence Portland Medical Center, Portland, Oregon
| | - David Friedman
- Earle A. Chiles Research Institute, Providence Portland Medical Center, Portland, Oregon
| | - Talicia Savage
- Earle A. Chiles Research Institute, Providence Portland Medical Center, Portland, Oregon
| | - Jason R Baird
- Earle A. Chiles Research Institute, Providence Portland Medical Center, Portland, Oregon
| | - Emmanuel Akporiaye
- Earle A. Chiles Research Institute, Providence Portland Medical Center, Portland, Oregon
| | - Michael J Gough
- Earle A. Chiles Research Institute, Providence Portland Medical Center, Portland, Oregon
| | - Marka Crittenden
- Earle A. Chiles Research Institute, Providence Portland Medical Center, Portland, Oregon. The Oregon Clinic, Portland, Oregon.
| |
Collapse
|
13
|
Moskalev A, Shaposhnikov M, Snezhkina A, Kogan V, Plyusnina E, Peregudova D, Melnikova N, Uroshlev L, Mylnikov S, Dmitriev A, Plusnin S, Fedichev P, Kudryavtseva A. Mining gene expression data for pollutants (dioxin, toluene, formaldehyde) and low dose of gamma-irradiation. PLoS One 2014; 9:e86051. [PMID: 24475070 PMCID: PMC3901678 DOI: 10.1371/journal.pone.0086051] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 12/04/2013] [Indexed: 12/28/2022] Open
Abstract
General and specific effects of molecular genetic responses to adverse environmental factors are not well understood. This study examines genome-wide gene expression profiles of Drosophila melanogaster in response to ionizing radiation, formaldehyde, toluene, and 2,3,7,8-tetrachlorodibenzo-p-dioxin. We performed RNA-seq analysis on 25,415 transcripts to measure the change in gene expression in males and females separately. An analysis of the genes unique to each treatment yielded a list of genes as a gene expression signature. In the case of radiation exposure, both sexes exhibited a reproducible increase in their expression of the transcription factors sugarbabe and tramtrack. The influence of dioxin up-regulated metabolic genes, such as anachronism, CG16727, and several genes with unknown function. Toluene activated a gene involved in the response to the toxins, Cyp12d1-p; the transcription factor Fer3's gene; the metabolic genes CG2065, CG30427, and CG34447; and the genes Spn28Da and Spn3, which are responsible for reproduction and immunity. All significantly differentially expressed genes, including those shared among the stressors, can be divided into gene groups using Gene Ontology Biological Process identifiers. These gene groups are related to defense response, biological regulation, the cell cycle, metabolic process, and circadian rhythms. KEGG molecular pathway analysis revealed alteration of the Notch signaling pathway, TGF-beta signaling pathway, proteasome, basal transcription factors, nucleotide excision repair, Jak-STAT signaling pathway, circadian rhythm, Hippo signaling pathway, mTOR signaling pathway, ribosome, mismatch repair, RNA polymerase, mRNA surveillance pathway, Hedgehog signaling pathway, and DNA replication genes. Females and, to a lesser extent, males actively metabolize xenobiotics by the action of cytochrome P450 when under the influence of dioxin and toluene. Finally, in this work we obtained gene expression signatures pollutants (dioxin, toluene), low dose of gamma-irradiation and common molecular pathways for different kind of stressors.
Collapse
Affiliation(s)
- Alexey Moskalev
- Laboratory of Molecular Radiobiology and Gerontology, Institute of Biology of Komi Science Center of RAS, Syktyvkar, Russia
- Ecological Department, Syktyvkar State University, Syktyvkar, Russia
- Laboratory of Genetics of Aging and Longevity, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Mikhail Shaposhnikov
- Laboratory of Molecular Radiobiology and Gerontology, Institute of Biology of Komi Science Center of RAS, Syktyvkar, Russia
- Ecological Department, Syktyvkar State University, Syktyvkar, Russia
| | - Anastasia Snezhkina
- Group of Postgenomic Studies, Engelhardt Institute of Molecular Biology of RAS, Moscow, Russia
| | - Valeria Kogan
- Laboratory of Genetics of Aging and Longevity, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Quantum Pharmaceuticals, Moscow, Russia
| | - Ekaterina Plyusnina
- Laboratory of Molecular Radiobiology and Gerontology, Institute of Biology of Komi Science Center of RAS, Syktyvkar, Russia
- Ecological Department, Syktyvkar State University, Syktyvkar, Russia
| | - Darya Peregudova
- Laboratory of Molecular Radiobiology and Gerontology, Institute of Biology of Komi Science Center of RAS, Syktyvkar, Russia
| | - Nataliya Melnikova
- Group of Postgenomic Studies, Engelhardt Institute of Molecular Biology of RAS, Moscow, Russia
| | - Leonid Uroshlev
- Group of Postgenomic Studies, Engelhardt Institute of Molecular Biology of RAS, Moscow, Russia
- Department of Computational Systems Biology, Vavilov Institute of General Genetics, Moscow, Russia
| | - Sergey Mylnikov
- Department of Genetics, St. Petersburg State University, St. Petersburg, Russia
| | - Alexey Dmitriev
- Group of Postgenomic Studies, Engelhardt Institute of Molecular Biology of RAS, Moscow, Russia
| | - Sergey Plusnin
- Laboratory of Molecular Radiobiology and Gerontology, Institute of Biology of Komi Science Center of RAS, Syktyvkar, Russia
- Ecological Department, Syktyvkar State University, Syktyvkar, Russia
| | - Peter Fedichev
- Laboratory of Genetics of Aging and Longevity, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Quantum Pharmaceuticals, Moscow, Russia
| | - Anna Kudryavtseva
- Group of Postgenomic Studies, Engelhardt Institute of Molecular Biology of RAS, Moscow, Russia
| |
Collapse
|
14
|
Gültekin FA, Bakkal BH, Sümer D, Köktürk F, Bektaş S. Effects of ozonated olive oil on acute radiation proctitis in rats. Balkan Med J 2013; 30:369-74. [PMID: 25207143 DOI: 10.5152/balkanmedj.2013.9158] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 07/22/2013] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Acute radiation proctitis is a common complication of pelvic radiation and management of acute radiation proctitis is under evaluation. The beneficial effects of ozonated olive oil (OzOO) have already been shown in the treatment of chronic wounds. Thus, this study was designed to evaluate the therapeutic effects of topical OzOO on acute radiation proctitis. AIMS To evaluate the therapeutic effects of topical OzOO on acute radiation proctitis. STUDY DESIGN Animal experimentation. METHODS RATS WERE DIVIDED INTO THREE GROUPS: control; irradiation+saline (1 mL); and irradiation +OzOO (1 mL). A single fraction of 17.5 Gy was delivered to each rat. The OzOO was administered rectally each day after irradiation. Each rat was observed daily for signs of proctitis. Irradiated rats were euthanised on days 5 and 10. The mucosal changes were evaluated macroscopically and pathologically. RESULTS According to the clinical findings, five rats in the irradiation+saline group showed Grade 4 symptoms on the 10(th) day. Macroscopic finding scores on the 10(th) day in the irradiation+saline and irradiation+OzOO groups were statistically significantly different. On pathological examination, radiation-induced mucosal damage was the most prominent 10 days after irradiation in saline-treated rats. On the 10(th) day, the irradiation+OzOO group showed mild inflammation and slight crypt change, which corresponded to Grade 1 pathological findings. CONCLUSION OzOO attenuates macroscopic and pathological findings of acute radiation proctitis in rats.
Collapse
Affiliation(s)
- Fatma Ayça Gültekin
- Department of General Surgery, Bülent Ecevit University Faculty of Medicine, Zonguldak, Turkey
| | - Bekir Hakan Bakkal
- Department of Radiation Oncology, Bülent Ecevit University Faculty of Medicine, Zonguldak, Turkey
| | - Demet Sümer
- Department of General Surgery, Bülent Ecevit University Faculty of Medicine, Zonguldak, Turkey
| | - Füruzan Köktürk
- Department of Biostatistics, Bülent Ecevit University Faculty of Medicine, Zonguldak, Turkey
| | - Sibel Bektaş
- Department of Pathology, Bülent Ecevit University Faculty of Medicine, Zonguldak, Turkey
| |
Collapse
|
15
|
Zhang H, Wang YA, Meng A, Yan H, Wang X, Niu J, Li J, Wang H. Inhibiting TGFβ1 has a protective effect on mouse bone marrow suppression following ionizing radiation exposure in vitro. JOURNAL OF RADIATION RESEARCH 2013; 54:630-636. [PMID: 23370919 PMCID: PMC3709670 DOI: 10.1093/jrr/rrs142] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 12/01/2012] [Accepted: 12/27/2012] [Indexed: 06/01/2023]
Abstract
Ionizing radiation (IR) causes not only acute tissue damage but also residual bone marrow (BM) suppression. The induction of residual BM injury is primarily attributable to the induction of reactive oxygen species (ROS) pressure in hematopoietic cells. In this study, we examined if SB431542, a transforming growth factor β1 (TGFβ1) inhibitor, can mitigate IR-induced BM suppression in vitro. Our results showed that treatment with SB431542 protected mice bone marrow mononuclear cells (BMMNCs), hematopoietic progenitor cells (HPCs) and hematopoietic stem cells (HSCs) from IR-induced suppression using cell viability assays, clonogenic assays and competitive repopulation assays. Moreover, expression of gene-related ROS production in hematopoietic cells was analyzed. The expression of NOX1, NOX2 and NOX4 was increased in irradiated BMMNCs, and that of NOX2 and NOX4 was reduced by SB431542 treatment. Therefore, the results from this study suggest that SB431542, a TGFβ1 inhibitor, alleviates IR-induced BM suppression at least in part via inhibiting IR-induced NOX2 and NOX4 expression.
Collapse
Affiliation(s)
- Heng Zhang
- Department of Radiation Oncology, Tianjin Union Medical Center, No.190 Jieyuan Road, Nankai District, Tianjin, China
- Institute of Radiation Medicine, Peking Union Medical College (PUMC), No. 238 Baidi Road, Nankai District, Tianjin, China
| | - Ying-ai Wang
- Department of Internal medicine, Tianjin Medical University, No. 22 Qixiangtai Road, Hexi District, Tianjin, China
| | - Aimin Meng
- Institute of Radiation Medicine, Peking Union Medical College (PUMC), No. 238 Baidi Road, Nankai District, Tianjin, China
| | - Hao Yan
- Department of Radiation Oncology, Tianjin Union Medical Center, No.190 Jieyuan Road, Nankai District, Tianjin, China
| | - Xinzhuo Wang
- Department of Radiation Oncology, Tianjin Union Medical Center, No.190 Jieyuan Road, Nankai District, Tianjin, China
| | - Jingxiu Niu
- Department of Radiation Oncology, Tianjin Union Medical Center, No.190 Jieyuan Road, Nankai District, Tianjin, China
| | - Jin Li
- Institute of Radiation Medicine, Peking Union Medical College (PUMC), No. 238 Baidi Road, Nankai District, Tianjin, China
| | - Hui Wang
- Department of Radiation Oncology, Tianjin Union Medical Center, No.190 Jieyuan Road, Nankai District, Tianjin, China
| |
Collapse
|
16
|
Abstract
The transforming growth factor-β (TGF-β) system signals via protein kinase receptors and SMAD mediators to regulate a large number of biological processes. Alterations of the TGF-β signalling pathway are implicated in human cancer. Prior to tumour initiation and early during progression, TGF-β acts as a tumour suppressor; however, at later stages, it is often a tumour promoter. Knowledge about the mechanisms involved in TGF-β signal transduction has allowed a better understanding of cancer progression, invasion, metastasis and epithelial-to-mesenchymal transition. Furthermore, several molecular targets with great potential in therapeutic interventions have been identified. This review discusses the TGF-β signalling pathway, its involvement in cancer and current therapeutic approaches.
Collapse
|
17
|
Horton JA, Chung EJ, Hudak KE, Sowers A, Thetford A, White AO, Mitchell JB, Citrin DE. Inhibition of radiation-induced skin fibrosis with imatinib. Int J Radiat Biol 2012; 89:162-70. [PMID: 23083077 DOI: 10.3109/09553002.2013.741281] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE Dermal fibrosis is a disabling late toxicity of radiotherapy. Several lines of evidence suggest that overactive signaling via the Platelet-derived growth factor receptor-beta (PDGFR-β) and V-abl Abelson murine leukemia viral oncogene homolog 1 (cAbl) may be etiologic factors in the development of radiation-induced fibrosis. We tested the hypothesis that imatinib, a clinically available inhibitor of PDGFR-β, Mast/stem cell growth factor receptor (c-kit) and cAbl, would reduce the severity of dermal fibrosis in a murine model. MATERIALS AND METHODS The right hind legs of female C3H/HeN mice were exposed to 35 Gy of X-rays. Cohorts of mice were maintained on chow formulated with imatinib 0.5 mg/g or control chow for the duration of the experiment. Bilateral hind limb extension was measured serially to assess fibrotic contracture. Immunohistochemistry and biochemical assays were used to evaluate the levels of collagen and cytokines implicated in radiation-induced fibrosis. RESULTS Imatinib treatment significantly reduced hind limb contracture and dermal thickness after irradiation. Immunohistochemical studies demonstrated a substantial reduction in PDGFR-β phosphorylation. We also observed reduced Transforming Growth factor-β (TGF-β) and collagen expression in irradiated skin of imatinib-treated mice, suggesting that imatinib may suppress the fibrotic process by interrupting cross-talk between these pathways. CONCLUSIONS Taken together, these results support that imatinib may be a useful agent in the prevention and treatment of radiation-induced dermal fibrosis.
Collapse
Affiliation(s)
- Jason A Horton
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
A mechanism for abnormal angiogenesis in human radiation proctitis: analysis of expression profile for angiogenic factors. J Gastroenterol 2012; 47:56-64. [PMID: 22081051 DOI: 10.1007/s00535-011-0470-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Accepted: 08/05/2011] [Indexed: 02/04/2023]
Abstract
BACKGROUND Radiation proctitis is an increasingly prevalent problem, with many patients being treated with radiotherapy for pelvic cancers. However, the mechanisms by which radiation proctitis develops in humans are not well understood. In this study, the expression profiles of angiogenic factors were analyzed to clarify their role in the etiology of radiation proctitis. METHODS Rectal biopsies were taken from 8 patients with radiation proctitis and 8 normal subjects. Protein lysates of the tissues were applied to an antibody array for angiogenesis-related factors. The mRNA level of each factor was evaluated by Taqman real-time PCR. Immunohistochemistry was performed using the labeled streptavidin biotin method. RESULTS Antibody array analysis revealed 2.12- to 7.31-fold higher expression levels of angiogenin, fibroblast growth factor 1 (FGF1), endoglin, matrix metalloproteinase (MMP)-8, urokinase-type plasminogen activator (uPA) and maspin in radiation proctitis tissues compared with normal rectal mucosa. The mRNA level of each factor in radiation proctitis tissue was significantly higher than in normal rectal mucosa, suggesting their transcriptional activation. Immunohistochemical staining showed strong expression of angiogenin and maspin in rectal epithelia, MMP-8 and uPA in infiltrating lymphocytes, FGF1 in fibroblasts and endoglin in endothelial cells. The expression of VEGF was not evident. CONCLUSIONS Our results suggest that in radiation proctitis, MMP-8 and uPA cooperatively degrade the extracellular matrix and basement membrane to provide space for angiogenesis. Simultaneously, angiogenin and FGF1 promote endothelial cell proliferation, and endoglin induces vessel formation, culminating in angiogenesis. Inhibitors of angiogenic factors such as angiogenin and FGF1 may be effective for treating radiation proctitis.
Collapse
|
19
|
Histopathologic Analysis of the Anal Sphincter after Chemoradiation for Low Rectal Cancer. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.jecm.2011.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
20
|
Langsenlehner T, Renner W, Gerger A, Hofmann G, Thurner EM, Kapp KS, Langsenlehner U. Impact of VEGF gene polymorphisms and haplotypes on radiation-induced late toxicity in prostate cancer patients. Strahlenther Onkol 2011; 187:784-91. [DOI: 10.1007/s00066-011-1106-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2011] [Accepted: 06/28/2011] [Indexed: 12/23/2022]
|
21
|
Yan J, Zhou B, Taheri S, Shi H. Differential effects of HIF-1 inhibition by YC-1 on the overall outcome and blood-brain barrier damage in a rat model of ischemic stroke. PLoS One 2011; 6:e27798. [PMID: 22110762 PMCID: PMC3218033 DOI: 10.1371/journal.pone.0027798] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 10/25/2011] [Indexed: 01/02/2023] Open
Abstract
Hypoxia-inducible factor 1 (HIF-1) is a master regulator of cellular adaptation to hypoxia and has been suggested as a potent therapeutic target in cerebral ischemia. Here we show in an ischemic stroke model of rats that inhibiting HIF-1 and its downstream genes by 3-(5'-hydroxymethyl-2'-furyl)-1-benzylindazole (YC-1) significantly increases mortality and enlarges infarct volume evaluated by MRI and histological staining. Interestingly, the HIF-1 inhibition remarkably ameliorates ischemia-induced blood-brain barrier (BBB) disruption determined by Evans blue leakage although it does not affect brain edema. The result demonstrates that HIF-1 inhibition has differential effects on ischemic outcomes and BBB permeability. It indicates that HIF-1 may have different functions in different brain cells. Further analyses show that ischemia upregulates HIF-1 and its downstream genes erythropoietin (EPO), vascular endothelial growth factor (VEGF), and glucose transporter (Glut) in neurons and brain endothelial cells and that YC-1 inhibits their expression. We postulate that HIF-1-induced VEGF increases BBB permeability while certain other proteins coded by HIF-1's downstream genes such as epo and glut provide neuroprotection in an ischemic brain. The results indicate that YC-1 lacks the potential as a cerebral ischemic treatment although it confers certain protection to the cerebral vascular system.
Collapse
Affiliation(s)
- Jingqi Yan
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, Kansas, United States of America
| | - Bo Zhou
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, Kansas, United States of America
| | - Saeid Taheri
- Department of Neurology, University of South Carolina, Columbia, South Carolina, United States of America
| | - Honglian Shi
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, Kansas, United States of America
| |
Collapse
|
22
|
Katoh H, Ishikawa H, Hasegawa M, Yoshida Y, Suzuki Y, Ohno T, Takahashi T, Nakano T. Protective effect of urinary trypsin inhibitor on the development of radiation-induced lung fibrosis in mice. JOURNAL OF RADIATION RESEARCH 2010; 51:325-332. [PMID: 20215714 DOI: 10.1269/jrr.09108] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
This study aimed to analyze whether Ulinastatin, a urinary trypsin inhibitor (UTI), inhibits the TGF-beta signaling pathway and lung fibrosis induced by thoracic irradiation in a lung injury mouse model. The thoraces of 9-week-old female fibrosis-sensitive C57BL/6 mice were irradiated with a single X-ray dose of 12 Gy or 24 Gy. UTI was administrated intraperitoneally at a dose of 200,000 units/kg concurrently with radiation (concurrent UTI) or daily during the post-irradiation period for 8-14 days (post-RT UTI). Mice were sacrificed at 16 weeks after irradiation to assess the histological grade of lung fibrosis and immunohistochemical TGF-beta expression. Survival rates of mice given 24 Gy to the whole lung +/- UTI were also compared. Post-RT UTI reduced the score of lung fibrosis in mice, but concurrent UTI had no beneficial effects in irradiated mice. The fibrosis score in post-RT UTI mice was 3.2 +/- 1.0, which was significantly smaller than that of irradiated mice without UTI treatment (RT alone; 6.0 +/- 1.3; p < 0.01). The rates of TGF-beta positive cells in post-RT UTI and the RT alone mice were 0.18 +/- 0.03 and 0.23 +/- 0.04, respectively (p < 0.01). There was a significantly positive correlation between the fibrosis score and the TGF-beta positive rate (R(2) = 0.26, p < 0.01). The survival rate at 30 weeks for post-RT UTI mice was significantly better than that of RT alone mice (33% vs. 10%, p < 0.05). The administration of post-RT UTI suppressed TGF-beta expression and radiation-induced lung fibrosis, which resulted in significant survival prolongation of the irradiated mice.
Collapse
Affiliation(s)
- Hiroyuki Katoh
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Huang RQ, Cheng HL, Zhao XD, Dai W, Zhuang Z, Wu Y, Liu Y, Shi JX. Preliminary study on the effect of trauma-induced secondary cellular hypoxia in brain injury. Neurosci Lett 2010; 473:22-7. [PMID: 20152885 DOI: 10.1016/j.neulet.2010.02.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Revised: 02/04/2010] [Accepted: 02/05/2010] [Indexed: 01/21/2023]
Abstract
Secondary cerebral hypoxia has recently been shown to play an important role in the outcome of patients suffering from traumatic brain injury (TBI). However, the precise mechanisms underlying secondary cerebral hypoxia are complex and interrelated. In this study, we investigate the effect of hypoxia within a rat model of trauma-induced late cerebral cortex injury. Using the hypoxia marker pimonidazole, we verified and isolated areas of the cortex that had suffered hypoxic damage. Using subsequent reverse-transcriptase PCR analyses, we found that the expressions of both transforming growth factor beta1 (TGF-beta1) and hypoxia-inducible factor-1alpha (HIF-1alpha) increased significantly under hypoxic conditions induced by TBI compared with uninjured control animals. In addition, the maximum mRNA expression of TGF-beta1 and HIF-1alpha was found at 3 days and 12h after TBI, respectively. Our data suggest that secondary cerebral hypoxia injury involves various cytokines including TGF-beta1 and HIF-1alpha. Furthermore, upon immunohistochemical analysis, both TGF-beta1 and HIF-1alpha expression were almost localized in the same types of cells by using immunohistochemical study. These results may have important implications in the understanding of trauma-induced secondary cerebral hypoxia injury.
Collapse
Affiliation(s)
- Ren-Qiang Huang
- Department of Neurosurgery, School of Medicine, Second Military Medical University (Shanghai), Jinling Hospital, 305 East Zhongshan Road, Nanjing 210002, Jiangsu Province, China
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Nakano T, Ohno T, Ishikawa H, Suzuki Y, Takahashi T. Current advancement in radiation therapy for uterine cervical cancer. JOURNAL OF RADIATION RESEARCH 2010; 51:1-8. [PMID: 20173313 DOI: 10.1269/jrr.09132] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Radiation therapy is one of the effective curative treatments for uterine cervical cancer. However poor clinical results for the advanced stages require further improvement of the treatment. Intensive studies on basic and clinical research have been made to improve local control, primarily important for long term survival in radiation therapy. Regarding current advancement in radiation therapy for uterine cervical cancer, the following three major subjects are pointed out; technological development to improve dose distribution by image guided radiation therapy technology, the concomitant anticancer chemotherapy with combination of radiation therapy, and radiation biological assessment of the radiation resistance of tumors. The biological factors overviewed in this article include hypoxia relating factors of HIF-1alpha, SOD, cell cycle parameters of pMI, proliferation factors of Ki67, EGFR, cerbB2, COX-2, cycle regulation proteins p53, p21, apoptosis regulation proteins Bcl2 and Bax and so on. Especially, the variety of these radiation biological factors is important for the selection of an effective treatment method for each patient to maximize the treatment benefit.
Collapse
Affiliation(s)
- Takashi Nakano
- Department of Radiation Oncology, Gunma University Graduate school of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, Japan.
| | | | | | | | | |
Collapse
|