1
|
Wen Z, Liu T, Xu X, Acharya N, Shen Z, Lu Y, Xu J, Guo K, Shen S, Zhao Y, Wang P, Li S, Chen W, Li H, Ding Y, Shang M, Guo H, Hou Y, Cui B, Shen M, Huang Y, Pan T, Qingqing W, Cao Q, Wang K, Xiao P. Interleukin-16 enhances anti-tumor immune responses by establishing a Th1 cell-macrophage crosstalk through reprogramming glutamine metabolism in mice. Nat Commun 2025; 16:2362. [PMID: 40064918 PMCID: PMC11893787 DOI: 10.1038/s41467-025-57603-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
Overcoming immunosuppression in the tumor microenvironment (TME) is crucial for developing novel cancer immunotherapies. Here, we report that IL-16 administration enhances the polarization of T helper 1 (Th1) cells by inhibiting glutamine catabolism through the downregulation of glutaminase in CD4+ T cells and increases the production of Th1 effector cytokine IFN-γ, thus improving anti-tumor immune responses. Moreover, we find that establishing an IL-16-dependent, Th1-dominant TME relies on mast cell-produced histamine and results in the increased expression of the CXCR3 ligands in tumor-associated macrophages (TAM), thereby improving the therapeutic effectiveness of immune checkpoint blockade (ICB). Cancer patients exhibit impaired production of IL-16, which correlates with poorer prognosis. Additionally, low IL-16 production is associated with unresponsiveness to immunotherapy in cancer patients. Collectively, our findings provided new insights into the biological function of IL-16, emphasizing its potential clinical significance as a therapeutic approach to augment anti-tumor immunity and sensitize ICB-based cancer immunotherapy.
Collapse
Affiliation(s)
- Zhenzhen Wen
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tong Liu
- Department of Breast Surgery, Cancer Hospital of Harbin Medical University, Harbin, China
| | - Xutao Xu
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Nandini Acharya
- Pelotonia Institute for Immuno-Oncology, OSUCCC-James, The Ohio State University, Columbus, OH, USA
| | - Zhida Shen
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yunkun Lu
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Junjie Xu
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ke Guo
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shuying Shen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuening Zhao
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Pinli Wang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Shumin Li
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Weiyu Chen
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Hui Li
- Department of Thoracic Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, China
| | - Yimin Ding
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Min Shang
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongshan Guo
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Yu Hou
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Bijun Cui
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Manlu Shen
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Youling Huang
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ting Pan
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
- The Key Laboratory for Immunity and Inflammatory Diseases of Zhejiang Province, Hangzhou, China
| | - Wang Qingqing
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China.
- The Key Laboratory for Immunity and Inflammatory Diseases of Zhejiang Province, Hangzhou, China.
| | - Qian Cao
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Kai Wang
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China.
| | - Peng Xiao
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China.
- The Key Laboratory for Immunity and Inflammatory Diseases of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
2
|
Jiao YX, Zhou YM, Zhou ZW, He Y, Liu S, Xu XT, Ji K, Chen JJ. Histone acetylation alteration by KAT6A inhibitor WM-1119 suppresses IgE-mediated mast cell activation and allergic inflammation via reduction in AP-1 signaling. Biochem Pharmacol 2025; 232:116732. [PMID: 39709039 DOI: 10.1016/j.bcp.2024.116732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/12/2024] [Accepted: 12/19/2024] [Indexed: 12/23/2024]
Abstract
Activation of immunoglobulin E (IgE)-associated mast cells (MCs) triggers the onset of pro-inflammatory signals associated with type I allergic diseases. Although histone acetylation changes have been associated with inflammatory diseases, the impact of lysine-acetyltransferase (KAT) inhibitors on IgE-mediated MCs function is unclear. Potential anti-allergic effects of the KAT6A inhibitor WM-1119 on IgE-mediated MCs activation and allergic inflammation were examined in this study. WM-1119 was observed to reduce IgE-mediated degranulation in rat basophilic leukemia-2H3 cells (RBLs) and murine bone marrow-derived mast cells (BMMCs), as demonstrated by reduced the release of β-hexosaminidase (β-hex)or histamine(HA) and decreased inflammatory cytokines. Additionally, WM-1119 attenuated allergic responses in IgE-induced passive cutaneous anaphylaxis (PCA) and active systemic anaphylaxis (ASA) mice. No WM-1119 effects on histamine-induced hypothermia in mice were observed. Mechanically, WM-1119 reduced levels of histone H3 lysine 14 acetylation (H3K14ac) and H3K27ac, while also reducing IgE-induced MAPK or NF-κB activity. Moreover, WM-1119 reduced activator protein-1 (AP-1) activity in a manner involving inhibition of c-Fos transcription and translation together with decreased AP-1 binding of its downstream promoters. KAT6A knockdown in MCs also reduced AP-1 activity by inhibiting c-Fos expression. H3K14ac enrichment in the Fos promoter was observed, indicating that H3K14ac may regulate c-Fos expression. In conclusion, KAT6A inhibition or knockdown was shown to reduce IgE-mediated MCs activation and allergic inflammation through a mechanism involving changes in c-Fos expression and downstream AP-1 activity consequent to down-regulation of histone acetylation. KAT6A inhibition may represent a new treatment strategy for suppressing MCs in treating allergic diseases.
Collapse
Affiliation(s)
- Yu-Xin Jiao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Yan-Mei Zhou
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Zi-Wen Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Yong He
- Shenzhen University General Hospital, Shenzhen University, Shenzhen 518055, China
| | - Shan Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Xue-Ting Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Kunmei Ji
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China; School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Jia-Jie Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China.
| |
Collapse
|
3
|
Uçar N, Holick MF. Illuminating the Connection: Cutaneous Vitamin D 3 Synthesis and Its Role in Skin Cancer Prevention. Nutrients 2025; 17:386. [PMID: 39940244 PMCID: PMC11821240 DOI: 10.3390/nu17030386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/16/2025] [Accepted: 01/20/2025] [Indexed: 02/14/2025] Open
Abstract
Sunlight exposure plays an important role in human health, impacting processes such as mood, blood pressure regulation, and vitamin D3 production. Solar ultraviolet B radiation initiates vitamin D3 synthesis in the skin, which is subsequently metabolized into its biologically active form. UVB exposure plays a key role in enabling vitamin D3 synthesis, but it can also contribute to skin carcinogenesis, creating a complex interplay between its beneficial and harmful effects. Vitamin D deficiency, affecting over half the global population, is linked to a range of chronic diseases, including cancers, cardiovascular conditions, and autoimmune disorders. Simultaneously, excessive solar UVB exposure increases the risk of non-melanoma and melanoma skin cancers through mechanisms involving DNA damage and oxidative stress. This review examines the dual role of UVB radiation in health and disease, focusing on the mechanisms of cutaneous vitamin D3 synthesis, the epidemiology of skin cancer, and the protective roles of vitamin D3's photoproducts and its active metabolite, 1,25-dihydroxyvitamin D3. Understanding these interconnections is critical for developing strategies that balance adequate sun-induced vitamin D3 production with skin cancer prevention.
Collapse
Affiliation(s)
- Nazlı Uçar
- Section of Endocrinology, Diabetes, Nutrition and Weight Management, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA;
- Area of Preventive Medicine and Public Health, Department of Preventive Medicine and Public Health, Food Sciences, Toxicology, and Legal Medicine, School of Pharmacy, University de Valencia, 46100 Burjassot, Spain
| | - Michael F. Holick
- Section of Endocrinology, Diabetes, Nutrition and Weight Management, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA;
| |
Collapse
|
4
|
Mushii О, Pavlova А, Bazas V, Zadvornyi T, Lukianova N. OSTEOPONTIN-REGULATED CHANGES IN THE MAST CELL POPULATION ASSOCIATED WITH BREAST CANCER. Exp Oncol 2024; 46:209-220. [PMID: 39704460 DOI: 10.15407/exp-oncology.2024.03.209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Indexed: 12/21/2024]
Abstract
BACKGROUND The development of breast cancer (BCa) is largely determined by the characteristics of the tumor microenvironment (ТМЕ), which undergoes significant changes during the progression of the disease. Mast cells (MCs) are among the least studied components of the TME. The aim of the work was to investigate the relationship between the density of infiltration and the functional activity of MCs with indicators of osteopontin (OP) expression in BCa tissue. MATERIALS AND METHODS The study was conducted on the postoperative material of 15 patients with fibroadenoma and 78 patients with stage I-II BCa. MCs in the tissue of benign and malignant breast tumors were detected by a histochemical method using toluidine blue. The functional activity of MCs was calculated by the degranulation index. The OP expression in tumor tissue was assessed by the immunohistochemical method. RESULTS The density of MCs infiltration and their functional activity are associated with such indicators of BCa malignancy as tumor size, lymph node involvement, tumor grade, molecular subtype, proliferative activity, and PR- and HER2/neu-expression status. A high expression of OP in the stromal component of BCa is associated with the growth of the tumoral MCs population, metastatic lesions in regional lymph nodes, and a low differentiation grade of the tumors. In addition, OP is involved in the regulation of MCs in the tissue of the luminal B and basal molecular BCa subtypes. The level of OP expression in the parenchymal component of BCa is associated with the number of infiltrated MCs in the presence of metastatic lesions of regional lymph nodes. CONCLUSIONS The identified relationship of OP expression level with the topology and functional activity of MCs in BCa tissue, depending on the clinical status of patients, indicates the prospects for their use in predicting the aggressiveness of the tumor process.
Collapse
Affiliation(s)
- О Mushii
- R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - А Pavlova
- R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - V Bazas
- Kyiv City Clinical Oncology Center, Kyiv, Ukraine
| | - T Zadvornyi
- R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - N Lukianova
- R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
5
|
Vaziri-Moghadam A, Foroughmand-Araabi MH. Integrating machine learning and bioinformatics approaches for identifying novel diagnostic gene biomarkers in colorectal cancer. Sci Rep 2024; 14:24786. [PMID: 39433800 PMCID: PMC11494190 DOI: 10.1038/s41598-024-75438-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 10/04/2024] [Indexed: 10/23/2024] Open
Abstract
This study aimed to identify diagnostic gene biomarkers for colorectal cancer (CRC) by analyzing differentially expressed genes (DEGs) in tumor and adjacent normal samples across five colon cancer gene-expression profiles (GSE10950, GSE25070, GSE41328, GSE74602, GSE142279) from the Gene Expression Omnibus (GEO) database. Intersecting identified DEGs with the module with the highest correlation to gene expression patterns of tumor samples in the gene co-expression network analysis revealed 283 overlapped genes. Centrality measures were calculated for these genes in the reconstructed STRING protein-protein interaction network. Applying LASSO logistic regression, eleven genes were ultimately recognized as candidate diagnostic genes. Among these genes, the area under the receiver operating characteristic curve (AUROC) values for nine genes (CDC25B, CDK4, IQGAP3, MMP1, MMP7, SLC7A5, TEAD4, TRIB3, and UHRF1) surpassed the threshold of 0.92 in both the training and validation sets. We evaluated the diagnostic performance of these genes with four machine learning algorithms: random forest (RF), support vector machines (SVM), artificial neural network (ANN), and gradient boosting machine (GBM). In the testing dataset (GSE21815 and GSE106582), the AUROC scores were greater than 0.95 for all of the machine learning algorithms, indicating the high diagnostic performance of the nine genes. Besides, these nine genes are also significantly correlated to twelve immune cells, namely Mast cells activated, Macrophages M0, M1, and M2, Neutrophils, T cells CD4 memory activated, T cells follicular helper, T cells CD8, T cells CD4 memory resting, B cells memory, Plasma cells, and Mast cells resting (P < 0.05). These results strongly suggest that all of the nine genes have the potential to serve as reliable diagnostic biomarkers for CRC.
Collapse
|
6
|
Supplee JG, Affronti HC, Duan R, Brooks RC, Stine ZE, Nguyen PTT, Pinheiro LV, Noji MC, Drummond JM, Huang K, Schultz K, Dang CV, Marmorstein R, Wellen KE. ACLY alternative splicing correlates with cancer phenotypes. J Biol Chem 2024; 300:107418. [PMID: 38815867 PMCID: PMC11260853 DOI: 10.1016/j.jbc.2024.107418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/23/2024] [Accepted: 05/18/2024] [Indexed: 06/01/2024] Open
Abstract
ATP-citrate lyase (ACLY) links carbohydrate and lipid metabolism and provides nucleocytosolic acetyl-CoA for protein acetylation. ACLY has two major splice isoforms: the full-length canonical "long" isoform and an uncharacterized "short" isoform in which exon 14 is spliced out. Exon 14 encodes 10 amino acids within an intrinsically disordered region and includes at least one dynamically phosphorylated residue. Both isoforms are expressed in healthy tissues to varying degrees. Analysis of human transcriptomic data revealed that the percent spliced in (PSI) of exon 14 is increased in several cancers and correlated with poorer overall survival in a pan-cancer analysis, though not in individual tumor types. This prompted us to explore potential biochemical and functional differences between ACLY isoforms. Here, we show that there are no discernible differences in enzymatic activity or stability between isoforms or phosphomutants of ACLY in vitro. Similarly, both isoforms and phosphomutants were able to rescue ACLY functions, including fatty acid synthesis and bulk histone acetylation, when re-expressed in Acly knockout cells. Deletion of Acly exon 14 in mice did not overtly impact development or metabolic physiology nor did it attenuate tumor burden in a genetic model of intestinal cancer. Notably, expression of epithelial splicing regulatory protein 1 (ESRP1) is highly correlated with ACLY PSI. We report that ACLY splicing is regulated by ESRP1. In turn, both ESRP1 expression and ACLY PSI are correlated with specific immune signatures in tumors. Despite these intriguing patterns of ACLY splicing in healthy and cancer tissues, functional differences between the isoforms remain elusive.
Collapse
Affiliation(s)
- Julianna G Supplee
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hayley C Affronti
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Richard Duan
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | - Phuong T T Nguyen
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Laura V Pinheiro
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michael C Noji
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jack M Drummond
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kevin Huang
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kollin Schultz
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Chi V Dang
- The Wistar Institute, Philadelphia, Pennsylvania, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; The Ludwig Institute for Cancer Research, New York, New York, USA
| | - Ronen Marmorstein
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| | - Kathryn E Wellen
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
7
|
Park JH, Mortaja M, Son HG, Zhao X, Sloat LM, Azin M, Wang J, Collier MR, Tummala KS, Mandinova A, Bardeesy N, Semenov YR, Mino-Kenudson M, Demehri S. Statin prevents cancer development in chronic inflammation by blocking interleukin 33 expression. Nat Commun 2024; 15:4099. [PMID: 38816352 PMCID: PMC11139893 DOI: 10.1038/s41467-024-48441-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 04/24/2024] [Indexed: 06/01/2024] Open
Abstract
Chronic inflammation is a major cause of cancer worldwide. Interleukin 33 (IL-33) is a critical initiator of cancer-prone chronic inflammation; however, its induction mechanism by environmental causes of chronic inflammation is unknown. Herein, we demonstrate that Toll-like receptor (TLR)3/4-TBK1-IRF3 pathway activation links environmental insults to IL-33 induction in the skin and pancreas inflammation. An FDA-approved drug library screen identifies pitavastatin to effectively suppress IL-33 expression by blocking TBK1 membrane recruitment/activation through the mevalonate pathway inhibition. Accordingly, pitavastatin prevents chronic pancreatitis and its cancer sequela in an IL-33-dependent manner. The IRF3-IL-33 axis is highly active in chronic pancreatitis and its associated pancreatic cancer in humans. Interestingly, pitavastatin use correlates with a significantly reduced risk of chronic pancreatitis and pancreatic cancer in patients. Our findings demonstrate that blocking the TBK1-IRF3-IL-33 signaling axis suppresses cancer-prone chronic inflammation. Statins present a safe and effective prophylactic strategy to prevent chronic inflammation and its cancer sequela.
Collapse
Affiliation(s)
- Jong Ho Park
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Anatomy, School of Medicine, Keimyung University, Daegu, South Korea
| | - Mahsa Mortaja
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Heehwa G Son
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Xutu Zhao
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Lauren M Sloat
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Marjan Azin
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jun Wang
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Michael R Collier
- Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Krishna S Tummala
- Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Cancer Program, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Quantitative Biosciences, Merck Research Laboratories, Boston, MA, USA
| | - Anna Mandinova
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Nabeel Bardeesy
- Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Cancer Program, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Yevgeniy R Semenov
- Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, USA
| | - Mari Mino-Kenudson
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Shadmehr Demehri
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
8
|
Gharote H, Bhowate R, Dangore-Khasbage S. Enzyme-linked immunosorbent assay and immunohistochemical analysis of mast cell related biochemicals in oral submucous fibrosis. F1000Res 2024; 12:1288. [PMID: 38826574 PMCID: PMC11140300 DOI: 10.12688/f1000research.141179.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/17/2024] [Indexed: 06/04/2024] Open
Abstract
Oral submucous fibrosis (OSMF), a potentially malignant disorder, is developed by progressive fibrous tissue deposition in connective tissue along with atrophy of oral mucosa. Histological sections also show the mast cell infiltration in submucosa which may indicate their possible role in this entity. Abundant availability of biochemicals in mast cells like histamine and serine proteases like chymase may be released and play specific pathways in the disease pathophysiology. Possibly, if the histamine release has some part to play, diamine oxidase may also be found to have a relationship as it metabolizes histamine. The present study is proposed to identify the presence of chymase, histamine, and diamine oxidase in both, serum as well as tissue by enzyme-linked immunosorbent assay (ELISA) and immunohistochemistry (IHC) respectively. This study may provide probable insight into the mast cell-related chemicals and their association with OSMF.
Collapse
Affiliation(s)
- Harshkant Gharote
- Oral Medicine and Radiology, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education and Research, Sawangi (Meghe), Wardha, Maharashtra, 442004, India
| | - Rahul Bhowate
- Oral Medicine and Radiology, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education and Research, Sawangi (Meghe), Wardha, Maharashtra, 442004, India
| | - Suwarna Dangore-Khasbage
- Oral Medicine and Radiology, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education and Research, Sawangi (Meghe), Wardha, Maharashtra, 442004, India
| |
Collapse
|
9
|
Lv Y, Tian W, Teng Y, Wang P, Zhao Y, Li Z, Tang S, Chen W, Xie R, Lü M, Zhuang Y. Tumor-infiltrating mast cells stimulate ICOS + regulatory T cells through an IL-33 and IL-2 axis to promote gastric cancer progression. J Adv Res 2024; 57:149-162. [PMID: 37086778 PMCID: PMC10918354 DOI: 10.1016/j.jare.2023.04.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/29/2023] [Accepted: 04/15/2023] [Indexed: 04/24/2023] Open
Abstract
INTRODUCTION In solid tumors, regulatory T cell (Treg) and mast cell perform different roles depending on the microenvironment. Nevertheless, mast cell and Treg-mediated interactions in gastric cancer (GC) are unclear, as are their regulation, function, and clinical significance. OBJECTIVE The present study demonstrated the mechanism of tumor-infiltrating mast cells stimulating ICOS+ regulatory T cells via the IL-33/IL-2 axis to promote the growth of gastric cancer. METHODS Analyses of 98 patients with GC were conducted to examine mast cell counts, ICOS+ Tregs, and the levels of IL-33 or IL-2. Isolated ICOS+ Treg and CD8+ T cell were stimulated, cultured and tested for their functional abilities in vitro and in vivo. RESULTS GC patients exhibited a significantly more production of IL-33 in tumors. Mast cell stimulated by tumor-derived IL-33 exhibited a prolonged lifespan through IL-33 mediated inhibition of apoptosis. Moreover, mast cells stimulated by tumor-derived IL-33 secreted IL-2, which induced Treg expansion. These inducible Tregs displayed an activated immunosuppressive phenotype with positive expression for the inducible T cell co-stimulator (ICOS). In vitro, IL-2 from IL to 33-stimulated mast cells induced increased numbers of ICOS+ Tregs with increased immunosuppressive activity against proliferation and effector function of CD8+ T cell. In vivo, ICOS+ Tregs were treated with anti-IL-2 neutralizing antibody followed by co-injection with CD8+ T cells in GC mouse model, which showed an increased CD8+ T cell infiltration and effector molecules production, meanwhile tumor growth and progression were inhibited. Besides, reduction in GC patient survival was associated with tumor-derived ICOS+ Tregs. CONCLUSION Our results highlight a crosstalk between GC-infiltrating mast cells and ICOS+ Tregs and provide a novel mechanism describing ICOS+ Treg expansion and induction by an IL-33/mast cell/IL-2 signaling axis in GC, and also provide functional evidence that the modulation of this immunosuppressive pathway can attenuate GC-mediated immune tolerance.
Collapse
Affiliation(s)
- Yipin Lv
- Department of Digestive Diseases, The General Hospital of Western Theater Command, Chengdu, Sichuan, China; National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China.
| | - Wenqing Tian
- Department of Gastroenterology, Chongqing University Cancer Hospital, Chongqing, China
| | - Yongsheng Teng
- The 940th Hospital of Joint Logistics Support Force of PLA, Lanzhou, China
| | - Pan Wang
- The 940th Hospital of Joint Logistics Support Force of PLA, Lanzhou, China
| | - Yongliang Zhao
- Department of General Surgery and Centre of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Zhengyan Li
- Department of General Surgery and Centre of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Shanhong Tang
- Department of Digestive Diseases, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Weisan Chen
- La Trobe Institute of Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| | - Rui Xie
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, Guizhou, China.
| | - Muhan Lü
- Department of Gastroenterology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| | - Yuan Zhuang
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, Guizhou, China; Department of Gastroenterology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China; National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China.
| |
Collapse
|
10
|
Ali E, Červenková L, Pálek R, Ambrozkiewicz F, Hošek P, Daum O, Liška V, Hemminki K, Trailin A. Prognostic role of macrophages and mast cells in the microenvironment of hepatocellular carcinoma after resection. BMC Cancer 2024; 24:142. [PMID: 38287290 PMCID: PMC10823625 DOI: 10.1186/s12885-024-11904-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 01/20/2024] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND The prognostic significance of mast cells and different phenotypes of macrophages in the microenvironment of hepatocellular carcinoma (HCC) following resection is unclear. We aimed in this study to assess the local distribution of infiltrating macrophages and mast cells of specific phenotypes in tissues of HCC and to evaluate their prognostic values for survival of post-surgical patients. METHODS The clinicopathological and follow-up data of 70 patients with HCC, who underwent curative resection of tumor from 1997 to 2019, were collected. The infiltration of CD68+ and CD163+ macrophages and CD117+ mast cells was assessed immunohistochemically in representative resected specimens of HCC and adjacent tissues. The area fraction (AF) of positively stained cells was estimated automatically using QuPath image analysis software in several regions, such as tumor center (TC), inner margin (IM), outer margin (OM), and peritumor (PT) area. The prognostic significance of immune cells, individually and in associations, for time to recurrence (TTR), disease-free survival (DFS), and overall survival (OS) was evaluated using Kaplan-Meier and Cox regression analyses. RESULTS High AF of CD68+ macrophages in TC and IM and high AF of mast cells in IM and PT area were associated with a longer DFS. High AF of CD163+ macrophages in PT area correlated with a shorter DFS. Patients from CD163TChigh & CD68TClow group had a shorter DFS compared to all the rest of the groups, and cases with CD163IMlow & CD68IMhigh demonstrated significantly longer DFS compared to low AF of both markers. Patients from CD68IMhigh & CD163PTlow group, CD117IMhigh & CD163PTlow group, and CD117PThigh & CD163PTlow group had a significantly longer DFS compared to all other combinations of respective cells. CONCLUSIONS The individual prognostic impact of CD68+ and CD163+ macrophages and mast cells in the microenvironment of HCC after resection depends on their abundance and location, whereas the cumulative impact is built upon combination of different cell phenotypes within and between regions.
Collapse
Affiliation(s)
- Esraa Ali
- Laboratory of Translational Cancer Genomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, Pilsen, 32300, Czech Republic
| | - Lenka Červenková
- Laboratory of Cancer Treatment and Tissue Regeneration, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, Pilsen, 32300, Czech Republic
- Department of Pathology, Third Faculty of Medicine, Charles University, Ruská 87, Prague, 10000, Czech Republic
| | - Richard Pálek
- Laboratory of Cancer Treatment and Tissue Regeneration, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, Pilsen, 32300, Czech Republic
- Department of Surgery and Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 80, Pilsen, 32300, Czech Republic
| | - Filip Ambrozkiewicz
- Laboratory of Translational Cancer Genomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, Pilsen, 32300, Czech Republic
| | - Petr Hošek
- Laboratory of Cancer Treatment and Tissue Regeneration, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, Pilsen, 32300, Czech Republic
| | - Ondrej Daum
- Sikl's Institute of Pathology, Faculty of Medicine and Teaching Hospital in Plzen, Charles University, Edvarda Beneše 13, Pilsen, 30599, Czech Republic
- Bioptická Laboratoř s.r.o, Mikulášské Nám. 4, Pilsen, 32600, Czech Republic
| | - Václav Liška
- Laboratory of Cancer Treatment and Tissue Regeneration, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, Pilsen, 32300, Czech Republic
- Department of Surgery and Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 80, Pilsen, 32300, Czech Republic
| | - Kari Hemminki
- Laboratory of Translational Cancer Genomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, Pilsen, 32300, Czech Republic
- Department of Cancer Epidemiology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Andriy Trailin
- Laboratory of Translational Cancer Genomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, Pilsen, 32300, Czech Republic.
| |
Collapse
|
11
|
Xie Z, Niu L, Zheng G, Du K, Dai S, Li R, Dan H, Duan L, Wu H, Ren G, Dou X, Feng F, Zhang J, Zheng J. Single-cell analysis unveils activation of mast cells in colorectal cancer microenvironment. Cell Biosci 2023; 13:217. [PMID: 38031173 PMCID: PMC10687892 DOI: 10.1186/s13578-023-01144-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
The role of mast cells (MCs) in colorectal cancer (CRC) remains unclear, and a comprehensive single-cell study on CRC MCs has not been conducted. This study used a multi-omics approach, integrating single-cell sequencing, spatial transcriptomics, and bulk tissue sequencing data to investigate the heterogeneity and impact of MCs in CRC. Five MC signature genes (TPSAB1, TPSB2, CPA3, HPGDS, and MS4A2) were identified, and their average expression was used as a marker of MCs. The MC density was found to be lower in CRC compared to normal tissue, but MCs in CRC demonstrated distinct activation features. Activated MCs were defined by high expression of receptors and MC mediators, while resting MCs had low expression. Most genes, including the five MC signature genes, were expressed at higher levels in activated MCs. The MC signature was linked to a better prognosis in both CRC and pan-cancer patient cohorts. Elevated KITLG expression was observed in fibroblasts and endothelial cells in CRC samples compared to normal tissue, and co-localization of MCs with these cell types was revealed by spatial transcriptome analysis. In conclusion, this study finds decreased MC density in CRC compared to normal tissue, but highlights a shift in MC phenotype from CMA1high resting cells to activated TPSAB1high, CPA3high, and KIThigh cells. The elevated KITLG expression in the tumor microenvironment's fibroblasts and endothelial cells may activate MCs through the KITLG-KIT axis, potentially suppressing tumor progression.
Collapse
Affiliation(s)
- Zhenyu Xie
- The State Key Laboratory of Cancer Biology, Department of Gastrointestinal Surgery, Xijing Hospital, Fourth Military Medical University, 169 Changle Road, Xi'an, Shaanxi, 710032, China
| | - Liaoran Niu
- The State Key Laboratory of Cancer Biology, Department of Gastrointestinal Surgery, Xijing Hospital, Fourth Military Medical University, 169 Changle Road, Xi'an, Shaanxi, 710032, China
| | - Gaozan Zheng
- The State Key Laboratory of Cancer Biology, Department of Gastrointestinal Surgery, Xijing Hospital, Fourth Military Medical University, 169 Changle Road, Xi'an, Shaanxi, 710032, China
| | - Kunli Du
- The State Key Laboratory of Cancer Biology, Department of Gastrointestinal Surgery, Xijing Hospital, Fourth Military Medical University, 169 Changle Road, Xi'an, Shaanxi, 710032, China
| | - Songchen Dai
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang, 110016, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, 110016, China
| | - Ruikai Li
- The State Key Laboratory of Cancer Biology, Department of Gastrointestinal Surgery, Xijing Hospital, Fourth Military Medical University, 169 Changle Road, Xi'an, Shaanxi, 710032, China
| | - Hanjun Dan
- The State Key Laboratory of Cancer Biology, Department of Gastrointestinal Surgery, Xijing Hospital, Fourth Military Medical University, 169 Changle Road, Xi'an, Shaanxi, 710032, China
| | - Lili Duan
- The State Key Laboratory of Cancer Biology, Department of Gastrointestinal Surgery, Xijing Hospital, Fourth Military Medical University, 169 Changle Road, Xi'an, Shaanxi, 710032, China
| | - Hongze Wu
- The State Key Laboratory of Cancer Biology, Department of Gastrointestinal Surgery, Xijing Hospital, Fourth Military Medical University, 169 Changle Road, Xi'an, Shaanxi, 710032, China
| | - Guangming Ren
- Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Xinyu Dou
- Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Fan Feng
- The State Key Laboratory of Cancer Biology, Department of Gastrointestinal Surgery, Xijing Hospital, Fourth Military Medical University, 169 Changle Road, Xi'an, Shaanxi, 710032, China.
| | - Jian Zhang
- The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, 169 Changle Road, Xi'an, Shaanxi, 710032, China.
| | - Jianyong Zheng
- The State Key Laboratory of Cancer Biology, Department of Gastrointestinal Surgery, Xijing Hospital, Fourth Military Medical University, 169 Changle Road, Xi'an, Shaanxi, 710032, China.
| |
Collapse
|
12
|
Kim HY, Kang HG, Kim HM, Jeong HJ. Anti-tumor activity of trimethoprim-sulfamethoxazole against melanoma skin cancer through triggering allergic reaction and promoting immunity. Int Immunopharmacol 2023; 123:110742. [PMID: 37536185 DOI: 10.1016/j.intimp.2023.110742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/20/2023] [Accepted: 07/28/2023] [Indexed: 08/05/2023]
Abstract
The anti-cancer impact of an allergic reaction is strongly linked to immunity enhancement. Trimethoprim-sulfamethoxazole (TMP-SMX), an antibiotic, has potential immunomodulatory effects, but has side effects such as allergies. Thus far, the effects and underlying mechanisms of TMP-SMX in melanoma have not been clarified. This study examined the potential roles of TMP-SMX in melanoma skin cancer using an immunodeficient mouse model. TMP-SMX significantly improved the survival rate and reduced the tumor weight and growth and vascular endothelial growth factor levels in melanoma skin cancer of immunodeficient mice. In the forced swimming test, TMP-SMX significantly reduced immobility time compared to the melanoma skin cancer of immunodeficient mice, indicating improved immunity. TMP-SMX significantly increased infiltration of mast cells and release of allergy-related mediators (IgE, histamine, interleukin (IL)-4, IL-5, IL-13, and IL-33) and immune-enhancing mediators (tumor necrosis factor-α, IL-2, IL-6, and IL-12). In addition, the administration of TMP-SMX significantly increased the caspase-3, 8, and 9 activities. Furthermore, mice given TMP-SMX showed no adverse reactions according to the blood biochemical parameters. TMP-SMX significantly inhibits the growth of melanoma skin cancer by triggering an allergic reaction and promotingimmunity. Hence, we propose that TMP-SMX may be used as an immune booster in cancer chemotherapy.
Collapse
Affiliation(s)
- Hee-Yun Kim
- Biochip Research Center, Hoseo University, Asan, Chungnam 31499, Republic of Korea
| | - Ho-Geun Kang
- Department of Bio-Convergence System, Graduate School, Hoseo University, Asan 31499, Republic of Korea
| | - Hyung-Min Kim
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Hyun-Ja Jeong
- Biochip Research Center, Hoseo University, Asan, Chungnam 31499, Republic of Korea; Department of Bio-Convergence System, Graduate School, Hoseo University, Asan 31499, Republic of Korea; Department of Food Science & Technology, Hoseo University, 20, Hoseo-ro 79beon-gil, Baebang-eup, Asan, Chungnam 31499, Republic of Korea.
| |
Collapse
|
13
|
Fan F, Gao J, Zhao Y, Wang J, Meng L, Ma J, Li T, Han H, Lai J, Gao Z, Li X, Guo R, Cao Z, Zhang Y, Zhang X, Chen H. Elevated Mast Cell Abundance Is Associated with Enrichment of CCR2+ Cytotoxic T Cells and Favorable Prognosis in Lung Adenocarcinoma. Cancer Res 2023; 83:2690-2703. [PMID: 37249584 PMCID: PMC10425735 DOI: 10.1158/0008-5472.can-22-3140] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 02/07/2023] [Accepted: 05/23/2023] [Indexed: 05/31/2023]
Abstract
Mast cells constitute indispensable immunoregulatory sentinel cells in the tumor microenvironment. A better understanding of the regulation and functions of mast cells in lung adenocarcinoma (LUAD) could uncover therapeutic approaches to reprogram the immunosuppressive tumor microenvironment. Here, we performed flow cytometry and single-cell RNA sequencing (scRNA-seq) of patient LUAD samples to comprehensively characterize LUAD-infiltrating mast cells. Mast cells exhibited functional heterogeneity and were enriched in LUAD with ground-glass opacity features (gLUAD). The mast cells in gLUAD exhibited proinflammatory and chemotactic properties while those in radiologically solid LUAD (sLUAD) were associated with tumor angiogenesis. Mast cells were an important source of CCL2 and correlated with the recruitment of CCR2+ CTL, a specific subcluster of preexhausted T cells with tissue-resident memory phenotype and enhanced cytotoxicity. Increased infiltration of mast cells and CCR2+ CTLs and their colocalization showed a strong association with favorable prognosis after surgery but were not associated with improved survival after chemotherapy. Collectively, these findings reveal a key role of mast cells in LUAD and their potential cross-talk with CTLs, suggesting that targeting mast cells may be an immunotherapeutic strategy for LUAD. SIGNIFICANCE Comprehensive characterization of mast cells in lung adenocarcinoma elucidates their heterogeneity and identifies interplay between mast cells and CCR2+ T cells that is associated with a favorable prognosis.
Collapse
Affiliation(s)
- Fanfan Fan
- Departments of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, Shanghai, China
- Institute of Thoracic Oncology, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jian Gao
- Departments of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, Shanghai, China
- International Human Phenome Institutes, Shanghai, China
| | - Yue Zhao
- Departments of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, Shanghai, China
- Institute of Thoracic Oncology, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jun Wang
- School of Life Sciences, Fudan University, Shanghai, China
| | - Lu Meng
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Jiaqiang Ma
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Teng Li
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Han Han
- Departments of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, Shanghai, China
- Institute of Thoracic Oncology, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jinglei Lai
- Departments of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, Shanghai, China
- Institute of Thoracic Oncology, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhendong Gao
- Departments of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, Shanghai, China
- Institute of Thoracic Oncology, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiongfei Li
- Departments of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, Shanghai, China
- Institute of Thoracic Oncology, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ran Guo
- Departments of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, Shanghai, China
- Institute of Thoracic Oncology, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhiwei Cao
- School of Life Sciences, Fudan University, Shanghai, China
| | - Yang Zhang
- Departments of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, Shanghai, China
- Institute of Thoracic Oncology, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaoming Zhang
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Haiquan Chen
- Departments of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, Shanghai, China
- Institute of Thoracic Oncology, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
14
|
Gudowska-Sawczuk M, Kudelski J, Olkowicz M, Młynarczyk G, Chłosta P, Mroczko B. The Clinical Significance of Serum Free Light Chains in Bladder Cancer. J Clin Med 2023; 12:jcm12093294. [PMID: 37176734 PMCID: PMC10179731 DOI: 10.3390/jcm12093294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/27/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
This research aimed to assess the clinical usefulness of serum kappa (κ) and lambda (λ) free light chains (FLCs) in patients with bladder cancer (BC). One hundred samples were collected and analysed from healthy volunteers (C) and bladder cancer patients. Cancer patients were divided into two subgroups: low-grade (LG) and high-grade cancer (HG). Concentrations of FLCs, CEA, CA19-9, creatinine and urea were measured per manufacturers' guidelines. The concentrations of κ and λ FLCs and CEA were significantly higher in BC patients in comparison to the control group. Moreover, the concentrations of κ and λ FLCs and CEA were significantly higher in both low-grade as well as high-grade cancer in comparison to the controls. The levels of κ and λ FLCs differed between tumour grades, with patients presenting higher concentrations in high-grade compared to low-grade cancer. In the total study group, κFLC correlated with λFLC, the κ:λ ratio, CRP, CEA, CA19-9, creatinine and urea. There was also a correlation between λFLC and κFLC, CRP, CEA, creatinine and urea. The λFLC showed a higher ability (sensitivity and PPV) to detect bladder cancer in comparison to κFLC and CEA. In addition, λFLC had a higher ability to exclude BC (specificity and NPV) than κFLC and CEA. λFLC also showed the highest accuracy in the detection of bladder cancer. In conclusion, the revealed differences in the concentrations of both κ and λ FLCs suggest their potential participation in bladder cancer development. Increased concentrations of free light chains in bladder cancer patients and the association with the tumour grade suggest that κ and λ FLC measurements may be useful in the diagnosis and prognosis of bladder cancer. This is the first research that evaluates the concentration of FLCs in bladder cancer, so further studies are necessary to confirm their usefulness as tumour markers of this malignancy.
Collapse
Affiliation(s)
- Monika Gudowska-Sawczuk
- Department of Biochemical Diagnostics, Medical University of Bialystok, Waszyngtona 15A St., 15-269 Bialystok, Poland
| | - Jacek Kudelski
- Department of Urology, Medical University of Bialystok, M. Skłodowskiej-Curie 24A St., 15-276 Bialystok, Poland
| | - Michał Olkowicz
- Department of Urology, Medical University of Bialystok, M. Skłodowskiej-Curie 24A St., 15-276 Bialystok, Poland
| | - Grzegorz Młynarczyk
- Department of Urology, Medical University of Bialystok, M. Skłodowskiej-Curie 24A St., 15-276 Bialystok, Poland
| | - Piotr Chłosta
- Department of Urology, Jagiellonian University Medical College, Jakubowskiego 2 St., 30-688 Kraków, Poland
- Department of Urology, Medical University of Vienna, Währinger Gürtel 18-20 St., 1090 Vienna, Austria
| | - Barbara Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, Waszyngtona 15A St., 15-269 Bialystok, Poland
| |
Collapse
|
15
|
Matore BW, Banjare P, Sarthi AS, Roy PP, Singh J. Phthalimides Represent a Promising Scaffold for Multi‐Targeted Anticancer Agents. ChemistrySelect 2023. [DOI: 10.1002/slct.202204851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Affiliation(s)
- Balaji Wamanrao Matore
- Department of Pharmacy Guru Ghasidas Vishwavidyalaya (A Central University) Bilaspur Chhattisgarh 495009 India
| | - Purusottam Banjare
- Department of Pharmacy Guru Ghasidas Vishwavidyalaya (A Central University) Bilaspur Chhattisgarh 495009 India
| | - Ajay Singh Sarthi
- Rungta College of Pharmaceutical Sciences and Research Raipur Chhattisgarh 492009 India
| | - Partha Pratim Roy
- Department of Pharmacy Guru Ghasidas Vishwavidyalaya (A Central University) Bilaspur Chhattisgarh 495009 India
| | - Jagadish Singh
- Department of Pharmacy Guru Ghasidas Vishwavidyalaya (A Central University) Bilaspur Chhattisgarh 495009 India
| |
Collapse
|
16
|
Park JH, Mortaja M, Son H, Azin M, Wang J, Collier M, Mandinova A, Semenov Y, Mino-Kenudson M, Demehri S. Statin prevents cancer development in chronic inflammation by blocking interleukin 33 expression. RESEARCH SQUARE 2023:rs.3.rs-2318750. [PMID: 36711701 PMCID: PMC9882616 DOI: 10.21203/rs.3.rs-2318750/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Chronic inflammation is a major cause of cancer worldwide. Interleukin 33 (IL-33) is a critical initiator of cancer-prone chronic inflammation; however, its induction mechanism by the environmental causes of chronic inflammation is unknown. Herein, we demonstrate that Toll-like receptor (TLR)3/4-TBK1-IRF3 pathway activation links environmental insults to IL-33 induction in the skin and pancreas. FDA-approved drug library screen identified pitavastatin as an effective IL-33 inhibitor by blocking TBK1 membrane recruitment/activation through the mevalonate pathway inhibition. Accordingly, pitavastatin prevented chronic pancreatitis and its cancer sequela in an IL-33-dependent manner. IRF3-IL-33 axis was highly active in chronic pancreatitis and its associated pancreatic cancer in humans. Interestingly, pitavastatin use correlated with a significantly reduced risk of chronic pancreatitis and pancreatic cancer in patients. Our findings demonstrate that blocking the TBK1-IRF3 signaling pathway suppresses IL-33 expression and cancer-prone chronic inflammation. Statins present a safe and effective therapeutic strategy to prevent chronic inflammation and its cancer sequela.
Collapse
|
17
|
Mast cells inhibit colorectal cancer development by inducing ER stress through secreting Cystatin C. Oncogene 2023; 42:209-223. [PMID: 36402931 DOI: 10.1038/s41388-022-02543-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/21/2022]
Abstract
Mast cells (MCs) are abundantly distributed in the human intestinal mucosa and submucosa. However, their roles and mechanisms in the development of colorectal cancer (CRC) are still unclear. In the present research, we found that the infiltration density of MCs in CRC tissues was positively correlated with improved patients' prognoses. Moreover, MCs suppressed the growth and induced the apoptosis of CRC cells in vitro and in vivo but had no effect on normal colonic epithelial cells. The present study revealed that MCs specifically induced endoplasmic reticulum stress (ERS) and activated the unfolded protein response (UPR) in CRC cells but not in normal cells, which led to the suppression of CRC development in vivo. Furthermore, we found that the secreted Cystatin C protein was the key factor for the MC-induced ERS in CRC cells. This work is of significance for uncovering the antitumor function of MCs in CRC progression and identifying the potential of CRC to respond to MC-targeted immunotherapy.
Collapse
|
18
|
Croft W, Evans RPT, Pearce H, Elshafie M, Griffiths EA, Moss P. The single cell transcriptional landscape of esophageal adenocarcinoma and its modulation by neoadjuvant chemotherapy. Mol Cancer 2022; 21:200. [PMID: 36253784 PMCID: PMC9575245 DOI: 10.1186/s12943-022-01666-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 09/17/2022] [Indexed: 11/10/2022] Open
Abstract
Immune checkpoint blockade has recently proven effective in subsets of patients with esophageal adenocarcinoma (EAC) but little is known regarding the EAC immune microenvironment. We determined the single cell transcriptional profile of EAC in 8 patients who were treatment-naive (n = 4) or had received neoadjuvant chemotherapy (n = 4). Analysis of 52,387 cells revealed 10 major cell subsets of tumor, immune and stromal cells. Prior to chemotherapy tumors were heavy infiltrated by T regulatory cells and exhausted effector T cells whilst plasmacytoid dendritic cells were markedly expanded. Two dominant cancer-associated fibroblast populations were also observed whilst endothelial populations were suppressed. Pathological remission following chemotherapy associated with broad reversal of immune abnormalities together with fibroblast transition and an increase in endothelial cells whilst a chemoresistant epithelial stem cell population correlated with poor response. These findings reveal features that underlie and limit the response to current immunotherapy and identify a range of novel opportunities for targeted therapy.
Collapse
Affiliation(s)
- Wayne Croft
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
- Centre for Computational Biology, University of Birmingham, Birmingham, UK
| | - Richard P T Evans
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
- University Hospitals Foundation Trust, Edgbaston, Birmingham, UK
| | - Hayden Pearce
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Mona Elshafie
- University Hospitals Foundation Trust, Edgbaston, Birmingham, UK
| | - Ewen A Griffiths
- University Hospitals Foundation Trust, Edgbaston, Birmingham, UK
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Paul Moss
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK.
- University Hospitals Foundation Trust, Edgbaston, Birmingham, UK.
| |
Collapse
|
19
|
Todosenko N, Yurova K, Khaziakhmatova O, Malashchenko V, Khlusov I, Litvinova L. Heparin and Heparin-Based Drug Delivery Systems: Pleiotropic Molecular Effects at Multiple Drug Resistance of Osteosarcoma and Immune Cells. Pharmaceutics 2022; 14:pharmaceutics14102181. [PMID: 36297616 PMCID: PMC9612132 DOI: 10.3390/pharmaceutics14102181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/29/2022] [Accepted: 10/10/2022] [Indexed: 11/23/2022] Open
Abstract
One of the main problems of modern health care is the growing number of oncological diseases both in the elderly and young population. Inadequately effective chemotherapy, which remains the main method of cancer control, is largely associated with the emergence of multidrug resistance in tumor cells. The search for new solutions to overcome the resistance of malignant cells to pharmacological agents is being actively pursued. Another serious problem is immunosuppression caused both by the tumor cells themselves and by antitumor drugs. Of great interest in this context is heparin, a biomolecule belonging to the class of glycosaminoglycans and possessing a broad spectrum of biological activity, including immunomodulatory and antitumor properties. In the context of the rapid development of the new field of “osteoimmunology,” which focuses on the collaboration of bone and immune cells, heparin and delivery systems based on it may be of intriguing importance for the oncotherapy of malignant bone tumors. Osteosarcoma is a rare but highly aggressive, chemoresistant malignant tumor that affects young adults and is characterized by constant recurrence and metastasis. This review describes the direct and immune-mediated regulatory effects of heparin and drug delivery systems based on it on the molecular mechanisms of (multiple) drug resistance in (onco) pathological conditions of bone tissue, especially osteosarcoma.
Collapse
Affiliation(s)
- Natalia Todosenko
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
| | - Kristina Yurova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
| | - Olga Khaziakhmatova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
| | - Vladimir Malashchenko
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
| | - Igor Khlusov
- Department of Morphology and General Pathology, Siberian State Medical University, 634050 Tomsk, Russia
| | - Larisa Litvinova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
- Correspondence:
| |
Collapse
|
20
|
Gao C, Zhou G, Cheng M, Feng L, Cao P, Zhou G. Identification of senescence-associated long non-coding RNAs to predict prognosis and immune microenvironment in patients with hepatocellular carcinoma. Front Genet 2022; 13:956094. [PMID: 36330438 PMCID: PMC9624069 DOI: 10.3389/fgene.2022.956094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 09/30/2022] [Indexed: 02/17/2024] Open
Abstract
Background: Cellular senescence plays a complicated and vital role in cancer development because of its divergent effects on tumorigenicity. However, the long non-coding RNAs (lncRNAs) associated with tumor senescence and their prognostic value in hepatocellular carcinoma (HCC) remain unexplored. Methods: The trans-cancer oncogene-induced senescence (OIS) signature was determined by gene set variation analysis (GSVA) in the cancer genome atlas (TCGA) dataset. The OIS-related lncRNAs were identified by correlation analyses. Cox regression analyses were used to screen lncRNAs associated with prognosis, and an optimal predictive model was created by regression analysis of the least absolute shrinkage and selection operator (LASSO). The performance of the model was evaluated by Kaplan-Meier survival analyses, nomograms, stratified survival analyses, and receiver operating characteristic curve (ROC) analyses. Gene set enrichment analysis (GSEA) and cell-type identification by estimating relative subsets of RNA transcripts (CIBERSORT) were carried out to explore the functional relevance and immune cell infiltration, respectively. Results: Firstly, we examined the pan-cancer OIS signature, and found several types of cancer with OIS strongly associated with the survival of patients, including HCC. Subsequently, based on the OIS signature, we identified 76 OIS-related lncRNAs with prognostic values in HCC. We then established an optimal prognostic model based on 11 (including NRAV, AC015908.3, MIR100HG, AL365203.2, AC009005.1, SNHG3, LINC01138, AC090192.2, AC008622.2, AL139423.1, and AC026356.1) of these lncRNAs by LASSO-Cox regression analysis. It was then confirmed that the risk score was an independent and potential risk indicator for overall survival (OS) (HR [95% CI] = 4.90 [2.74-8.70], p < 0.001), which outperforms those traditional clinicopathological factors. Furthermore, patients with higher risk scores also showed more advanced levels of a proinflammatory senescence-associated secretory phenotype (SASP), higher infiltration of regulatory T (Treg) cells and lower infiltration of naïve B cells, suggesting the regulatory effects of OIS on immune microenvironment. Additionally, we identified NRAV as a representative OIS-related lncRNA, which is over-expressed in HCC tumors mainly driven by DNA hypomethylation. Conclusion: Based on 11 OIS-related lncRNAs, we established a promising prognostic predictor for HCC patients, and highlighted the potential immune microenvironment-modulatory roles of OIS in HCC, providing a broad molecular perspective of tumor senescence.
Collapse
Affiliation(s)
- Chengzhi Gao
- State Key Laboratory of Proteomics, National Center for Protein Sciences at Beijing, Beijing Institute of Radiation Medicine, Beijing, China
| | - Guangming Zhou
- State Key Laboratory of Proteomics, National Center for Protein Sciences at Beijing, Beijing Institute of Radiation Medicine, Beijing, China
| | - Min Cheng
- Collaborative Innovation Center for Personalized Cancer Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Lan Feng
- State Key Laboratory of Proteomics, National Center for Protein Sciences at Beijing, Beijing Institute of Radiation Medicine, Beijing, China
| | - Pengbo Cao
- State Key Laboratory of Proteomics, National Center for Protein Sciences at Beijing, Beijing Institute of Radiation Medicine, Beijing, China
| | - Gangqiao Zhou
- State Key Laboratory of Proteomics, National Center for Protein Sciences at Beijing, Beijing Institute of Radiation Medicine, Beijing, China
- Collaborative Innovation Center for Personalized Cancer Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Hebei University, Baoding, China
- Anhui Medical University, Hefei, China
| |
Collapse
|
21
|
Identification of Two Novel Immune Subtypes Characterized by Distinct Prognosis and Tumor Microenvironment in Osteosarcoma. J Immunol Res 2022; 2022:2181525. [PMID: 36254197 PMCID: PMC9569206 DOI: 10.1155/2022/2181525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/02/2022] [Indexed: 11/18/2022] Open
Abstract
Osteosarcoma is a kind of primary malignant tumor of bone. In recent years, its therapeutic effect and prognostic survival are dissatisfactory. The tumor immune microenvironment (TIME) reflects immune status of patients, but it is little known in osteosarcoma. Therefore, this study attempts to conduct a comprehensive analysis to explore TIME of osteosarcoma and identify TIME-related subtypes for clinical management and treatment. We successfully established two novel tumor immune infiltration clusters (TIIC) which are characterized by difference of microenvironment and immune-related biological processes. High tumor immune infiltration cluster (H-TIIC) subtypes with higher immune infiltration score shows a better overall survival. Further, the two immune subtypes are shown to differ in immunotherapy and chemotherapy. The results would be helpful for clinical decision in osteosarcoma.
Collapse
|
22
|
Wagner N, Wagner KD. Peroxisome Proliferator-Activated Receptors and the Hallmarks of Cancer. Cells 2022; 11:cells11152432. [PMID: 35954274 PMCID: PMC9368267 DOI: 10.3390/cells11152432] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 12/11/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) function as nuclear transcription factors upon the binding of physiological or pharmacological ligands and heterodimerization with retinoic X receptors. Physiological ligands include fatty acids and fatty-acid-derived compounds with low specificity for the different PPAR subtypes (alpha, beta/delta, and gamma). For each of the PPAR subtypes, specific pharmacological agonists and antagonists, as well as pan-agonists, are available. In agreement with their natural ligands, PPARs are mainly focused on as targets for the treatment of metabolic syndrome and its associated complications. Nevertheless, many publications are available that implicate PPARs in malignancies. In several instances, they are controversial for very similar models. Thus, to better predict the potential use of PPAR modulators for personalized medicine in therapies against malignancies, it seems necessary and timely to review the three PPARs in relation to the didactic concept of cancer hallmark capabilities. We previously described the functions of PPAR beta/delta with respect to the cancer hallmarks and reviewed the implications of all PPARs in angiogenesis. Thus, the current review updates our knowledge on PPAR beta and the hallmarks of cancer and extends the concept to PPAR alpha and PPAR gamma.
Collapse
Affiliation(s)
- Nicole Wagner
- Correspondence: (N.W.); (K.-D.W.); Tel.: +33-489-153-713 (K.-D.W.)
| | | |
Collapse
|
23
|
Identification and Characterization of Tunneling Nanotubes Involved in Human Mast Cell FcεRI-Mediated Apoptosis of Cancer Cells. Cancers (Basel) 2022; 14:cancers14122944. [PMID: 35740607 PMCID: PMC9220880 DOI: 10.3390/cancers14122944] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Mast cells (MCs) are ubiquitously found in most tissues and in and around tumors. Their role in cancer pathogenesis remains an open area of investigation, and their interactions with tumor cells has not been explored. Here, a novel mechanism of communication between human MCs and tumor cells involving tunneling nanotubes (TnT) and other membrane structures is described. The formation of these communication structures is dependent on MC receptors interacting with tumor antigens through tumor-specific immunoglobulins and results in tumor-killing mediators from MC entering the tumor cells. This mechanism underlying the MC killing of tumor cells has important implications in understanding cancer pathogenesis. Abstract Mast cells (MCs) are found in practically all tissues where they participate in innate and adaptive immune responses. They are also found in and around tumors, yet their interactions with cancer cells and the resulting impact on cancer cell growth and metastasis are not well understood. In this study, we examined a novel mechanism of IgE-FcεRI-mediated, intercellular communication between human adipose-derived mast cells (ADMC) and cancer cells. The formation of heterotypic tunneling nanotubes (TnT) and membrane structures between MCs and tumor cells in vitro was examined using microscopy and a diverse array of molecule-specific indicator dyes. We show that several MC-specific structures are dependent on the specific interactions between human tumor IgE-sensitized MCs and antigens on the tumor cell surface. The formation of TnT, membrane blebs and other MC-specific structures paralleled FcεRI-degranulation occurring within 30 min and persisting for up to 24 h. The TnT-specific adhesion of FcεRI-activated MCs to tumor cells was characterized by the transport of the MC granule content into the tumor cells, including tryptase and TNF-α. This interaction led to apoptosis of the tumor cells, which differs from previous studies examining tissue cells within the cancer microenvironment. The formation of heterotypic TnT results in stimulation of an invasive tumor cell phenotype and increased tumor cell invasion and chemoresistance of the cancer cells. These studies describe a heretofore-unrecognized mechanism underlying IgE-mediated interactions and FcεRI-activated MC-mediated killing of tumor cells through the formation of TnT.
Collapse
|
24
|
Costa AC, Santos JMO, Medeiros-Fonseca B, Oliveira PA, Bastos MMSM, Brito HO, Gil da Costa RM, Medeiros R. Characterizing the Inflammatory Microenvironment in K14-HPV16 Transgenic Mice: Mast Cell Infiltration and MicroRNA Expression. Cancers (Basel) 2022; 14:2216. [PMID: 35565345 PMCID: PMC9099850 DOI: 10.3390/cancers14092216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/12/2022] [Accepted: 04/26/2022] [Indexed: 02/04/2023] Open
Abstract
High-risk human papillomavirus (HPV) is the etiologic agent of several types of cancer. Mast cells’ role as either a driving or opposing force for cancer progression remains controversial. MicroRNAs are dysregulated in several HPV-induced cancers, and can influence mast cell biology. The aim of this study was to evaluate mast cell infiltration and to identify microRNAs potentially regulating this process. Transgenic male mice (K14-HPV16; HPV+) and matched wild-type mice (HPV−) received 7,12-Dimethylbenz[a]anthracene (DMBA) (or vehicle) over 17 weeks. Following euthanasia, chest skin and ear tissue samples were collected. Mast cell infiltration was evaluated by immunohistochemistry. MicroRNAs associated with mast cell infiltration were identified using bioinformatic tools. MicroRNA and mRNA relative expression was evaluated by RT-qPCR. Immunohistochemistry showed increased mast cell infiltration in HPV+ mice (p < 0.001). DMBA did not have any statistically significant influence on this distribution. Ear tissue of HPV+ mice showed increased mast cell infiltration (p < 0.01) when compared with chest skin samples. Additionally, reduced relative expression of miR-125b-5p (p = 0.008, 2−ΔΔCt = 2.09) and miR-223-3p (p = 0.013, 2−ΔΔCt = 4.42) seems to be associated with mast cell infiltration and increased expression of target gene Cxcl10. These results indicate that HPV16 may increase mast cell infiltration by down-regulating miR-223-3p and miR-125b-5p.
Collapse
Affiliation(s)
- Alexandra C. Costa
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; (A.C.C.); (J.M.O.S.); (R.M.G.d.C.)
- Faculty of Medicine of the University of Porto (FMUP), 4200-319 Porto, Portugal
- Research Department of the Portuguese League against Cancer—Regional Nucleus of the North (Liga Portuguesa Contra o Cancro—Núcleo Regional do Norte), 4200-177 Porto, Portugal
| | - Joana M. O. Santos
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; (A.C.C.); (J.M.O.S.); (R.M.G.d.C.)
- Faculty of Medicine of the University of Porto (FMUP), 4200-319 Porto, Portugal
| | - Beatriz Medeiros-Fonseca
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal; (B.M.-F.); (P.A.O.)
| | - Paula A. Oliveira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal; (B.M.-F.); (P.A.O.)
| | - Margarida M. S. M. Bastos
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal;
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Haissa O. Brito
- Postgraduate Programme in Adult Health (PPGSAD), Department of Morphology, Federal University of Maranhão (UFMA), and UFMA University Hospital (HUUFMA), São Luís 65080-805, Brazil;
| | - Rui M. Gil da Costa
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; (A.C.C.); (J.M.O.S.); (R.M.G.d.C.)
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal; (B.M.-F.); (P.A.O.)
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal;
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- Postgraduate Programme in Adult Health (PPGSAD), Department of Morphology, Federal University of Maranhão (UFMA), and UFMA University Hospital (HUUFMA), São Luís 65080-805, Brazil;
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; (A.C.C.); (J.M.O.S.); (R.M.G.d.C.)
- Faculty of Medicine of the University of Porto (FMUP), 4200-319 Porto, Portugal
- Research Department of the Portuguese League against Cancer—Regional Nucleus of the North (Liga Portuguesa Contra o Cancro—Núcleo Regional do Norte), 4200-177 Porto, Portugal
- Virology Service, Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal
- Biomedical Research Center (CEBIMED), Faculty of Health Sciences of the Fernando Pessoa University, 4249-004 Porto, Portugal
| |
Collapse
|
25
|
Majorini MT, Colombo MP, Lecis D. Few, but Efficient: The Role of Mast Cells in Breast Cancer and Other Solid Tumors. Cancer Res 2022; 82:1439-1447. [PMID: 35045983 PMCID: PMC9306341 DOI: 10.1158/0008-5472.can-21-3424] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/17/2021] [Accepted: 01/13/2022] [Indexed: 01/07/2023]
Abstract
Tumor outcome is determined not only by cancer cell-intrinsic features but also by the interaction between cancer cells and their microenvironment. There is great interest in tumor-infiltrating immune cells, yet mast cells have been less studied. Recent work has highlighted the impact of mast cells on the features and aggressiveness of cancer cells, but the eventual effect of mast cell infiltration is still controversial. Here, we review multifaceted findings regarding the role of mast cells in cancer, with a particular focus on breast cancer, which is further complicated because of its classification into subtypes characterized by different biological features, outcome, and therapeutic strategies.
Collapse
Affiliation(s)
| | - Mario Paolo Colombo
- Corresponding Authors: Daniele Lecis, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, Milano 20133, Italy. Phone: 022-390-2212; E-mail: ; and Mario Paolo Colombo,
| | - Daniele Lecis
- Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy.,Corresponding Authors: Daniele Lecis, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, Milano 20133, Italy. Phone: 022-390-2212; E-mail: ; and Mario Paolo Colombo,
| |
Collapse
|
26
|
A Novel Immune-Related Gene Signature Predicts Prognosis of Lung Adenocarcinoma. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4995874. [PMID: 35437508 PMCID: PMC9013292 DOI: 10.1155/2022/4995874] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/12/2021] [Accepted: 02/27/2022] [Indexed: 12/25/2022]
Abstract
Background Lung adenocarcinoma (LUAD) is the most common form of lung cancer, accounting for 30% of all cases and 40% of all non-small-cell lung cancer cases. Immune-related genes play a significant role in predicting the overall survival and monitoring the status of the cancer immune microenvironment. The present study was aimed at finding an immune-related gene signature for predicting LUAD patient outcomes. Methods First, we chose the TCGA-LUAD project in the TCGA database as the training cohort for model training. For model validating, we found the datasets of GSE72094 and GSE68465 in the GEO database and took them as the candidate cohorts. We obtained 1793 immune-related genes from the ImmPort database and put them into a univariate Cox proportional hazard model to initially look for the genes with potential prognostic ability using the data of the training cohort. These identified genes then entered into a random survival forests-variable hunting algorithm for the best combination of genes for prognosis. In addition, the LASSO Cox regression model tested whether the gene combination can be further shrinkage, thereby constructing a gene signature. The Kaplan-Meier, Cox model, and ROC curve were deployed to examine the gene signature's prognosis in both cohorts. We conducted GSEA analysis to study further the mechanisms and pathways that involved the gene signature. Finally, we performed integrating analyses about the 22 TICs, fully interpreted the relationship between our signature and each TIC, and highlighted some TICs playing vital roles in the signature's prognostic ability. Results A nine-gene signature was produced from the data of the training cohort. The Kaplan-Meier estimator, Cox proportional hazard model, and ROC curve confirmed the independence and predictive ability of the signature, using the data from the validation cohort. The GSEA analysis results illustrated the gene signature's mechanism and emphasized the importance of immune-related pathways for the gene signature. 22 TICs immune infiltration analysis revealed resting mast cells' key roles in contributing to gene signature's prognostic ability. Conclusions This study discovered a novel immune-related nine-gene signature (BTK, CCR6, S100A10, SEMA3C, GPI, SCG2, TNFRSF11A, CCL20, and DKK1) that predicts LUAD prognosis precisely and associates with resting mast cells strongly.
Collapse
|
27
|
Fereydouni M, Motaghed M, Ahani E, Kafri T, Dellinger K, Metcalfe DD, Kepley CL. Harnessing the Anti-Tumor Mediators in Mast Cells as a New Strategy for Adoptive Cell Transfer for Cancer. Front Oncol 2022; 12:830199. [PMID: 35433433 PMCID: PMC9009255 DOI: 10.3389/fonc.2022.830199] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/28/2022] [Indexed: 12/12/2022] Open
Abstract
The emergence of cancer immunotherapies utilizing adoptive cell transfer (ACT) continues to be one of the most promising strategies for cancer treatment. Mast cells (MCs) which occur throughout vascularized tissues, are most commonly associated with Type I hypersensitivity, bind immunoglobin E (IgE) with high affinity, produce anti-cancer mediators such as tumor necrosis factor alpha (TNF-α) and granulocyte macrophage colony-stimulating factor (GM-CSF), and generally populate the tumor microenvironments. Yet, the role of MCs in cancer pathologies remains controversial with evidence for both anti-tumor and pro-tumor effects. Here, we review the studies examining the role of MCs in multiple forms of cancer, provide an alternative, MC-based hypothesis underlying the mechanism of therapeutic tumor IgE efficacy in clinical trials, and propose a novel strategy for using tumor-targeted, IgE-sensitized MCs as a platform for developing new cellular cancer immunotherapies. This autologous MC cancer immunotherapy could have several advantages over current cell-based cancer immunotherapies and provide new mechanistic strategies for cancer therapeutics alone or in combination with current approaches.
Collapse
Affiliation(s)
- Mohammad Fereydouni
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina Greensboro (UNCG), Greensboro, NC, United States
| | - Mona Motaghed
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, Greensboro, NC, United States
| | - Elnaz Ahani
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, Greensboro, NC, United States
| | - Tal Kafri
- Gene Therapy Center and Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Kristen Dellinger
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, Greensboro, NC, United States
| | - Dean D. Metcalfe
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Christopher L. Kepley
- Department of Molecular and Cellular Sciences, Liberty University College of Osteopathic Medicine, Lynchburg, VA, United States
- *Correspondence: Christopher L. Kepley,
| |
Collapse
|
28
|
Hu J, Chen Y, Gao L, Ge C, Xie X, Lei P, Zhang Y, Liang P. A Novel Pyroptosis-Related Gene Signature for Predicting Prognosis in Kidney Renal Papillary Cell Carcinoma. Front Genet 2022; 13:851384. [PMID: 35401700 PMCID: PMC8984942 DOI: 10.3389/fgene.2022.851384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Pyroptosis is defined as an inflammatory form of programmed cell death. Increasing studies have demonstrated that pyroptosis is closely related to tumor development and antitumor process. However, the role of pyroptosis in kidney renal papillary cell carcinoma (KIRP) remains obscure. In this study, we analyzed the expression of 52 pyroptosis-related genes (PRGs) in KIRP, of which 20 differentially expressed PRGs were identified between tumor and normal tissues. Consensus clustering analysis based on these PRGs was used to divided patients into two clusters, from which a significant difference in survival was found (p = 0.0041). The prognostic risk model based on six PRGs (CASP8, CASP9, CHMP2A, GPX4, IL6, and IRF1) was built using univariate Cox regression and LASSO–Cox regression analysis, with good performance in predicting one-, three-, and five-year overall survival. Kaplan–Meier survival analysis showed that the high-risk group had a poor survival outcome (p < 0.001) and risk score was an independent prognostic factor (HR: 2.655, 95% CI 1.192–5.911, p = 0.016). Immune profiling revealed differences in immune cell infiltration between the two groups, and the infiltration of M2 macrophages was significantly upregulated in the tumor immune microenvironment, implying that tumor immunity participated in the KIRP progression. Finally, we identified two hub genes in tumor tissues (IL6 and CASP9), which were validated in vitro. In conclusion, we conducted a comprehensive analysis of PRGs in KIRP and tried to provide a pyroptosis-related signature for predicting the prognosis.
Collapse
Affiliation(s)
- Jian Hu
- Department of Urology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yajun Chen
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Liang Gao
- Department of Urology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chengguo Ge
- Department of Urology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaodu Xie
- Department of Urology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Pan Lei
- Department of Urology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuanfeng Zhang
- Department of Urology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Peihe Liang
- Department of Urology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Peihe Liang,
| |
Collapse
|
29
|
Su F, Liu M, Zhang W, Tang M, Zhang J, Li H, Zou L, Zhang R, Liu Y, Li L, Ma J, Zhang Y, Chen M, Xiao F. Bacillus Calmette–Guérin Treatment Changes the Tumor Microenvironment of Non-Muscle-Invasive Bladder Cancer. Front Oncol 2022; 12:842182. [PMID: 35311085 PMCID: PMC8930202 DOI: 10.3389/fonc.2022.842182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/03/2022] [Indexed: 12/24/2022] Open
Abstract
Background Bacillus Calmette–Guérin (BCG) is currently the most effective intravesical therapy for non-muscle-invasive bladder cancer (NMIBC) as it can prevent disease recurrence and progression and lower mortality. However, the response rates to BCG vary widely and are dependent on a multitude of factors. Methods We performed a systematic discovery by analyzing the whole exome sequence, expression profile, and immune repertoire sequence of treatment-naive and 5-year time-serial relapsed tumors from 24 NMIBC patients. Results BCG therapy showed bidirectional effects on tumor evolution and immune checkpoint landscape, along with a significant reduction of the percentage of neoantigen burden. In addition, a remarkable proportion of subclonal mutations were unique to the matched pre- or post-treatment tumors, suggesting the presence of BCG-induced and/or spatial heterogeneity. In the relapsed tumors, we identified and validated a shift in the mutational signatures in which mutations associated with aristolochic acid (AA) exposure were enriched, implying AA may be associated with tumor recurrence. Enhanced expressions of immune checkpoint regulation genes were found in the relapsed tumors, suggesting that the combination of immune checkpoint with BCG treatment may be an effective strategy to treat NMIBC. TCR sequencing revealed treatment-associated changes in the T-cell repertoire in the primary and relapsed tumors. Conclusion Our results provide insight into the genomic and immune dynamics of tumor evolution with BCG treatment, suggest new mechanisms of BCG resistance, and inform the development of clinically relevant biomarkers and trials of potential immune checkpoint inhibitor combination therapies.
Collapse
Affiliation(s)
- Fei Su
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Ming Liu
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Wei Zhang
- Department of Pathology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Min Tang
- Department of Oncology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Jinsong Zhang
- Department of Pathology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Hexin Li
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Lihui Zou
- The Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Rui Zhang
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yudong Liu
- The Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Lin Li
- Department of Oncology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Jie Ma
- Center for Biotherapy, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- State Key Lab of Molecular Oncology, National Cancer Center, Chinese Academy of Medical Sciences Cancer Hospital & Peking Union Medical College, Beijing, China
| | - Yaqun Zhang
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- *Correspondence: Yaqun Zhang, ; Meng Chen, ; Fei Xiao,
| | - Meng Chen
- National Cancer Data Center, National Cancer Center, Chinese Academy of Medical Sciences Cancer Hospital & Peking Union Medical College, Beijing, China
- *Correspondence: Yaqun Zhang, ; Meng Chen, ; Fei Xiao,
| | - Fei Xiao
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- The Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- *Correspondence: Yaqun Zhang, ; Meng Chen, ; Fei Xiao,
| |
Collapse
|
30
|
Tamma R, Ingravallo G, Annese T, Gaudio F, Perrone T, Musto P, Specchia G, Ribatti D. Tumor Microenvironment and Microvascular Density in Follicular Lymphoma. J Clin Med 2022; 11:jcm11051257. [PMID: 35268349 PMCID: PMC8911525 DOI: 10.3390/jcm11051257] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 01/25/2023] Open
Abstract
Follicular lymphoma (FL) is a slowly progressive disease and constitutes the second most common non-Hodgkin lymphoma. Biological factors, such as the tumor microenvironment and the host response, are determinants in the outcome of FL but the experimental data about microenvironment and tumor cells in FL are variable and contradictory. In this morphometric study, we analyzed by immunohistochemistry the cellular components of the tumor microenvironment and correlated these data with the microvascular vascular density in three different grades of FL lymph node biopsies, comparing the results to healthy lymph node controls. The results indicated a significant increase in the number of CD68+ and CD163+ macrophages in all three analyzed FL grades. Tryptase+ mast cells resulted in an increase only in grade 1. PDL-1+ cells, CD4- and CD8-lymphocytes number results were reduced in FL samples. The higher number of CD34+ microvessels in the FL grades 1 and 2 of samples positively correlated with CD68+ and CD163+ cells, underlining the important angiogenic potential of this subset of macrophages.
Collapse
Affiliation(s)
- Roberto Tamma
- Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Piazza G. Cesare 11, 70124 Bari, Italy;
- Correspondence: (R.T.); (D.R.); Tel.: +39-080-5478323 (R.T); Fax: +39-080-5478310 (R.T.)
| | - Giuseppe Ingravallo
- Department of Emergency and Transplantation, Pathology Section, University of Bari Medical School, 70124 Bari, Italy;
| | - Tiziana Annese
- Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Piazza G. Cesare 11, 70124 Bari, Italy;
| | - Francesco Gaudio
- Department of Emergency and Transplantation, Hematology Section, University of Bari Medical School, 70124 Bari, Italy; (F.G.); (T.P.); (P.M.); (G.S.)
| | - Tommasina Perrone
- Department of Emergency and Transplantation, Hematology Section, University of Bari Medical School, 70124 Bari, Italy; (F.G.); (T.P.); (P.M.); (G.S.)
| | - Pellegrino Musto
- Department of Emergency and Transplantation, Hematology Section, University of Bari Medical School, 70124 Bari, Italy; (F.G.); (T.P.); (P.M.); (G.S.)
| | - Giorgina Specchia
- Department of Emergency and Transplantation, Hematology Section, University of Bari Medical School, 70124 Bari, Italy; (F.G.); (T.P.); (P.M.); (G.S.)
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Piazza G. Cesare 11, 70124 Bari, Italy;
- Correspondence: (R.T.); (D.R.); Tel.: +39-080-5478323 (R.T); Fax: +39-080-5478310 (R.T.)
| |
Collapse
|
31
|
Sobiepanek A, Kuryk Ł, Garofalo M, Kumar S, Baran J, Musolf P, Siebenhaar F, Fluhr JW, Kobiela T, Plasenzotti R, Kuchler K, Staniszewska M. The Multifaceted Roles of Mast Cells in Immune Homeostasis, Infections and Cancers. Int J Mol Sci 2022; 23:2249. [PMID: 35216365 PMCID: PMC8875910 DOI: 10.3390/ijms23042249] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/05/2022] [Accepted: 02/07/2022] [Indexed: 02/07/2023] Open
Abstract
Mast cells (MCs) play important roles in normal immune responses and pathological states. The location of MCs on the boundaries between tissues and the external environment, including gut mucosal surfaces, lungs, skin, and around blood vessels, suggests a multitude of immunological functions. Thus, MCs are pivotal for host defense against different antigens, including allergens and microbial pathogens. MCs can produce and respond to physiological mediators and chemokines to modulate inflammation. As long-lived, tissue-resident cells, MCs indeed mediate acute inflammatory responses such as those evident in allergic reactions. Furthermore, MCs participate in innate and adaptive immune responses to bacteria, viruses, fungi, and parasites. The control of MC activation or stabilization is a powerful tool in regulating tissue homeostasis and pathogen clearance. Moreover, MCs contribute to maintaining the homeostatic equilibrium between host and resident microbiota, and they engage in crosstalk between the resident and recruited hematopoietic cells. In this review, we provide a comprehensive overview of the functions of MCs in health and disease. Further, we discuss how mouse models of MC deficiency have become useful tools for establishing MCs as a potential cellular target for treating inflammatory disorders.
Collapse
Affiliation(s)
- Anna Sobiepanek
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (A.S.); (J.B.); (P.M.); (T.K.)
| | - Łukasz Kuryk
- National Institute of Public Health NIH—National Institute of Research, 00-791 Warsaw, Poland;
- Clinical Science, Targovax Oy, Lars Sonckin kaari 14, 02600 Espoo, Finland;
| | - Mariangela Garofalo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131 Padova, Italy;
| | - Sandeep Kumar
- Clinical Science, Targovax Oy, Lars Sonckin kaari 14, 02600 Espoo, Finland;
| | - Joanna Baran
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (A.S.); (J.B.); (P.M.); (T.K.)
| | - Paulina Musolf
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (A.S.); (J.B.); (P.M.); (T.K.)
| | - Frank Siebenhaar
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (F.S.); (J.W.F.)
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, 12203 Berlin, Germany
| | - Joachim Wilhelm Fluhr
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (F.S.); (J.W.F.)
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, 12203 Berlin, Germany
| | - Tomasz Kobiela
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (A.S.); (J.B.); (P.M.); (T.K.)
| | - Roberto Plasenzotti
- Department of Biomedical Research, Medical University of Vienna, Währingergürtel 18-20, 1090 Vienna, Austria;
| | - Karl Kuchler
- Max Perutz Labs Vienna, Center for Medical Biochemistry, Medical University of Vienna, Campus Vienna Biocenter, Dr. Bohr-Gasse 9/2, 1030 Vienna, Austria;
| | - Monika Staniszewska
- Centre for Advanced Materials and Technologies, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland
| |
Collapse
|
32
|
Zhu Z, Zhang M, Wang W, Zhang P, Wang Y, Wang L. Global Characterization of Metabolic Genes Regulating Survival and Immune Infiltration in Osteosarcoma. Front Genet 2022; 12:814843. [PMID: 35096022 PMCID: PMC8793845 DOI: 10.3389/fgene.2021.814843] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 12/02/2021] [Indexed: 11/24/2022] Open
Abstract
Background: The alterations in metabolic profile of tumors have been identified as one of the prognostic hallmarks of cancers, including osteosarcoma. These alterations are majorly controlled by groups of metabolically active genes. However, the regulation of metabolic gene signatures in tumor microenvironment of osteosarcoma has not been well explained. Objectives: Thus, we investigated the sets of previously published metabolic genes in osteosarcoma patients and normal samples. Methods: We applied computational techniques to identify metabolic genes involved in the immune function of tumor microenvironment (TME) and survival and prognosis of the osteosarcoma patients. Potential candidate gene PAICS (phosphoribosyl aminoimidazole carboxylase, phosphoribosyl aminoimidazole succino carboxamide synthetase) was chosen for further studies in osteosarcoma cell lines for its role in cell proliferation, migration and apoptosis. Results: Our analyses identified a list of metabolic genes differentially expressed in osteosarcoma tissues. Next, we scrutinized the list of genes correlated with survival and immune cells, followed by clustering osteosarcoma patients into three categories: C1, C2, and C3. These analyses led us to choose PAICS as potential candidate gene as its expression showed association with poor survival and negative correlation with the immune cells. Furthermore, we established that loss of PAICS induced apoptosis and inhibited proliferation, migration, and wound healing in HOS and MG-63 cell lines. Finally, the results were supported by constructing and validating a prediction model for prognosis of the osteosarcoma patients. Conclusion: Here, we conclude that metabolic genes specifically PAICS play an integral role in the immune cell infiltration in osteosarcoma TME, as well as cancer development and metastasis.
Collapse
Affiliation(s)
- Zhongpei Zhu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Min Zhang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Weidong Wang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Peng Zhang
- Department of Orthopedics, Tumor Hospital of Henan Province, Zhengzhou, China
| | - Yuqiang Wang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Limin Wang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
33
|
Construction and validation of a novel gene signature for predicting the prognosis of osteosarcoma. Sci Rep 2022; 12:1279. [PMID: 35075228 PMCID: PMC8786962 DOI: 10.1038/s41598-022-05341-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 01/05/2022] [Indexed: 02/07/2023] Open
Abstract
Osteosarcoma (OS) is the most common type of primary malignant bone tumor. The high-throughput sequencing technology has shown potential abilities to illuminate the pathogenic genes in OS. This study was designed to find a powerful gene signature that can predict clinical outcomes. We selected OS cases with gene expression and survival data in the TARGET-OS dataset and GSE21257 datasets as training cohort and validation cohort, respectively. The univariate Cox regression and Kaplan–Meier analysis were conducted to determine potential prognostic genes from the training cohort. These potential prognostic genes underwent a LASSO regression, which then generated a gene signature. The harvested signature’s predictive ability was further examined by the Kaplan–Meier analysis, Cox analysis, and receiver operating characteristic (ROC curve). More importantly, we listed similar studies in the most recent year and compared theirs with ours. Finally, we performed functional annotation, immune relevant signature correlation identification, and immune infiltrating analysis to better study he functional mechanism of the signature and the immune cells’ roles in the gene signature’s prognosis ability. A seventeen-gene signature (UBE2L3, PLD3, SLC45A4, CLTC, CTNNBIP1, FBXL5, MKL2, SELPLG, C3orf14, WDR53, ZFP90, UHRF2, ARX, CORT, DDX26B, MYC, and SLC16A3) was generated from the LASSO regression. The signature was then confirmed having strong and stable prognostic capacity in all studied cohorts by several statistical methods. We revealed the superiority of our signature after comparing it to our predecessors, and the GO and KEGG annotations uncovered the specifically mechanism of action related to the gene signature. Six immune signatures, including PRF1, CD8A, HAVCR2, LAG3, CD274, and GZMA were identified associating with our signature. The immune-infiltrating analysis recognized the vital roles of T cells CD8 and Mast cells activated, which potentially support the seventeen-gene signature’s prognosis ability. We identified a robust seventeen-gene signature that can accurately predict OS prognosis. We identified potential immunotherapy targets to the gene signature. The T cells CD8 and Mast cells activated were identified linked with the seventeen-gene signature predictive power.
Collapse
|
34
|
Costa AC, Santos JMO, Gil da Costa RM, Medeiros R. Impact of immune cells on the hallmarks of cancer: A literature review. Crit Rev Oncol Hematol 2021; 168:103541. [PMID: 34801696 DOI: 10.1016/j.critrevonc.2021.103541] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 10/15/2021] [Accepted: 11/15/2021] [Indexed: 12/20/2022] Open
Abstract
Tumor-infiltrating immune cells (TIICs) are critical players in the tumor microenvironment, modulating cancer cell functions. TIICs are highly heterogenic and plastic and may either suppress cancers or provide support for tumor growth. A wide range of studies have shed light on how tumor-associated macrophages, dendritic cells, neutrophils, mast cells, natural killer cells and lymphocytes contribute for the establishment of several hallmarks of cancer and became the basis for successful immunotherapies. Many of those TIICs play pivotal roles in several hallmarks of cancer. This review contributes to elucidate the multifaceted roles of immune cells in cancer development, highlighting molecular components that constitute promising therapeutic targets. Additional studies are needed to clarify the relation between TIICs and hallmarks such as enabling replicative immortality, evading growth suppressors, sustaining proliferative signaling, resisting cell death and genome instability and mutation, to further explore their therapeutic potential and improve the outcomes of cancer patients.
Collapse
Affiliation(s)
- Alexandra C Costa
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; Faculty of Medicine of the University of Porto (FMUP), 4200-319, Porto, Portugal.
| | - Joana M O Santos
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; Faculty of Medicine of the University of Porto (FMUP), 4200-319, Porto, Portugal.
| | - Rui M Gil da Costa
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal; LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal; Postgraduate Programme in Adult Health (PPGSAD), Department of Morphology, Federal University of Maranhão (UFMA), and UFMA University Hospital (HUUFMA), 65080-805, São Luís, Brazil.
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; Faculty of Medicine of the University of Porto (FMUP), 4200-319, Porto, Portugal; Virology Service, Portuguese Oncology Institute of Porto (IPO Porto), 4200-072, Porto, Portugal; CEBIMED, Faculty of Health Sciences of the Fernando Pessoa University, 4249-004, Porto, Portugal; Research Department of the Portuguese League Against Cancer-Regional Nucleus of the North (Liga Portuguesa Contra o Cancro-Núcleo Regional do Norte), 4200-177, Porto, Portugal.
| |
Collapse
|
35
|
Lam HY, Tergaonkar V, Kumar AP, Ahn KS. Mast cells: Therapeutic targets for COVID-19 and beyond. IUBMB Life 2021; 73:1278-1292. [PMID: 34467628 PMCID: PMC8652840 DOI: 10.1002/iub.2552] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/12/2021] [Accepted: 08/24/2021] [Indexed: 01/22/2023]
Abstract
Mast cells (MCs) are innate immune cells that widely distribute throughout all tissues and express a variety of cell surface receptors. Upon activation, MCs can rapidly release a diverse array of preformed mediators residing within their secretory granules and newly synthesize a broad spectrum of inflammatory and immunomodulatory mediators. These unique features of MCs enable them to act as sentinels in response to rapid changes within their microenvironment. There is increasing evidence now that MCs play prominent roles in other pathophysiological processes besides allergic inflammation. In this review, we highlight the recent findings on the emerging roles of MCs in the pathogenesis of coronavirus disease-2019 (COVID-19) and discuss the potential of MCs as novel therapeutic targets for COVID-19 and other non-allergic inflammatory diseases.
Collapse
Affiliation(s)
- Hiu Yan Lam
- Cancer Science Institute of SingaporeNational University of SingaporeSingaporeSingapore
- Laboratory of NF‐κB SignalingInstitute of Molecular and Cell Biology (IMCB)SingaporeSingapore
- Department of Biochemistry, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Vinay Tergaonkar
- Laboratory of NF‐κB SignalingInstitute of Molecular and Cell Biology (IMCB)SingaporeSingapore
- Department of Biochemistry, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Department of Pathology, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Alan Prem Kumar
- Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- National University Cancer InstituteNational University Health SystemSingaporeSingapore
| | - Kwang Seok Ahn
- Department of Science in Korean MedicineKyung Hee UniversitySeoulRepublic of Korea
| |
Collapse
|
36
|
Haslund-Vinding J, Møller JR, Ziebell M, Vilhardt F, Mathiesen T. The role of systemic inflammatory cells in meningiomas. Neurosurg Rev 2021; 45:1205-1215. [PMID: 34716512 DOI: 10.1007/s10143-021-01642-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/27/2021] [Accepted: 09/05/2021] [Indexed: 12/16/2022]
Abstract
The aim of this review is to describe the inflammatory systemic cell infiltrate and its role in pathophysiology and prognostic implications of meningiomas. Articles from PubMed describing inflammation and immune cells in meningioma were systematically selected and reviewed. Infiltrating inflammatory cells are common in meningiomas and correlate with tumor behavior and peritumoral edema. The immune cell infiltrate mainly comprised macrophages, CD4 + T cells of the Th1 and Th2 subtype, CD8 + cytotoxic T cells, mast cells, and to a lesser degree B cells. The polarization of macrophages to M1 or M2 states, as well as the differentiation of T-helper cells to Th1 or Th2 subsets, is of prognostic value, but whether or not the presence of macrophages is associated with the degree of malignancy of the tumor is controversial. The best documented immunosuppressive and tumor-promoting mechanism is the expression of programmed cell death protein 1 (PD-1/PD-1L) which is found on both tumor cells and tumor-infiltrating immune cells. The immune cell infiltration varies between different meningiomas. It contributes to a microenvironment with potential contradictory effects on tumor growth and edema. The immune mechanisms are potential therapeutic targets provided that their effects can be comprehensively understood.
Collapse
Affiliation(s)
- Jeppe Haslund-Vinding
- Department of Neurosurgery, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.
| | - Jens Riis Møller
- Department of Neurosurgery, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Morten Ziebell
- Department of Neurosurgery, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Frederik Vilhardt
- Department of Cellular and Molecular Medicine, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Tiit Mathiesen
- Department of Neurosurgery, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Neuroscience, Section for Neurosurgery, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
37
|
Kim HY, Jung H, Kim HM, Jeong HJ. Surfactin exerts an anti-cancer effect through inducing allergic reactions in melanoma skin cancer. Int Immunopharmacol 2021; 99:107934. [PMID: 34233232 DOI: 10.1016/j.intimp.2021.107934] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/31/2021] [Accepted: 06/28/2021] [Indexed: 12/30/2022]
Abstract
Surfactin is a mast cell degranulator, that increases the immune response via the degranulation of mast cells. Recently, numerous studies reported that allergic reactions play an important role in the reduction of melanoma development. So, this study aimed to investigate the anti-cancer effects of surfactin in a melanoma skin cancer in vivo model and a melanoma cell line, B16F10. Oral administration of surfactin significantly increased survival rate and reduced tumor growth and tumor weight on melanoma skin cancer in vivo model. Surfactin significantly increased infiltration of mast cells and levels of histamine. Surfactin significantly enhanced levels of IgE and immune-enhancing mediators, such as interferon-γ, interleukin (IL)-2, IL-6, IL-12, and tumor necrosis factor-α in serum and melanoma tissues. Activities of caspase-3, 8, and 9 were significantly enhanced by oral administration of surfactin. In vitro model, surfactin significantly increased B16F10 cell death via activation of caspase-3, 8, and 9 in a dose-dependent manner. Overall, our results indicate that surfactin has a significant anti-cancer effect on melanoma skin cancer through indirectly or directly inducing apoptosis of B16F10 melanoma cells. Also, these findings suggest that it will contribute to a novel perception into the role of allergic reactions in melanoma.
Collapse
Affiliation(s)
- Hee-Yun Kim
- Biochip Research Center, Hoseo University, Asan, Chungnam 31499, Republic of Korea
| | - Hanchul Jung
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hyung-Min Kim
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hyun-Ja Jeong
- Biochip Research Center, Hoseo University, Asan, Chungnam 31499, Republic of Korea; Department of Food Science & Technology, Hoseo University, Asan 31499, Republic of Korea.
| |
Collapse
|
38
|
Fan L, Ru J, Liu T, Ma C. Identification of a Novel Prognostic Gene Signature From the Immune Cell Infiltration Landscape of Osteosarcoma. Front Cell Dev Biol 2021; 9:718624. [PMID: 34552929 PMCID: PMC8450587 DOI: 10.3389/fcell.2021.718624] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/09/2021] [Indexed: 01/11/2023] Open
Abstract
Background: The tumor microenvironment (TME) mainly comprises tumor cells and tumor-infiltrating immune cells mixed with stromal components. Latestresearch hasdisplayed that tumor immune cell infiltration (ICI) is associated with the clinical outcome of patients with osteosarcoma (OS). This work aimed to build a gene signature according to ICI in OS for predicting patient outcomes. Methods: The TARGET-OS dataset was used for model training, while the GSE21257 dataset was taken forvalidation. Unsupervised clustering was performed on the training cohort based on the ICI profiles. The Kaplan–Meier estimator and univariate Cox proportional hazards models were used to identify the differentially expressed genes between clusters to preliminarily screen for potential prognostic genes. We incorporated these potential prognostic genes into a LASSO regression analysis and produced a gene signature, which was next assessed with the Kaplan–Meier estimator, Cox proportional hazards models, ROC curves, IAUC, and IBS in the training and validation cohorts. In addition, we compared our signature to previous models. GSEAswere deployed to further study the functional mechanism of the signature. We conducted an analysis of 22 TICsfor identifying the role of TICs in the gene signature’s prognosis ability. Results: Data from the training cohort were used to generate a nine-gene signature. The Kaplan–Meier estimator, Cox proportional hazards models, ROC curves, IAUC, and IBS validated the signature’s capacity and independence in predicting the outcomes of OS patients in the validation cohort. A comparison with previous studies confirmed the superiority of our signature regarding its prognostic ability. Annotation analysis revealed the mechanism related to the gene signature specifically. The immune-infiltration analysis uncoveredkey roles for activated mast cells in the prognosis of OS. Conclusion: We identified a robust nine-gene signature (ZFP90, UHRF2, SELPLG, PLD3, PLCB4, IFNGR1, DLEU2, ATP6V1E1, and ANXA5) that can predict OS outcome precisely and is strongly linked to activated mast cells.
Collapse
Affiliation(s)
- Lei Fan
- Department of Orthopedics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingtao Ru
- Department of Orthopedics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Tao Liu
- Department of Orthopedics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Chao Ma
- Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
39
|
Herranz C, Mateo F, Baiges A, Ruiz de Garibay G, Junza A, Johnson SR, Miller S, García N, Capellades J, Gómez A, Vidal A, Palomero L, Espín R, Extremera AI, Blommaert E, Revilla‐López E, Saez B, Gómez‐Ollés S, Ancochea J, Valenzuela C, Alonso T, Ussetti P, Laporta R, Xaubet A, Rodríguez‐Portal JA, Montes‐Worboys A, Machahua C, Bordas J, Menendez JA, Cruzado JM, Guiteras R, Bontoux C, La Motta C, Noguera‐Castells A, Mancino M, Lastra E, Rigo‐Bonnin R, Perales JC, Viñals F, Lahiguera A, Zhang X, Cuadras D, van Moorsel CHM, van der Vis JJ, Quanjel MJR, Filippakis H, Hakem R, Gorrini C, Ferrer M, Ugun‐Klusek A, Billett E, Radzikowska E, Casanova Á, Molina‐Molina M, Roman A, Yanes O, Pujana MA. Histamine signaling and metabolism identify potential biomarkers and therapies for lymphangioleiomyomatosis. EMBO Mol Med 2021; 13:e13929. [PMID: 34378323 PMCID: PMC8422079 DOI: 10.15252/emmm.202113929] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 11/12/2022] Open
Abstract
Inhibition of mTOR is the standard of care for lymphangioleiomyomatosis (LAM). However, this therapy has variable tolerability and some patients show progressive decline of lung function despite treatment. LAM diagnosis and monitoring can also be challenging due to the heterogeneity of symptoms and insufficiency of non-invasive tests. Here, we propose monoamine-derived biomarkers that provide preclinical evidence for novel therapeutic approaches. The major histamine-derived metabolite methylimidazoleacetic acid (MIAA) is relatively more abundant in LAM plasma, and MIAA values are independent of VEGF-D. Higher levels of histamine are associated with poorer lung function and greater disease burden. Molecular and cellular analyses, and metabolic profiling confirmed active histamine signaling and metabolism. LAM tumorigenesis is reduced using approved drugs targeting monoamine oxidases A/B (clorgyline and rasagiline) or histamine H1 receptor (loratadine), and loratadine synergizes with rapamycin. Depletion of Maoa or Hrh1 expression, and administration of an L-histidine analog, or a low L-histidine diet, also reduce LAM tumorigenesis. These findings extend our knowledge of LAM biology and suggest possible ways of improving disease management.
Collapse
Affiliation(s)
- Carmen Herranz
- ProCURECatalan Institute of OncologyOncobellBellvitge Institute for Biomedical Research (IDIBELL)L’Hospitalet del LlobregatBarcelonaSpain
| | - Francesca Mateo
- ProCURECatalan Institute of OncologyOncobellBellvitge Institute for Biomedical Research (IDIBELL)L’Hospitalet del LlobregatBarcelonaSpain
| | - Alexandra Baiges
- ProCURECatalan Institute of OncologyOncobellBellvitge Institute for Biomedical Research (IDIBELL)L’Hospitalet del LlobregatBarcelonaSpain
| | - Gorka Ruiz de Garibay
- ProCURECatalan Institute of OncologyOncobellBellvitge Institute for Biomedical Research (IDIBELL)L’Hospitalet del LlobregatBarcelonaSpain
| | - Alexandra Junza
- Department of Electronic EngineeringInstitute of Health Research Pere Virgili (IIPSV)University Rovira i VirgiliTarragonaSpain
- Biomedical Research Network Centre in Diabetes and Associated Metabolic Diseases (CIBERDEM)Instituto de Salud Carlos IIIMadridSpain
| | - Simon R Johnson
- National Centre for LymphangioleiomyomatosisNottingham University Hospitals NHS Trust, NottinghamshireDivision of Respiratory MedicineUniversity of NottinghamNottinghamUK
| | - Suzanne Miller
- National Centre for LymphangioleiomyomatosisNottingham University Hospitals NHS Trust, NottinghamshireDivision of Respiratory MedicineUniversity of NottinghamNottinghamUK
| | - Nadia García
- ProCURECatalan Institute of OncologyOncobellBellvitge Institute for Biomedical Research (IDIBELL)L’Hospitalet del LlobregatBarcelonaSpain
| | - Jordi Capellades
- Department of Electronic EngineeringInstitute of Health Research Pere Virgili (IIPSV)University Rovira i VirgiliTarragonaSpain
- Biomedical Research Network Centre in Diabetes and Associated Metabolic Diseases (CIBERDEM)Instituto de Salud Carlos IIIMadridSpain
| | - Antonio Gómez
- Centre for Genomic RegulationBarcelona Institute of Science and TechnologyBarcelonaSpain
- Present address:
Rheumatology Department and Rheumatology Research GroupVall d'Hebron Hospital Research Institute (VHIR)BarcelonaSpain
| | - August Vidal
- Department of PathologyUniversity Hospital of BellvitgeOncobellIDIBELL, L’Hospitalet del LlobregatBarcelonaSpain
- CIBER on Cancer (CIBERONC)Instituto de Salud Carlos IIIMadridSpain
| | - Luis Palomero
- ProCURECatalan Institute of OncologyOncobellBellvitge Institute for Biomedical Research (IDIBELL)L’Hospitalet del LlobregatBarcelonaSpain
| | - Roderic Espín
- ProCURECatalan Institute of OncologyOncobellBellvitge Institute for Biomedical Research (IDIBELL)L’Hospitalet del LlobregatBarcelonaSpain
| | - Ana I Extremera
- ProCURECatalan Institute of OncologyOncobellBellvitge Institute for Biomedical Research (IDIBELL)L’Hospitalet del LlobregatBarcelonaSpain
| | - Eline Blommaert
- ProCURECatalan Institute of OncologyOncobellBellvitge Institute for Biomedical Research (IDIBELL)L’Hospitalet del LlobregatBarcelonaSpain
| | - Eva Revilla‐López
- Lung Transplant Unit, Pneumology ServiceLymphangioleiomyomatosis ClinicVall d’Hebron University HospitalBarcelonaSpain
| | - Berta Saez
- Lung Transplant Unit, Pneumology ServiceLymphangioleiomyomatosis ClinicVall d’Hebron University HospitalBarcelonaSpain
| | - Susana Gómez‐Ollés
- Lung Transplant Unit, Pneumology ServiceLymphangioleiomyomatosis ClinicVall d’Hebron University HospitalBarcelonaSpain
| | - Julio Ancochea
- Pneumology ServiceLa Princesa Research InstituteUniversity Hospital La PrincesaMadridSpain
| | - Claudia Valenzuela
- Pneumology ServiceLa Princesa Research InstituteUniversity Hospital La PrincesaMadridSpain
| | - Tamara Alonso
- Pneumology ServiceLa Princesa Research InstituteUniversity Hospital La PrincesaMadridSpain
| | - Piedad Ussetti
- Pneumology ServiceUniversity Hospital Clínica Puerta del Hierro, MajadahondaMadridSpain
| | - Rosalía Laporta
- Pneumology ServiceUniversity Hospital Clínica Puerta del Hierro, MajadahondaMadridSpain
| | - Antoni Xaubet
- Pneumology ServiceHospital Clínic de BarcelonaBarcelonaSpain
| | - José A Rodríguez‐Portal
- Medical‐Surgical Unit of Respiratory DiseasesInstitute of Biomedicine of Seville (IBiS)University Hospital Virgen del RocíoSevilleSpain
- Biomedical Research Network Centre in Respiratory Diseases (CIBERES)Instituto de Salud Carlos IIIMadridSpain
| | - Ana Montes‐Worboys
- Biomedical Research Network Centre in Respiratory Diseases (CIBERES)Instituto de Salud Carlos IIIMadridSpain
- Interstitial Lung Disease UnitDepartment of Respiratory MedicineUniversity Hospital of BellvitgeIDIBELLL’Hospitalet del LlobregatBarcelonaSpain
| | - Carlos Machahua
- Biomedical Research Network Centre in Respiratory Diseases (CIBERES)Instituto de Salud Carlos IIIMadridSpain
- Interstitial Lung Disease UnitDepartment of Respiratory MedicineUniversity Hospital of BellvitgeIDIBELLL’Hospitalet del LlobregatBarcelonaSpain
| | - Jaume Bordas
- Biomedical Research Network Centre in Respiratory Diseases (CIBERES)Instituto de Salud Carlos IIIMadridSpain
- Interstitial Lung Disease UnitDepartment of Respiratory MedicineUniversity Hospital of BellvitgeIDIBELLL’Hospitalet del LlobregatBarcelonaSpain
| | - Javier A Menendez
- ProCURECatalan Institute of OncologyOncobellBellvitge Institute for Biomedical Research (IDIBELL)L’Hospitalet del LlobregatBarcelonaSpain
| | - Josep M Cruzado
- Experimental NephrologyDepartment of Clinical SciencesUniversity of BarcelonaBarcelonaSpain
- Department of NephrologyUniversity Hospital of BellvitgeIDIBELLL’Hospitalet del LlobregatBarcelonaSpain
| | - Roser Guiteras
- Experimental NephrologyDepartment of Clinical SciencesUniversity of BarcelonaBarcelonaSpain
- Department of NephrologyUniversity Hospital of BellvitgeIDIBELLL’Hospitalet del LlobregatBarcelonaSpain
| | - Christophe Bontoux
- Department of PathologyUniversity Hospital Pitié‐SalpêtrièreFaculty of MedicineUniversity of SorbonneParisFrance
| | | | - Aleix Noguera‐Castells
- Biomedical Research Institute “August Pi i Sunyer” (IDIBAPS)Department of MedicineUniversity of BarcelonaBarcelonaSpain
| | - Mario Mancino
- Biomedical Research Institute “August Pi i Sunyer” (IDIBAPS)Department of MedicineUniversity of BarcelonaBarcelonaSpain
| | - Enrique Lastra
- Genetic Counseling UnitDepartment of Medical OncologyUniversity Hospital of BurgosBurgosSpain
| | - Raúl Rigo‐Bonnin
- Clinical LaboratoryUniversity Hospital of BellvitgeIDIBELLL'Hospitalet de LlobregatBarcelonaSpain
| | - Jose C Perales
- Department of Physiological Science IIUniversity of BarcelonaBarcelonaSpain
| | - Francesc Viñals
- ProCURECatalan Institute of OncologyOncobellBellvitge Institute for Biomedical Research (IDIBELL)L’Hospitalet del LlobregatBarcelonaSpain
- Department of Physiological Science IIUniversity of BarcelonaBarcelonaSpain
| | - Alvaro Lahiguera
- ProCURECatalan Institute of OncologyOncobellBellvitge Institute for Biomedical Research (IDIBELL)L’Hospitalet del LlobregatBarcelonaSpain
| | - Xiaohu Zhang
- National Center for Advancing Translational Sciences (NCATS)National Institute of Health (NIH)BethesdaMDUSA
| | - Daniel Cuadras
- Statistics DepartmentFoundation Sant Joan de DéuEspluguesSpain
| | - Coline H M van Moorsel
- Interstitial Lung Disease (ILD) Center of ExcellenceSt. Antonius HospitalNieuwegeinThe Netherlands
| | - Joanne J van der Vis
- Interstitial Lung Disease (ILD) Center of ExcellenceSt. Antonius HospitalNieuwegeinThe Netherlands
| | - Marian J R Quanjel
- Interstitial Lung Disease (ILD) Center of ExcellenceSt. Antonius HospitalNieuwegeinThe Netherlands
| | - Harilaos Filippakis
- Pulmonary and Critical Care MedicineDepartment of MedicineBrigham and Women's HospitalHarvard Medical SchoolBostonMAUSA
| | - Razq Hakem
- Princess Margaret Cancer CentreUniversity Health NetworkDepartment of Medical BiophysicsUniversity of TorontoTorontoOntarioCanada
| | - Chiara Gorrini
- Princess Margaret HospitalThe Campbell Family Institute for Breast Cancer ResearchOntario Cancer InstituteUniversity Health NetworkTorontoONCanada
| | - Marc Ferrer
- National Center for Advancing Translational Sciences (NCATS)National Institute of Health (NIH)BethesdaMDUSA
| | - Aslihan Ugun‐Klusek
- Centre for Health, Ageing and Understanding Disease (CHAUD)School of Science and TechnologyNottingham Trent UniversityNottinghamUK
| | - Ellen Billett
- Centre for Health, Ageing and Understanding Disease (CHAUD)School of Science and TechnologyNottingham Trent UniversityNottinghamUK
| | - Elżbieta Radzikowska
- Department of Lung Diseases IIINational Tuberculosis and Lung Disease Research InstituteWarsawPoland
| | - Álvaro Casanova
- Pneumology ServiceUniversity Hospital of HenaresUniversity Francisco de Vitoria, CosladaMadridSpain
| | - María Molina‐Molina
- Biomedical Research Network Centre in Respiratory Diseases (CIBERES)Instituto de Salud Carlos IIIMadridSpain
- Interstitial Lung Disease UnitDepartment of Respiratory MedicineUniversity Hospital of BellvitgeIDIBELLL’Hospitalet del LlobregatBarcelonaSpain
| | - Antonio Roman
- Lung Transplant Unit, Pneumology ServiceLymphangioleiomyomatosis ClinicVall d’Hebron University HospitalBarcelonaSpain
| | - Oscar Yanes
- Department of Electronic EngineeringInstitute of Health Research Pere Virgili (IIPSV)University Rovira i VirgiliTarragonaSpain
- Biomedical Research Network Centre in Diabetes and Associated Metabolic Diseases (CIBERDEM)Instituto de Salud Carlos IIIMadridSpain
| | - Miquel A Pujana
- ProCURECatalan Institute of OncologyOncobellBellvitge Institute for Biomedical Research (IDIBELL)L’Hospitalet del LlobregatBarcelonaSpain
| |
Collapse
|
40
|
Ma C, Li F, Luo H. Prognostic and immune implications of a novel ferroptosis-related ten-gene signature in lung adenocarcinoma. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1058. [PMID: 34422970 PMCID: PMC8339871 DOI: 10.21037/atm-20-7936] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 04/18/2021] [Indexed: 12/25/2022]
Abstract
Background Lung cancer has been the focus of attention for many researchers in recent years due to its leading contribution to cancer-related death worldwide, with lung adenocarcinoma (LUAD) being the most common histological type. Ferroptosis, a novel iron-dependent form of regulated cell death, can be induced by sorafenib. Emerging evidence shows that triggering ferroptosis has potential as a cancer therapy. This work aimed to build a ferroptosis-related gene signature for predicting the outcome of LUAD. Methods The TCGA-LUAD dataset was set as the training cohort, and the GSE72094 and GSE68465 datasets were set as the validation cohorts. Sixty-two ferroptosis-related genes were retrieved from the literature. A univariate Cox regression model was constructed for the training cohort to preliminarily screen for potential prognostic ferroptosis-related genes. A gene signature was generated from a LASSO Cox regression model and assessed with the training and validation cohorts through Kaplan-Meier, Cox, and ROC analyses. In addition, the correlation between the risk score and autophagy-related genes was determined by the Pearson test. Finally, GSEA and immune infiltrating analyses were performed to better study the functional annotation of the signature and the role of each kind of immune cell. Results A ten-gene signature was constructed from the training cohort and validated in three cohorts by Kaplan-Meier and Cox regression analyses, revealing its independent prognostic value in LUAD. Moreover, a ROC analysis conducted with all cohort data confirmed the predictive ability of the ten-gene signature for LUAD prognosis. A total of 62.85% (308/490) of autophagy-related genes were found to be significantly correlated with risk scores. GSEA detailed the exact pathways related to the gene signature, and immune-infiltrating analyses identified crucial roles for resting mast cells and resting dendritic cells in the prognosis of LUAD. Conclusions We identified a novel ferroptosis-related ten-gene signature (PHKG2, PGD, PEBP1, NCOA4, GLS2, CISD1, ATP5G3, ALOX15, ALOX12B, and ACSL3) that can accurately predict LUAD prognosis and is closely linked to resting mast cells and resting dendritic cells.
Collapse
Affiliation(s)
- Chao Ma
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany.,Berlin Institute of Health Center for Regenerative Therapies and Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Feng Li
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany.,Department of Surgery, Competence Center of Thoracic Surgery, Charité University Hospital Berlin, Berlin, Germany
| | - Huan Luo
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
41
|
Tang XH, Guo T, Gao XY, Wu XL, Xing XF, Ji JF, Li ZY. Exosome-derived noncoding RNAs in gastric cancer: functions and clinical applications. Mol Cancer 2021; 20:99. [PMID: 34330299 PMCID: PMC8323226 DOI: 10.1186/s12943-021-01396-6] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/20/2021] [Indexed: 02/07/2023] Open
Abstract
Exosomes are a subpopulation of the tumour microenvironment (TME) that transmit various biological molecules to promote intercellular communication. Exosomes are derived from nearly all types of cells and exist in all body fluids. Noncoding RNAs (ncRNAs) are among the most abundant contents in exosomes, and some ncRNAs with biological functions are specifically packaged into exosomes. Recent studies have revealed that exosome-derived ncRNAs play crucial roles in the tumorigenesis, progression and drug resistance of gastric cancer (GC). In addition, regulating the expression levels of exosomal ncRNAs can promote or suppress GC progression. Moreover, the membrane structures of exosomes protect ncRNAs from degradation by enzymes and other chemical substances, significantly increasing the stability of exosomal ncRNAs. Specific hallmarks within exosomes that can be used for exosome identification, and specific contents can be used to determine their origin. Therefore, exosomal ncRNAs are suitable for use as diagnostic and prognostic biomarkers or therapeutic targets. Regulating the biogenesis of exosomes and the expression levels of exosomal ncRNAs may represent a new way to block or eradicate GC. In this review, we summarized the origins and characteristics of exosomes and analysed the association between exosomal ncRNAs and GC development.
Collapse
Affiliation(s)
- Xiao-Huan Tang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, No. 52 Fu-Cheng Road, Hai-Dian District, Beijing, 100142, P.R. China.,Department of Gastrointestinal Cancer Center, Ward I, Peking University Cancer Hospital & Institute, No. 52 Fu-Cheng Road, Hai-Dian District, Beijing, 100142, P.R. China
| | - Ting Guo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, No. 52 Fu-Cheng Road, Hai-Dian District, Beijing, 100142, P.R. China
| | - Xiang-Yu Gao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, No. 52 Fu-Cheng Road, Hai-Dian District, Beijing, 100142, P.R. China.,Department of Gastrointestinal Cancer Center, Ward I, Peking University Cancer Hospital & Institute, No. 52 Fu-Cheng Road, Hai-Dian District, Beijing, 100142, P.R. China
| | - Xiao-Long Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, No. 52 Fu-Cheng Road, Hai-Dian District, Beijing, 100142, P.R. China.,Department of Gastrointestinal Cancer Center, Ward I, Peking University Cancer Hospital & Institute, No. 52 Fu-Cheng Road, Hai-Dian District, Beijing, 100142, P.R. China
| | - Xiao-Fang Xing
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, No. 52 Fu-Cheng Road, Hai-Dian District, Beijing, 100142, P.R. China.
| | - Jia-Fu Ji
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, No. 52 Fu-Cheng Road, Hai-Dian District, Beijing, 100142, P.R. China. .,Department of Gastrointestinal Cancer Center, Ward I, Peking University Cancer Hospital & Institute, No. 52 Fu-Cheng Road, Hai-Dian District, Beijing, 100142, P.R. China.
| | - Zi-Yu Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, No. 52 Fu-Cheng Road, Hai-Dian District, Beijing, 100142, P.R. China. .,Department of Gastrointestinal Cancer Center, Ward I, Peking University Cancer Hospital & Institute, No. 52 Fu-Cheng Road, Hai-Dian District, Beijing, 100142, P.R. China.
| |
Collapse
|
42
|
Combinatorial therapy in tumor microenvironment: Where do we stand? Biochim Biophys Acta Rev Cancer 2021; 1876:188585. [PMID: 34224836 DOI: 10.1016/j.bbcan.2021.188585] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/28/2021] [Accepted: 06/23/2021] [Indexed: 01/09/2023]
Abstract
The tumor microenvironment plays a pivotal role in tumor initiation and progression by creating a dynamic interaction with cancer cells. The tumor microenvironment consists of various cellular components, including endothelial cells, fibroblasts, pericytes, adipocytes, immune cells, cancer stem cells and vasculature, which provide a sustained environment for cancer cell proliferation. Currently, targeting tumor microenvironment is increasingly being explored as a novel approach to improve cancer therapeutics, as it influences the growth and expansion of malignant cells in various ways. Despite continuous advancements in targeted therapies for cancer treatment, drug resistance, toxicity and immune escape mechanisms are the basis of treatment failure and cancer escape. Targeting tumor microenvironment efficiently with approved drugs and combination therapy is the solution to this enduring challenge that involves combining more than one treatment modality such as chemotherapy, surgery, radiotherapy, immunotherapy and nanotherapy that can effectively and synergistically target the critical pathways associated with disease pathogenesis. This review shed light on the composition of the tumor microenvironment, interaction of different components within tumor microenvironment with tumor cells and associated hallmarks, the current status of combinatorial therapies being developed, and various growing advancements. Furthermore, computational tools can also be used to monitor the significance and outcome of therapies being developed. We addressed the perceived barriers and regulatory hurdles in developing a combinatorial regimen and evaluated the present status of these therapies in the clinic. The accumulating depth of knowledge about the tumor microenvironment in cancer may facilitate further development of effective treatment modalities. This review presents the tumor microenvironment as a sweeping landscape for developing novel cancer therapies.
Collapse
|
43
|
Cildir G, Yip KH, Pant H, Tergaonkar V, Lopez AF, Tumes DJ. Understanding mast cell heterogeneity at single cell resolution. Trends Immunol 2021; 42:523-535. [PMID: 33962887 DOI: 10.1016/j.it.2021.04.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/06/2021] [Accepted: 04/06/2021] [Indexed: 02/06/2023]
Abstract
Mast cells (MC)s are evolutionarily conserved, tissue-resident immune cells with diverse roles in allergy, cancer, and protection from infection by helminths and microorganisms. The significant diversity in MC development and tissue-specific functional characteristics has recently begun to be understood. Exciting developments in single-cell-based RNA, protein, and chromatin profiling technologies offer new opportunities to characterize MC heterogeneity and to uncover novel MC functions and subtypes; these developments might lead to new and clinically effective therapies for certain pathologies. In this review, we provide an overview of the current understanding of MC development and heterogeneity and discuss new insights gained from single-cell-based studies that may lead to future research directions and therapeutic opportunities.
Collapse
Affiliation(s)
- Gökhan Cildir
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, SA 5000, Australia.
| | - Kwok Ho Yip
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, SA 5000, Australia
| | - Harshita Pant
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, SA 5000, Australia; School of Medicine, University of Adelaide, Adelaide, SA 5000, Australia
| | - Vinay Tergaonkar
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, SA 5000, Australia; Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology (IMCB), Proteos, Singapore 138673, Singapore; Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore
| | - Angel F Lopez
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, SA 5000, Australia; School of Medicine, University of Adelaide, Adelaide, SA 5000, Australia
| | - Damon J Tumes
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, SA 5000, Australia; South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia.
| |
Collapse
|
44
|
Kim Y, Kang JW, Kang J, Kwon EJ, Ha M, Kim YK, Lee H, Rhee JK, Kim YH. Novel deep learning-based survival prediction for oral cancer by analyzing tumor-infiltrating lymphocyte profiles through CIBERSORT. Oncoimmunology 2021; 10:1904573. [PMID: 33854823 PMCID: PMC8018482 DOI: 10.1080/2162402x.2021.1904573] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/22/2021] [Accepted: 03/13/2021] [Indexed: 01/13/2023] Open
Abstract
The tumor microenvironment (TME) within mucosal neoplastic tissue in oral cancer (ORCA) is greatly influenced by tumor-infiltrating lymphocytes (TILs). Here, a clustering method was performed using CIBERSORT profiles of ORCA data that were filtered from the publicly accessible data of patients with head and neck cancer in The Cancer Genome Atlas (TCGA) using hierarchical clustering where patients were regrouped into binary risk groups based on the clustering-measuring scores and survival patterns associated with individual groups. Based on this analysis, clinically reasonable differences were identified in 16 out of 22 TIL fractions between groups. A deep neural network classifier was trained using the TIL fraction patterns. This internally validated classifier was used on another individual ORCA dataset from the International Cancer Genome Consortium data portal, and patient survival patterns were precisely predicted. Seven common differentially expressed genes between the two risk groups were obtained. This new approach confirms the importance of TILs in the TME and provides a direction for the use of a novel deep-learning approach for cancer prognosis.
Collapse
Affiliation(s)
- Yeongjoo Kim
- Interdisplinary Program of Genomic Science, Pusan National University, Yangsan, Republic of Korea
- Department of Biomedical Informatics, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Ji Wan Kang
- Interdisplinary Program of Genomic Science, Pusan National University, Yangsan, Republic of Korea
- Department of Biomedical Informatics, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Junho Kang
- Interdisplinary Program of Genomic Science, Pusan National University, Yangsan, Republic of Korea
- Department of Biomedical Informatics, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Eun Jung Kwon
- Interdisplinary Program of Genomic Science, Pusan National University, Yangsan, Republic of Korea
- Department of Biomedical Informatics, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Mihyang Ha
- Interdisplinary Program of Genomic Science, Pusan National University, Yangsan, Republic of Korea
- Department of Biomedical Informatics, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Yoon Kyeong Kim
- Interdisplinary Program of Genomic Science, Pusan National University, Yangsan, Republic of Korea
- Department of Biomedical Informatics, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Hansong Lee
- Interdisplinary Program of Genomic Science, Pusan National University, Yangsan, Republic of Korea
- Department of Biomedical Informatics, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Je-Keun Rhee
- School of Systems Biomedical Science, Soongsil University, Seoul, Republic of Korea
| | - Yun Hak Kim
- Department of Biomedical Informatics, School of Medicine, Pusan National University, Yangsan, Republic of Korea
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| |
Collapse
|
45
|
Endoglin in the Spotlight to Treat Cancer. Int J Mol Sci 2021; 22:ijms22063186. [PMID: 33804796 PMCID: PMC8003971 DOI: 10.3390/ijms22063186] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/06/2021] [Accepted: 03/17/2021] [Indexed: 01/02/2023] Open
Abstract
A spotlight has been shone on endoglin in recent years due to that fact of its potential to serve as both a reliable disease biomarker and a therapeutic target. Indeed, endoglin has now been assigned many roles in both physiological and pathological processes. From a molecular point of view, endoglin mainly acts as a co-receptor in the canonical TGFβ pathway, but also it may be shed and released from the membrane, giving rise to the soluble form, which also plays important roles in cell signaling. In cancer, in particular, endoglin may contribute to either an oncogenic or a non-oncogenic phenotype depending on the cell context. The fact that endoglin is expressed by neoplastic and non-neoplastic cells within the tumor microenvironment suggests new possibilities for targeted therapies. Here, we aimed to review and discuss the many roles played by endoglin in different tumor types, as well as the strong evidence provided by pre-clinical and clinical studies that supports the therapeutic targeting of endoglin as a novel clinical strategy.
Collapse
|
46
|
Le T, Su S, Shahriyari L. Immune classification of osteosarcoma. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2021; 18:1879-1897. [PMID: 33757216 PMCID: PMC7992873 DOI: 10.3934/mbe.2021098] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Tumor immune microenvironment has been shown to be important in predicting the tumor progression and the outcome of treatments. This work aims to identify different immune patterns in osteosarcoma and their clinical characteristics. We use the latest and best performing deconvolution method, CIBERSORTx, to obtain the relative abundance of 22 immune cells. Then we cluster patients based on their estimated immune abundance and study the characteristics of these clusters, along with the relationship between immune infiltration and outcome of patients. We find that abundance of CD8 T cells, NK cells and M1 Macrophages have a positive association with prognosis, while abundance of γδ T cells, Mast cells, M0 Macrophages and Dendritic cells have a negative association with prognosis. Accordingly, the cluster with the lowest proportion of CD8 T cells, M1 Macrophages and highest proportion of M0 Macrophages has the worst outcome among clusters. By grouping patients with similar immune patterns, we are also able to suggest treatments that are specific to the tumor microenvironment.
Collapse
Affiliation(s)
- Trang Le
- Department of Mathematics and Statistics, University of Massachusetts Amherst, Amherst, MA MA 01003-9305, USA
| | - Sumeyye Su
- Department of Mathematics and Statistics, University of Massachusetts Amherst, Amherst, MA MA 01003-9305, USA
| | - Leili Shahriyari
- Department of Mathematics and Statistics, University of Massachusetts Amherst, Amherst, MA MA 01003-9305, USA
| |
Collapse
|
47
|
Cheng S, Li Z, Gao R, Xing B, Gao Y, Yang Y, Qin S, Zhang L, Ouyang H, Du P, Jiang L, Zhang B, Yang Y, Wang X, Ren X, Bei JX, Hu X, Bu Z, Ji J, Zhang Z. A pan-cancer single-cell transcriptional atlas of tumor infiltrating myeloid cells. Cell 2021; 184:792-809.e23. [PMID: 33545035 DOI: 10.1016/j.cell.2021.01.010] [Citation(s) in RCA: 726] [Impact Index Per Article: 181.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 11/16/2020] [Accepted: 01/07/2021] [Indexed: 12/11/2022]
Abstract
Tumor-infiltrating myeloid cells (TIMs) are key regulators in tumor progression, but the similarity and distinction of their fundamental properties across different tumors remain elusive. Here, by performing a pan-cancer analysis of single myeloid cells from 210 patients across 15 human cancer types, we identified distinct features of TIMs across cancer types. Mast cells in nasopharyngeal cancer were found to be associated with better prognosis and exhibited an anti-tumor phenotype with a high ratio of TNF+/VEGFA+ cells. Systematic comparison between cDC1- and cDC2-derived LAMP3+ cDCs revealed their differences in transcription factors and external stimulus. Additionally, pro-angiogenic tumor-associated macrophages (TAMs) were characterized with diverse markers across different cancer types, and the composition of TIMs appeared to be associated with certain features of somatic mutations and gene expressions. Our results provide a systematic view of the highly heterogeneous TIMs and suggest future avenues for rational, targeted immunotherapies.
Collapse
Affiliation(s)
- Sijin Cheng
- BIOPIC, Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Peking University, Beijing 100871, China
| | - Ziyi Li
- BIOPIC, Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Peking University, Beijing 100871, China
| | - Ranran Gao
- BIOPIC, Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Peking University, Beijing 100871, China
| | - Baocai Xing
- Department of Hepatopancreatobiliary Surgery I, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Yunong Gao
- Department of Gynecologic Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Yu Yang
- BIOPIC, Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Peking University, Beijing 100871, China
| | - Shishang Qin
- BIOPIC, Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Peking University, Beijing 100871, China
| | - Lei Zhang
- BIOPIC, Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Peking University, Beijing 100871, China
| | - Hanqiang Ouyang
- Department of Orthopaedics, Peking University Third Hospital, Beijing Key Laboratory of Spinal Disease Research, Beijing 100191, China
| | - Peng Du
- Department of Urology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Liang Jiang
- Department of Orthopaedics, Peking University Third Hospital, Beijing Key Laboratory of Spinal Disease Research, Beijing 100191, China
| | - Bin Zhang
- Department of Head and Neck Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Yue Yang
- Department of Thoracic Surgery II, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Xiliang Wang
- BIOPIC, Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Peking University, Beijing 100871, China
| | - Xianwen Ren
- BIOPIC, Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Peking University, Beijing 100871, China
| | - Jin-Xin Bei
- Sun Yat-sen University Cancer Centre, State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, China
| | - Xueda Hu
- BIOPIC, Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Peking University, Beijing 100871, China
| | - Zhaode Bu
- Department of Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing 100142, China.
| | - Jiafu Ji
- Department of Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing 100142, China; Department of Biobank, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing 100142, China.
| | - Zemin Zhang
- BIOPIC, Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Peking University, Beijing 100871, China; Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518132, China; Peking University International Cancer Institute, Beijing 100191, China.
| |
Collapse
|
48
|
Zeng R, Huang S, Qiu X, Zhuo Z, Wu H, Jiang L, Sha W, Chen H. Predicting the Prognosis of Esophageal Adenocarcinoma by a Pyroptosis-Related Gene Signature. Front Pharmacol 2021; 12:767187. [PMID: 34867395 PMCID: PMC8637127 DOI: 10.3389/fphar.2021.767187] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/22/2021] [Indexed: 02/05/2023] Open
Abstract
Esophageal adenocarcinoma (EAC) is a highly malignant type of digestive tract cancers with a poor prognosis despite therapeutic advances. Pyroptosis is an inflammatory form of programmed cell death, whereas the role of pyroptosis in EAC remains largely unknown. Herein, we identified a pyroptosis-related five-gene signature that was significantly correlated with the survival of EAC patients in The Cancer Genome Atlas (TCGA) cohort and an independent validation dataset. In addition, a nomogram based on the signature was constructed with novel prognostic values. Moreover, the downregulation of GSDMB within the signature is notably correlated with enhanced DNA methylation. The pyroptosis-related signature might be related to the immune response and regulation of the tumor microenvironment. Several inhibitors including GDC-0879 and PD-0325901 are promising in reversing the altered differentially expressed genes in high-risk patients. Our findings provide insights into the involvement of pyroptosis in EAC progression and are promising in the risk assessment as well as the prognosis for EAC patients in clinical practice.
Collapse
Affiliation(s)
- Ruijie Zeng
- Department of Gastroenterology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Shujie Huang
- Shantou University Medical College, Shantou, China
- Department of Thoracic Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xinqi Qiu
- Zhuguang Community Healthcare Center, Guangzhou, China
| | - Zewei Zhuo
- Department of Gastroenterology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Huihuan Wu
- Department of Gastroenterology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Lei Jiang
- Guangdong Provincial Geriatrics Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- *Correspondence: Lei Jiang, ; Weihong Sha, ; Hao Chen,
| | - Weihong Sha
- Department of Gastroenterology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- *Correspondence: Lei Jiang, ; Weihong Sha, ; Hao Chen,
| | - Hao Chen
- Department of Gastroenterology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- *Correspondence: Lei Jiang, ; Weihong Sha, ; Hao Chen,
| |
Collapse
|
49
|
Koulouridi A, Messaritakis I, Gouvas N, Tsiaoussis J, Souglakos J. Immunotherapy in Solid Tumors and Gut Microbiota: The Correlation-A Special Reference to Colorectal Cancer. Cancers (Basel) 2020; 13:cancers13010043. [PMID: 33375686 PMCID: PMC7795476 DOI: 10.3390/cancers13010043] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/16/2020] [Accepted: 12/22/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Immunotherapy and immune checkpoint inhibitors have become the breakthrough treatment with extended responses and survival rates in various neoplasms. They use the immune system to defeat cancer, while gut microbiota seems to play a significant role in that attempt. To date, colorectal cancer patients have gained little benefit from immunotherapy. Only mismatch repair-deficient/microsatellite-unstable tumors seem to respond positively to immunotherapy. However, gut microbiota could be the key to expanding the use of immunotherapy to a greater range of colorectal cancer patients. In the current review study, the authors aimed to present and analyze the mechanisms of action and resistance of immunotherapy and the types of immune checkpoint inhibitors (ICIs) as well as their correlation to gut microbiota. A special reference will be made in the association of immunotherapy and gut microbiota in the colorectal cancer setting. Abstract Over the last few years, immunotherapy has been considered as a key player in the treatment of solid tumors. Immune checkpoint inhibitors (ICIs) have become the breakthrough treatment, with prolonged responses and improved survival results. ICIs use the immune system to defeat cancer by breaking the axes that allow tumors to escape immune surveillance. Innate and adaptive immunity are involved in mechanisms against tumor growth. The gut microbiome and its role in such mechanisms is a relatively new study field. The presence of a high microbial variation in the gut seems to be remarkably important for the efficacy of immunotherapy, interfering with innate immunity. Metabolic and immunity pathways are related with specific gut microbiota composition. Various studies have explored the composition of gut microbiota in correlation with the effectiveness of immunotherapy. Colorectal cancer (CRC) patients have gained little benefit from immunotherapy until now. Only mismatch repair-deficient/microsatellite-unstable tumors seem to respond positively to immunotherapy. However, gut microbiota could be the key to expanding the use of immunotherapy to a greater range of CRC patients.
Collapse
Affiliation(s)
- Asimina Koulouridi
- Laboratory of Translational Oncology, School of Medicine, University of Crete, 70013 Heraklion, Greece;
| | - Ippokratis Messaritakis
- Laboratory of Translational Oncology, School of Medicine, University of Crete, 70013 Heraklion, Greece;
- Correspondence: (I.M.); (J.S.); Tel.: +30-28-1039-4926 (I.M.); +30-28-1039-4712 (J.S.)
| | - Nikolaos Gouvas
- Medical School, University of Cyprus, 20537 Nicosia, Cyprus;
| | - John Tsiaoussis
- Department of Anatomy, School of Medicine, University of Crete, 70013 Heraklion, Greece;
| | - John Souglakos
- Laboratory of Translational Oncology, School of Medicine, University of Crete, 70013 Heraklion, Greece;
- Department of Medical Oncology, University Hospital of Heraklion, 71110 Heraklion, Greece
- Correspondence: (I.M.); (J.S.); Tel.: +30-28-1039-4926 (I.M.); +30-28-1039-4712 (J.S.)
| |
Collapse
|
50
|
Narayan KV, Sonia G, Shrestha P, Hemadala G. A Comparative Study of Mast Cells Count in Different Histological Grades of Oral Squamous Cell Carcinoma by Using Toluidine Blue Stain. Cureus 2020; 12:e10626. [PMID: 33123439 PMCID: PMC7584318 DOI: 10.7759/cureus.10626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Background Oral squamous cell carcinoma (OSCC) is the sixth most common cancer worldwide accounting for 90% of all malignant oral lesions with high mortality and a five-year survival rate of about 50%. Various studies have shown mast cells regulate carcinogenesis by immunosuppression, angiogenesis enhancement, and promotion of tumor cell mitosis. Aim Hence, the present study was aimed to compare mast cell counts in normal oral mucosa with histological grades of oral squamous cell carcinoma by using toluidine blue stain. Methodology Sixty formalin-fixed, paraffin-embedded tissue samples included 15 well-differentiated, 15 moderately differentiated, and 15 poorly differentiated OSCC, as well as 15 cases of the normal oral mucosa (control), were sectioned and stained with 1% toluidine blue. Results We observed that the mean mast cell (MMC) count was comparatively more in normal mucosa than in various grades of OSCC. It was higher in low-grade OSCC. However, the differences between grades were not statistically significant. Conclusion In the present study, according to the results obtained, the MMC count was significantly decreased in OSCC in comparison with normal oral mucosa. Therefore, it can be assumed that mast cells could serve as an indicator of tumor progression.
Collapse
Affiliation(s)
- Keerthi V Narayan
- Department of Oral and Maxillofacial Pathology, Dr. M.G.R. Educational and Research Institute, Chennai, IND
| | - Grace Sonia
- Department of Oral and Maxillofacial Pathology, Rajarajeswari Dental College and Hospital, Bangalore, IND
| | - Parikshya Shrestha
- Department of Oral and Maxillofacial Pathology, KIST Medical College and Teaching Hospital, Lalitpur, NPL
| | - Girish Hemadala
- Department of Oral and Maxillofacial Pathology, Rajarajeswari Dental College and Hospital, Bangalore, IND
| |
Collapse
|