1
|
Sun Z, Xu A, Wu Z, Lan X, Gao G, Guo B, Yu Z, Shao L, Wu H, Lv M, Wang Y, Zhao Y, Wang B. Effect of hypoxia-induced mIL15 expression on expansion and memory progenitor stem-like TILs in vitro. Front Immunol 2024; 15:1450245. [PMID: 39650651 PMCID: PMC11621077 DOI: 10.3389/fimmu.2024.1450245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 11/01/2024] [Indexed: 12/11/2024] Open
Abstract
Introduction The adoptive cell transfer of tumor-infiltrating lymphocytes (TILs) has proven clinically beneficial in patients with non-small cell lung cancer refractory to checkpoint blockade immunotherapy, which has prompted interest in TIL-adoptive cell transfer. The transgenic expression of IL15 can promote the expansion, survival, and function of T cells ex vivo and in vivo and enhance their anti-tumor activity. The effect of expressing mIL15 regulated by hypoxia in the tumor microenvironment on the expansion, survival, and stem-like properties of TILs has not been explored. Methods Using TILs expanded from the tumor tissues of lung cancer patients, TILs with or without mIL15 expression (TIL-mIL15 or UN-TIL) were generated by lentiviral transduction. To reflect the advantages of mTIL15, the cells were divided into groups with IL2 (TIL-mIL15+IL2) or without IL2 (TIL-mIL15-IL2). Results Compared to UN-TIL cells, mIL15 expression had a similar capacity for promoting TIL proliferation and maintaining cell viability. Our experimental findings indicate that, compared to UN-TIL and TIL-mIL15+IL2 cells, the expression of mIL15 in TIL-mIL15-IL2 cells promoted the formation of stem-like TILs (CD8+CD39-CD69-) and led to significant decreases in the proportion and absolute number of terminally differentiated TILs (CD8+CD39+CD69+). RNA-Seq data revealed that in TIL-mIL15-IL2 cells, the expression of genes related to T cell differentiation and effector function, including PRDM1, ID2, EOMES, IFNG, GZMB, and TNF, were significantly decreased, whereas the expression of the memory stem-like T cell marker TCF7 was significantly increased. Furthermore, compared to UN-TIL and TIL-mIL15+IL2 cells, TIL-mIL15-IL2 cells showed significantly lower expression levels of inhibitory receptors LAG3, TIGIT, and TIM3, which was consistent with the RNA-Seq results. Discussion This study demonstrates the superior persistence of TIL-mIL15-IL2 cells, which may serve as a novel treatment strategy for lung cancer patients.
Collapse
Affiliation(s)
- Zhen Sun
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, China
- Department of Research and Development, Qingdao Sino-Cell Biomed Co., Ltd., Qingdao, Shandong, China
| | - Aotian Xu
- Department of Research and Development, Qingdao Sino-Cell Biomed Co., Ltd., Qingdao, Shandong, China
| | - Zhaojun Wu
- Department of Research and Development, Qingdao Sino-Cell Biomed Co., Ltd., Qingdao, Shandong, China
| | - Xiaohao Lan
- Department of Research and Development, Qingdao Sino-Cell Biomed Co., Ltd., Qingdao, Shandong, China
| | - Ganchen Gao
- Department of Research and Development, Qingdao Sino-Cell Biomed Co., Ltd., Qingdao, Shandong, China
| | - Bin Guo
- Department of Research and Development, Qingdao Sino-Cell Biomed Co., Ltd., Qingdao, Shandong, China
| | - Zhongjie Yu
- Department of Research and Development, Qingdao Sino-Cell Biomed Co., Ltd., Qingdao, Shandong, China
| | - Lin Shao
- Department of Research and Development, Qingdao Sino-Cell Biomed Co., Ltd., Qingdao, Shandong, China
| | - Hao Wu
- Department of Research and Development, Qingdao Sino-Cell Biomed Co., Ltd., Qingdao, Shandong, China
| | - Min Lv
- Department of Research and Development, Qingdao Sino-Cell Biomed Co., Ltd., Qingdao, Shandong, China
| | - Yongjie Wang
- Department of Thoracic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yi Zhao
- Department of Research and Development, Qingdao Sino-Cell Biomed Co., Ltd., Qingdao, Shandong, China
| | - Bin Wang
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, China
- Department of Research and Development, Qingdao Sino-Cell Biomed Co., Ltd., Qingdao, Shandong, China
- Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
2
|
Zhu X, Chen J, Li W, Xu Y, Shan J, Hong J, Zhao Y, Xu H, Ma J, Shen J, Qian C. Hypoxia-Responsive CAR-T Cells Exhibit Reduced Exhaustion and Enhanced Efficacy in Solid Tumors. Cancer Res 2024; 84:84-100. [PMID: 37874330 DOI: 10.1158/0008-5472.can-23-1038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/26/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023]
Abstract
Expanding the utility of chimeric antigen receptor (CAR)-T cells in solid tumors requires improving their efficacy and safety. Hypoxia is a feature of most solid tumors that could be used to help CAR-T cells discriminate tumors from normal tissues. In this study, we developed hypoxia-responsive CAR-T cells by engineering the CAR to be under regulation of hypoxia-responsive elements and selected the optimal structure (5H1P-CEA CAR), which can be activated in the tumor hypoxic microenvironment to induce CAR-T cells with high polyfunctionality. Hypoxia-responsive CAR T cells were in a "resting" state with low CAR expression under normoxic conditions. Compared with conventional CAR-T cells, hypoxia-responsive CAR-T cells maintained lower differentiation and displayed enhanced oxidative metabolism and proliferation during cultivation, and they sowed a capacity to alleviate the negative effects of hypoxia on T-cell proliferation and metabolism. Furthermore, 5H1P-CEA CAR-T cells exhibited decreased T-cell exhaustion and improved T-cell phenotype in vivo. In patient-derived xenograft models, hypoxia-responsive CAR-T cells induced more durable antitumor activity than their conventional counterparts. Overall, this study provides an approach to limit CAR expression to the hypoxic tumor microenvironment that could help to enhance CAR T-cell efficacy and safety in solid tumors. SIGNIFICANCE Engineering CAR-T cells to upregulate CAR expression under hypoxic conditions induces metabolic reprogramming, reduces differentiation, and increases proliferation to enhance their antitumor activity, providing a strategy to improve efficacy and safety.
Collapse
Affiliation(s)
- Xiuxiu Zhu
- College of Bioengineering, Chongqing University, Chongqing, China
- Center for Precision Medicine of Cancer, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Jun Chen
- Chongqing Key Laboratory of Gene and Cell Therapy, Chongqing Precision Biotech Co., Ltd., Chongqing, China
- Chongqing New High-End Research and Development Institution, Chongqing Institute of Precision Medicine and Biotechnology Co, Ltd., Chongqing, China
| | - Wuling Li
- Chongqing Key Laboratory of Gene and Cell Therapy, Chongqing Precision Biotech Co., Ltd., Chongqing, China
- Chongqing New High-End Research and Development Institution, Chongqing Institute of Precision Medicine and Biotechnology Co, Ltd., Chongqing, China
| | - Yanmin Xu
- Chongqing Key Laboratory of Gene and Cell Therapy, Chongqing Precision Biotech Co., Ltd., Chongqing, China
- Chongqing New High-End Research and Development Institution, Chongqing Institute of Precision Medicine and Biotechnology Co, Ltd., Chongqing, China
| | - Juanjuan Shan
- Center for Precision Medicine of Cancer, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Juan Hong
- Chongqing Key Laboratory of Gene and Cell Therapy, Chongqing Precision Biotech Co., Ltd., Chongqing, China
- Chongqing New High-End Research and Development Institution, Chongqing Institute of Precision Medicine and Biotechnology Co, Ltd., Chongqing, China
| | - Yongchun Zhao
- Chongqing Key Laboratory of Gene and Cell Therapy, Chongqing Precision Biotech Co., Ltd., Chongqing, China
- Chongqing New High-End Research and Development Institution, Chongqing Institute of Precision Medicine and Biotechnology Co, Ltd., Chongqing, China
| | - Huailong Xu
- Chongqing Key Laboratory of Gene and Cell Therapy, Chongqing Precision Biotech Co., Ltd., Chongqing, China
| | - Jiabin Ma
- Chongqing New High-End Research and Development Institution, Chongqing Institute of Precision Medicine and Biotechnology Co, Ltd., Chongqing, China
| | - Junjie Shen
- Chongqing Key Laboratory of Gene and Cell Therapy, Chongqing Precision Biotech Co., Ltd., Chongqing, China
- Chongqing New High-End Research and Development Institution, Chongqing Institute of Precision Medicine and Biotechnology Co, Ltd., Chongqing, China
| | - Cheng Qian
- College of Bioengineering, Chongqing University, Chongqing, China
- Center for Precision Medicine of Cancer, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| |
Collapse
|
3
|
Javan B, Shahbazi M. Hypoxia-inducible tumour-specific promoters as a dual-targeting transcriptional regulation system for cancer gene therapy. Ecancermedicalscience 2017; 11:751. [PMID: 28798809 PMCID: PMC5533602 DOI: 10.3332/ecancer.2017.751] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Indexed: 12/25/2022] Open
Abstract
Transcriptional targeting is the best approach for specific gene therapy. Hypoxia is a common feature of the tumour microenvironment. Therefore, targeting gene expression in hypoxic cells by placing transgene under the control of a hypoxia-responsive promoter can be a good strategy for cancer-specific gene therapy. The hypoxia-inducible gene expression system has been investigated more in suicide gene therapy and it can also be of great help in knocking down cancer gene therapy with siRNAs. However, this system needs to be optimised to have maximum efficacy with minimum side effects in normal tissues. The combination of tissue-/tumour-specific promoters with HRE core sequences has been found to enhance the specificity and efficacy of this system. In this review, hypoxia-inducible gene expression system as well as gene therapy strategies targeting tumour hypoxia will be discussed. This review will also focus on hypoxia-inducible tumour-specific promoters as a dual-targeting transcriptional regulation systems developed for cancer-specific gene therapy.
Collapse
Affiliation(s)
- Bita Javan
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Gorgan 4934174515, Iran
| | - Majid Shahbazi
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Gorgan 4934174515, Iran
| |
Collapse
|
4
|
Development of a novel interferon-α2b gene construct with a repetitive hypoxia-inducible factor binding site and its suppressive effects on human renal cell carcinoma cell lines in vitro. Int J Clin Oncol 2013; 19:497-504. [PMID: 23739923 DOI: 10.1007/s10147-013-0568-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Accepted: 05/09/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND Despite the advent of targeted therapies, interferon-alpha (IFN-α) remains a therapeutic option for advanced renal cell carcinoma (RCC), especially in Japan, with a treatment response rate of 15-20 %. To improve the efficacy of IFN-α-based therapies, we evaluated a novel treatment strategy for RCC using an IFN-α2b gene construct with a repetitive hypoxia-inducible factor binding site. METHODS We constructed an expression plasmid designated 5HREp-IFN-α2b containing the coding region of the IFN-α2b gene. Five copies of the hypoxia-response element (HRE) sequences were inserted upstream of the IFN-α2b gene, and the construct was transfected into human RCC cell lines ACHN, 786-O and KU19-20. The concentrations of IFN-α2b in the conditioned media were measured by enzyme-linked immunosorbent assay. Cell viabilities were determined by MTS assays. RESULTS Construct-induced IFN-α secretion was confirmed in all three cell lines. IFN-α production was significantly enhanced by the hypoxia-mimicking agent deferoxamine mesylate in cell lines expressing the wild-type von Hippel-Lindau (VHL) gene (KU19-20 and ACHN) compared with cells expressing the mutant VHL gene (786-O). The construct exerted significant suppressive effects on the viabilities of all RCC cell lines. CONCLUSION This is the first study to report on the construction of a cytokine gene with a repetitive hypoxia-inducible factor binding site and its application in the suppression of human cancer cells. Gene therapy using this IFN-α2b gene construct with HREs may represent a novel treatment modality for advanced RCC.
Collapse
|
5
|
Chap C, Patel J. A decade of progress in cancer research. BMC Cancer 2011; 11:498. [PMID: 22128753 PMCID: PMC3276491 DOI: 10.1186/1471-2407-11-498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 11/30/2011] [Indexed: 11/12/2022] Open
|
6
|
Flamant L, Notte A, Ninane N, Raes M, Michiels C. Anti-apoptotic role of HIF-1 and AP-1 in paclitaxel exposed breast cancer cells under hypoxia. Mol Cancer 2010; 9:191. [PMID: 20626868 PMCID: PMC3098009 DOI: 10.1186/1476-4598-9-191] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Accepted: 07/13/2010] [Indexed: 11/16/2022] Open
Abstract
Background Hypoxia is a hallmark of solid tumors and is associated with metastases, therapeutic resistance and poor patient survival. Results In this study, we showed that hypoxia protected MDA-MB-231 breast cancer cells against paclitaxel- but not epirubicin-induced apoptosis. The possible implication of HIF-1 and AP-1 in the hypoxia-induced anti-apoptotic pathway was investigated by the use of specific siRNA. Specific inhibition of the expression of these two transcription factors was shown to increase apoptosis induced by chemotherapeutic agents under hypoxia indicating an involvement of HIF-1 and AP-1 in the anti-apoptotic effect of hypoxia. After HIF-1 specific inhibition and using TaqMan Human Apoptosis Array, 8 potential HIF-1 target genes were identified which could take part in this protection. Furthermore, Mcl-1 was shown to be a potential AP-1 target gene which could also participate to the hypoxia-induced chemoresistance. Conclusions Altogether, these data highlight two mechanisms by which hypoxia could mediate its protective role via the activation of two transcription factors and, consecutively, changes in gene expression encoding different anti- and pro-apoptotic proteins.
Collapse
Affiliation(s)
- Lionel Flamant
- Laboratory of Biochemistry and cellular Biology (URBC), NARILIS - NAmur Research Institute for LIfe Sciences - FUNDP-University of Namur, 5000 Namur, Belgium
| | | | | | | | | |
Collapse
|
7
|
Abstract
Cancer therapy has long relied on the rapid proliferation of tumour cells for effective treatment. However, the lack of specificity in this approach often leads to undesirable side effects. Many reports have described various 'metabolic transformation' events that enable cancer cells to survive, suggesting that metabolic pathways might be good targets. There are currently several drugs under development or in clinical trials that are based on specifically targeting the altered metabolic pathways of tumours. This Review highlights pathways against which there are already drugs in different stages of development and also discusses additional druggable targets.
Collapse
Affiliation(s)
- Daniel A Tennant
- Cancer Research UK, The Beatson Institute for Cancer Research, Glasgow, UK
| | | | | |
Collapse
|
8
|
Milbank JBJ, Stevenson RJ, Ware DC, Chang JYC, Tercel M, Ahn GO, Wilson WR, Denny WA. Synthesis and evaluation of stable bidentate transition metal complexes of 1-(chloromethyl)-5-hydroxy-3-(5,6,7-trimethoxyindol-2-ylcarbonyl)-2,3-dihydro-1H-pyrrolo[3,2-f]quinoline (seco-6-azaCBI-TMI) as hypoxia selective cytotoxins. J Med Chem 2009; 52:6822-34. [PMID: 19821576 DOI: 10.1021/jm9008746] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of metal complexes were prepared as potential prodrugs of the extremely toxic DNA minor groove alkylator 1-(chloromethyl)-5-hydroxy-3-[(5,6,7-trimethoxyindol-2-yl)carbonyl]-2,3-dihydro-1H-pyrrolo[3,2-f]quinoline (seco-6-azaCBI-TMI) and close analogues. The pyrrolo[3,2-f]quinoline cytotoxins were prepared from 2-methoxy-4-nitroaniline in a nine-step synthesis involving a Skraup construction of a quinoline intermediate, its appropriate functionalization, and a final radical cyclization. The metal complexes were prepared from these and the labile metal complex synthons [Co(cyclen)(OTf)(2)](+), [Cr(acac)(2)(H(2)O)(2)](+), and [Co(2)(Me(2)dtc)(5)](+). The cobalt complexes were considerably more stable than the free effectors and showed significant attenuation of the cytotoxicity of the latter, with IC(50) ratios (complex/effector) of 50- to 150-fold, and substantial hypoxic cell selectivity, with IC(50) ratios (oxic/hypoxic cells) of 20- to 40-fold. The cobalt complexes were also efficiently activated by ionizing radiation, with G values for loss of the compound close to the theoretical value for one-electron reduction of 0.68 micromol/J. This work extends earlier observations that cobalt cyclen complexes are suitable for both the bioreductive and radiolytic release of potent pyrrolo[3,2-f]quinoline effectors.
Collapse
Affiliation(s)
- Jared B J Milbank
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Kizaka-Kondoh S, Tanaka S, Hiraoka M. Imaging and Targeting of the Hypoxia-inducible Factor 1-active Microenvironment. J Toxicol Pathol 2009; 22:93-100. [PMID: 22271982 PMCID: PMC3246054 DOI: 10.1293/tox.22.93] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2008] [Accepted: 11/28/2008] [Indexed: 12/04/2022] Open
Abstract
Human solid tumors contain hypoxic regions that have considerably lower oxygen tension than normal tissues. They are refractory to radiotherapy and anticancer chemotherapy. Although more than half a century has passed since it was suggested that tumour hypoxia correlates with poor treatment outcomes and contributes to recurrence of cancer, no fundamental solution to this problem has been found. Hypoxia-inducible factor-1(HIF-1) is the main transcription factor that regulates the cellular response to hypoxia. It induces various genes, whose function is strongly associated with malignant alteration of the entire tumour. The cellular changes induced by HIF-1 are extremely important therapeutic targets of cancer therapy, particularly in therapy against refractory cancers. Therefore, targeting strategies to overcome the HIF-1-active microenvironment are important for cancer therapy. To Target HIF-1-active/ hypoxic tumor cells, we developed a fusion protein drug, PTD-ODD-Procaspase-3 that selectively induces cell death in HIF-1-active/hypoxic cells. The drug consists of the following three functional domains: the protein transduction domain (PTD), which efficiently delivers the fusion protein to hypoxic tumor cells, the ODD domain, which has a VHL-mediated protein destruction motif of human HIF-1α protein and confers hypoxia-dependent stabilization to the fusion proteins, and the human procaspase-3 proenzyme responsible for the cytocidal activity of the protein drug. In vivo imaging systems capable of monitoring HIF-1 activity in transplanted human cancer cells in mice are useful in evaluating the efficiency of these drugs and in study of HIF-1-active tumor cells.
Collapse
Affiliation(s)
- Shinae Kizaka-Kondoh
- Innovative Techno-Hub for Integrated Medical Bio-imaging, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
- Department of Radiation Oncology and Image-applied Therapy, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Shotaro Tanaka
- Department of Radiation Oncology and Image-applied Therapy, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Masahiro Hiraoka
- Department of Radiation Oncology and Image-applied Therapy, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
10
|
Kizaka-Kondoh S, Tanaka S, Harada H, Hiraoka M. The HIF-1-active microenvironment: an environmental target for cancer therapy. Adv Drug Deliv Rev 2009; 61:623-32. [PMID: 19409433 DOI: 10.1016/j.addr.2009.01.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Accepted: 01/28/2009] [Indexed: 12/20/2022]
Abstract
Solid tumors possess unique microenvironments that are exposed to chronic hypoxic conditions, so-called tumor hypoxia. Although more than half a century has passed since it was suggested that tumor hypoxia correlated with bad treatment outcomes and contributed to the recurrence of cancer, no fundamental solution to this problem has yet been found. Hypoxia-inducible factor HIF-1 is the main transcription factor that regulates the cellular response to hypoxia. It induces various genes, whose function is strongly associated with the malignant alteration of the entire tumor. The cellular changes induced by HIF-1 are extremely important therapeutic targets of cancer therapy, particularly in the therapy against refractory cancers. Therefore targeting strategies to overcome the HIF-1-active microenvironment are important for cancer therapy.
Collapse
Affiliation(s)
- Shinae Kizaka-Kondoh
- Department of Radiation Oncology and Image-applied Therapy, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | | | | | | |
Collapse
|
11
|
Diameter of tumor blood vessels is a good parameter to estimate HIF-1-active regions in solid tumors. Biochem Biophys Res Commun 2008; 373:533-8. [DOI: 10.1016/j.bbrc.2008.06.062] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Accepted: 06/16/2008] [Indexed: 11/22/2022]
|
12
|
Liu Y, Kudo K, Abe Y, Aoki M, Hu DL, Kijima H, Nakane A. Hypoxia expression in radiation-induced late rectal injury. JOURNAL OF RADIATION RESEARCH 2008; 49:261-268. [PMID: 18296870 DOI: 10.1269/jrr.07099] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Tumor hypoxia and angiogenesis have been studied extensively. However, the relation between normal tissue injury and hypoxia is still unclear. In this study, we investigated the effect of hypoxia on radiation-induced late rectal injury in mice. The rectum of C57BL/6N mice was irradiated locally with a single dose of 25 Gy and the following experiments were performed including hematoxylin-eosin (H. E.) staining, azan staining, real-time PCR, immunohistochemistry and immunofluorescene. Radiation-induced fibrotic changes were observed from 14 days and reached the peak 30 days after irradiation. The expression of transforming growth factor beta1 (TGF-beta1), hypoxia-inducible factor-1alpha (HIF-1alpha), vascular endothelial growth factor (VEGF) and endothelial cell marker CD31 increased significantly with the formation of fibrosis induced by irradiation compared with unirradiated control. In addition, the maximum expression of TGF-beta1, HIF-1alpha and VEGF was found at 14, 30 and 90 days after irradiation, respectively. The temporal changes of cytokines were consistent with the dynamic change of fibrosis. Our data suggests that late normal tissue injury involved various cytokines including hypoxia-induced angiogenic cytokines. These results may have important implications in the understanding of radiation-induced late normal tissue injury.
Collapse
Affiliation(s)
- Yong Liu
- Department of Radiology and Radiation Oncology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | | | | | | | | | | | | |
Collapse
|
13
|
|
14
|
Harada H, Kizaka-Kondoh S, Itasaka S, Shibuya K, Morinibu A, Shinomiya K, Hiraoka M. The combination of hypoxia-response enhancers and an oxygen-dependent proteolytic motif enables real-time imaging of absolute HIF-1 activity in tumor xenografts. Biochem Biophys Res Commun 2007; 360:791-6. [PMID: 17624305 DOI: 10.1016/j.bbrc.2007.06.149] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2007] [Accepted: 06/21/2007] [Indexed: 11/17/2022]
Abstract
The transcriptional activity of hypoxia-inducible factor-1 (HIF-1) is associated with tumor malignancies; therefore, it is important to comprehend its dynamism in solid tumors. However, a molecular imaging strategy to accurately access it remains to be developed. We constructed here a novel HIF-1-dependent reporter gene, 5HREp-ODD-luc, in which 5 copies of the hypoxia-response element (5HRE) enhance expression of the oxygen-dependent degradation (ODD) domain and luciferase (luc) fusion under hypoxia. Because the ODD domain caused the oxygen-dependent degradation of the ODD-Luc protein, the novel reporter gene showed little leak of luminescence under normoxia. Such a property caused an increase of the hypoxia-responsiveness up to about 4.7 x 10(4) -fold. Moreover, the ODD domain caused rapid degradation of the ODD-Luc protein under normoxia, the luminescence reflected the dynamism of HIF-1 activity in real-time. The superiority of the novel reporter gene will surely accelerate analysis of the intratumoral HIF-1 activity during tumor progression and cancer treatments.
Collapse
Affiliation(s)
- Hiroshi Harada
- Department of Radiation Oncology and Image-Applied Therapy, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan.
| | | | | | | | | | | | | |
Collapse
|
15
|
Liu J, Harada H, Ogura M, Shibata T, Hiraoka M. Adenovirus-mediated hypoxia-targeting cytosine deaminase gene therapy enhances radiotherapy in tumour xenografts. Br J Cancer 2007; 96:1871-8. [PMID: 17519901 PMCID: PMC2359966 DOI: 10.1038/sj.bjc.6603812] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Hypoxia is closely associated with the radioresistance of tumours; therefore, targeting hypoxic areas is very important for cancer therapy. The aim of this study is to establish such a targeting strategy by applying a bacterial cytosine deaminase (BCD)/5-fluorocytosine (5-FC) gene therapy system and to examine whether the strategy enhances the efficacy of radiotherapy in a tumour xenograft. The hypoxia-responsive promoter 5HREp, in which five copies of the hypoxia-response element (HRE) enhance transcription from a cytomegalovirus minimal promoter, was employed to induce the expression of BCD under hypoxic conditions. The adenoviral vector Ad/5HREp-BCD, encoding the gene 5HREp-BCD, robustly induced BCD expression under hypoxic conditions and this led to significant cytotoxicity in combination with 5-FC in vitro. Intratumoral Ad/5HREp-BCD administration resulted in the expression of BCD at the border between normoxic and necrotic regions. The BCD/5-FC gene therapy enhanced the therapeutic effects of both single (12.5 Gy) and fractionated (3 Gy × 5 days) radiotherapy with few side effects and significantly increased tumour growth doubling time by up to 2.4-fold (P<0.01) and 2.5-fold (P<0.05), respectively. All of these results suggest that the present BCD/5-FC gene therapy has the ability to specifically target hypoxic tumour cells and significantly improves the control of tumour growth after radiotherapy.
Collapse
Affiliation(s)
- J Liu
- Department of Radiation Oncology and Image-Applied Therapy, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - H Harada
- Department of Radiation Oncology and Image-Applied Therapy, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
- Nano-Medicine Merger Education Unit, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
- E-mail:
| | - M Ogura
- Department of Radiation Oncology and Image-Applied Therapy, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - T Shibata
- Department of Radiation Oncology and Image-Applied Therapy, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - M Hiraoka
- Department of Radiation Oncology and Image-Applied Therapy, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
16
|
Abstract
Hypoxia is an integral characteristic of the tumor microenvironment, primarily due to the microvascular defects that accompany the accelerated neoplastic growth. The presence of tumor hypoxic areas correlates with negative outcome after radiotherapy, chemotherapy, and surgery, as hypoxia not only provides an environment directly facilitating chemo- and radio-resistance, but also encourages the evolution of phenotypic changes inducing permanent resistance to treatment and metastatic spread. Therefore, successful treatment of hypoxic cells has the potential to not only improve local control but also impact overall patient survival. Specific and selective targeting of hypoxic tumor areas can be achieved at all three steps of a gene therapy treatment: delivery of the therapeutic gene to the tumor, regulation of gene expression, and therapeutic efficacy. In this review the latest developments and innovations in hypoxia-targeted gene therapy are discussed. In particular, approaches such as hypoxia-conditionally replicating viruses, cellular vehicles, and gene therapy means to disrupt the hypoxia-inducible factor (HIF) signaling are outlined.
Collapse
Affiliation(s)
- Olga Greco
- Tumour Microcirculation Group, University of Sheffield, Royal Hallamshire Hospital, Sheffield, United Kingdom
| | | |
Collapse
|
17
|
Greco O, Marples B, Joiner MC, Scott SD. How to overcome (and exploit) tumor hypoxia for targeted gene therapy. J Cell Physiol 2003; 197:312-25. [PMID: 14566961 DOI: 10.1002/jcp.10374] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Tumor hypoxia has long been recognized as a critical issue in oncology. Resistance of hypoxic areas has been shown to affect treatment outcome after radiation, chemotherapy, and surgery in a number of tumor sites. Two main strategies to overcome tumor hypoxia are to increase the delivery of oxygen (or oxygen-mimetic drugs), and exploiting this unique environmental condition of solid tumors for targeted therapy. The first strategy includes hyperbaric oxygen breathing, the administration of carbogen and nicotinamide, and the delivery of chemical radiosensitizers. In contrast, bioreductive drugs and hypoxia-targeted suicide gene therapy aim at activating cytotoxic agents at the tumor site, while sparing normal tissue from damage. The cellular machinery responds to hypoxia by activating the expression of genes involved in angiogenesis, anaerobic metabolism, vascular permeability, and inflammation. In most cases, transcription is initiated by the binding of the transcription factor hypoxia-inducible factor (HIF) to hypoxia responsive elements (HREs). Hypoxia-targeting for gene therapy has been achieved by utilizing promoters containing HREs, to induce selective and efficient transgene activation at the tumor site. Hypoxia-targeted delivery and prodrug activation may add additional levels of selectivity to the treatment. In this article, the latest developments of cancer gene therapy of the hypoxic environment are discussed, with particular attention to combined protocols with ionizing radiation. Ultimately, it is proposed that by adopting specific transgene activation and molecular amplification systems, resistant hypoxic tumor tissues may be effectively targeted with gene therapy.
Collapse
Affiliation(s)
- Olga Greco
- Department of Radiation Oncology, Karmanos Cancer Institute and Wayne State University, Hudson Webber CRC, Detroit, Michigan, USA.
| | | | | | | |
Collapse
|
18
|
Kizaka-Kondoh S, Inoue M, Harada H, Hiraoka M. Tumor hypoxia: a target for selective cancer therapy. Cancer Sci 2003; 94:1021-8. [PMID: 14662015 PMCID: PMC11160235 DOI: 10.1111/j.1349-7006.2003.tb01395.x] [Citation(s) in RCA: 262] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2003] [Revised: 10/07/2003] [Accepted: 10/20/2003] [Indexed: 02/04/2023] Open
Abstract
Tumor hypoxia has been considered to be a potential therapeutic problem because it renders solid tumors more resistant to sparsely ionizing radiation (IR) and chemotherapeutic drugs. Moreover, recent laboratory and clinical data have shown that tumor hypoxia is also associated with a more malignant phenotype and poor survival in patients suffering from various solid tumors. Therefore, selective targeting of hypoxic tumor cells has been explored, and since severe hypoxia (pO(2) < 0.33%, 2.5 mmHg) does not occur in normal tissue, tumor hypoxia could be exploited for therapeutic advantage. However, the following three characteristics of hypoxic tumor regions present obstacles in targeting hypoxic cells. First, it is difficult to deliver a sufficient amount of drug to a region that is remote from blood vessels. Second, one must specifically target hypoxic tumor cells while sparing normal well-oxygenated tissue from damage. Finally, the severely hypoxic tumor cells to be attacked have often stopped dividing. Therefore, high delivery efficiency, high specificity and selective cytotoxicity are all necessary to target and combat hypoxic tumor cells. The current review describes progress on the biological aspects of tumor hypoxia and provides a compilation of the recent molecular approaches used to target hypoxic tumors. These approaches include our work with a unique hypoxia-targeting protein drug, TOP3, with which we have sought to address the above three difficulties.
Collapse
Affiliation(s)
- Shinae Kizaka-Kondoh
- Department of Molecular Oncology, Kyoto University Graduate School of Medicine, 54 Shongoin Kawahararcho, Sakyo-ku, Kyoto 606-8507
| | | | | | | |
Collapse
|
19
|
Greco O, Marples B, Dachs GU, Williams KJ, Patterson AV, Scott SD. Novel chimeric gene promoters responsive to hypoxia and ionizing radiation. Gene Ther 2002; 9:1403-11. [PMID: 12365006 DOI: 10.1038/sj.gt.3301823] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2001] [Accepted: 05/07/2002] [Indexed: 11/08/2022]
Abstract
Despite being an adverse prognostic factor in radiotherapy, hypoxia represents a physiological difference that can be exploited for selective cancer gene therapy. In this study gene therapy vectors responsive to both hypoxia and ionizing radiation (IR) were developed. Gene expression was regulated by novel, synthetic promoters containing hypoxia responsive elements (HREs) from the erythropoietin (Epo), the phosphoglycerate kinase 1 (PGK1) and the vascular endothelial growth factor (VEGF) genes, and IR-responsive CArG elements from the early growth response (Egr) 1 gene. All chimeric promoters could be activated by hypoxia and/or IR-treatment, and selectively control marker gene expression in human T24 bladder carcinoma and MCF-7 mammary carcinoma cells. Importantly, enhancers containing combinations of HREs and CArG elements were able to respond to both triggering treatments, with the Epo HRE/CArG combination proving to be the most responsive and robust. The Epo HRE/CArG enhancer could effectively control a suicide gene therapy strategy by selectively sensitizing hypoxic and/or irradiated cells expressing the enzyme horseradish peroxidase (HRP) to the prodrug indole-3-acetic acid (IAA). These data indicate that the use of such chimeric promoters may effectively regulate therapeutic gene expression within the tumor microenvironment in gene therapy strategies aimed at addressing the problem of hypoxia in radiotherapy.
Collapse
Affiliation(s)
- O Greco
- Gray Cancer Institute, Mount Vernon Hospital, Northwood, UK
| | | | | | | | | | | |
Collapse
|
20
|
Masunaga SI, Ono K. Significance of the response of quiescent cell populations within solid tumors in cancer therapy. JOURNAL OF RADIATION RESEARCH 2002; 43:11-25. [PMID: 12056326 DOI: 10.1269/jrr.43.11] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In analyzing the response of quiescent (Q) cells in solid tumors, we have developed a combined method with a micronucleus (MN) assay and the identification of proliferating (P) cells by 5-bromo-2'-deoxyuridine (BrdU) and an anti-BrdU monoclonal antibody. Using this method, the responses of Q tumor cells as well as total tumor (P + Q) cells within murine solid tumors to various DNA-damaging treatments were evaluated. Based on this evaluation, combining with tirapazamine, a well-known bioreductive agent, and/or heat treatment at mild temperatures was thought to be a promising modality for cancer therapy in terms of conventional anticancer treatment-resistant Q cell control. Recently, our method for detecting the Q-cell response using P cell labeling with BrdU and the MN frequency assay was also shown to be applicable to an apoptosis detection assay. Meanwhile, our method for detecting the intratumor Q-cell response was also applicable toward high linear energy transfer radiation, including reactor neutrons. Thus, using our method, a new neutron capture compound that has the potential to be distributed in neutron capture therapy-resistant intratumor Q cell populations is now under development.
Collapse
Affiliation(s)
- Shin-Ichiro Masunaga
- Radiation Oncology Research Laboratory, Research Reactor Institute, Kyoto University, Noda, Kumatori-cho, Sennan-gun, Osaka 590-0494, Japan.
| | | |
Collapse
|
21
|
Abstract
Although radiotherapy is used to treat many solid tumours, normal tissue tolerance and inherent tumour radioresistance can hinder successful outcome. Cancer gene therapy is one approach being developed to address this problem. However, the potential of many strategies are not realised owing to poor gene delivery and a lack of tumour specificity. The use of treatment-, condition- or tumour-specific promoters to control gene-directed enzyme prodrug therapy (GDEPT) is one such method for targeting gene expression to the tumour. Here, we describe two systems that make use of GDEPT, regulated by radiation or hypoxic-responsive promoters. To ensure that the radiation-responsive promoter is be activated by clinically relevant doses of radiation, we have designed synthetic promoters based on radiation responsive CArG elements derived from the Early Growth Response 1 (Egr1) gene. Use of these promoters in several tumour cell lines resulted in a 2-3-fold activation after a single dose of 3 Gy. Furthermore, use of these CArG promoters to control the expression of the herpes simplex virus (HSV) thymidine kinase (tk) gene in combination with the prodrug ganciclovir (GCV) resulted in substantially more cytotoxicity than seen with radiation or GCV treatment alone. Effectiveness was further improved by incorporating the GDEPT strategy into a novel molecular switch system using the Cre/loxP recombinase system of bacteriophage P1. The level of GDEPT bystander cell killing was notably increased by the use of a fusion protein of the HSVtk enzyme and the HSV intercellular transport protein vp22. Since hypoxia is also a common feature of many tumours, promoters containing hypoxic-responsive elements (HREs) for use with GDEPT are described. The development of such strategies that achieve tumour targeted expression of genes via selective promoters will enable improved specificity and targeting thereby addressing one of the major limitations of cancer gene therapy.
Collapse
Affiliation(s)
- B Marples
- Experimental Oncology, Gray Cancer Institute, PO Box 100, Mount Vernon Hospital, Northwood, Middlesex HA6 2JR, UK.
| | | | | | | |
Collapse
|