1
|
Beltrán FA, Torres-Díaz L L, Troncoso-Escudero P, Villalobos-González J, Mayorga-Weber G, Lara M, Covarrubias-Pinto A, Valdivia S, Vicencio I, Papic E, Paredes-Martínez C, Silva-Januàrio ME, Rojas A, daSilva LLP, Court F, Rosas-Arellano A, Bátiz LF, Rojas P, Rivera FJ, Castro MA. Distinct roles of ascorbic acid in extracellular vesicles and free form: Implications for metabolism and oxidative stress in presymptomatic Huntington's disease. Free Radic Biol Med 2025; 227:521-535. [PMID: 39662690 DOI: 10.1016/j.freeradbiomed.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/18/2024] [Accepted: 12/02/2024] [Indexed: 12/13/2024]
Abstract
Huntington's disease (HD) is a neurodegenerative disorder caused by a CAG trinucleotide repeat expansion in the first exon of the huntingtin gene. The huntingtin protein (Htt) is ubiquitously expressed and localized in several organelles, including endosomes, where it plays an essential role in intracellular trafficking. Presymptomatic HD is associated with a failure in energy metabolism and oxidative stress. Ascorbic acid is a potent antioxidant that plays a key role in modulating neuronal metabolism and is highly concentrated in the brain. During synaptic activity, neurons take up ascorbic acid released by glial cells; however, this process is disrupted in HD. In this study, we aim to elucidate the molecular and cellular mechanisms underlying this dysfunction. Using an electrophysiological approach in presymptomatic YAC128 HD slices, we observed decreased ascorbic acid flux from astrocytes to neurons, which altered neuronal metabolic substrate preferences. Ascorbic acid efflux and recycling were also decreased in cultured astrocytes from YAC128 HD mice. We confirmed our findings using GFAP-HD160Q, an HD mice model expressing mutant N-terminal Htt mainly in astrocytes. For the first time, we demonstrated that ascorbic acid is released from astrocytes via extracellular vesicles (EVs). Decreased number of particles and exosomal markers were observed in EV fractions from cultured YAC128 HD astrocytes and Htt-KD cells. We observed reduced number of multivesicular bodies (MVBs) in YAC128 HD striatum via electron microscopy, suggesting mutant Htt alters MVB biogenesis. EVs containing ascorbic acid effectively reduced reactive oxygen species, whereas "free" ascorbic acid played a role in modulating neuronal metabolic substrate preferences. These findings suggest that the early redox imbalance observed in HD arises from a reduced release of ascorbic acid-containing EVs by astrocytes. Meanwhile, a decrease in "free" ascorbic acid likely contributes to presymptomatic metabolic impairment.
Collapse
Affiliation(s)
- Felipe A Beltrán
- Instituto de Bioquímica y Microbiología, UACh, Valdivia, Chile; Center for Interdisciplinary Studies on Nervous System (CISNe), UACh, Valdivia, Chile
| | - Leandro Torres-Díaz L
- Instituto de Bioquímica y Microbiología, UACh, Valdivia, Chile; Center for Interdisciplinary Studies on Nervous System (CISNe), UACh, Valdivia, Chile; Departamento de Ciencias y Geografía, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Valparaíso, Chile
| | - Paulina Troncoso-Escudero
- Instituto de Bioquímica y Microbiología, UACh, Valdivia, Chile; Center for Interdisciplinary Studies on Nervous System (CISNe), UACh, Valdivia, Chile
| | - Juan Villalobos-González
- Instituto de Bioquímica y Microbiología, UACh, Valdivia, Chile; Center for Interdisciplinary Studies on Nervous System (CISNe), UACh, Valdivia, Chile
| | - Gonzalo Mayorga-Weber
- Instituto de Bioquímica y Microbiología, UACh, Valdivia, Chile; Center for Interdisciplinary Studies on Nervous System (CISNe), UACh, Valdivia, Chile
| | - Marcelo Lara
- Departamento de Biología, Universidad de Santiago de Chile, Santiago, Chile; Escuela de Química y Farmacia, Facultad de Medicina y Ciencia, Universidad San Sebastián, Campus las Tres Pascualas, Concepción, Chile
| | - Adriana Covarrubias-Pinto
- Instituto de Bioquímica y Microbiología, UACh, Valdivia, Chile; Center for Interdisciplinary Studies on Nervous System (CISNe), UACh, Valdivia, Chile; Institute of Biochemistry II, Goethe University School of Medicine, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Sharin Valdivia
- Instituto de Bioquímica y Microbiología, UACh, Valdivia, Chile; Center for Interdisciplinary Studies on Nervous System (CISNe), UACh, Valdivia, Chile; Department of Biological and Chemical Sciences, Faculty of Medicine and Sciences, San Sebastián University, Tres Pascualas Campus, Concepción, Chile
| | - Isidora Vicencio
- Instituto de Bioquímica y Microbiología, UACh, Valdivia, Chile; Center for Interdisciplinary Studies on Nervous System (CISNe), UACh, Valdivia, Chile
| | - Eduardo Papic
- Instituto de Bioquímica y Microbiología, UACh, Valdivia, Chile; Center for Interdisciplinary Studies on Nervous System (CISNe), UACh, Valdivia, Chile
| | - Carolina Paredes-Martínez
- Instituto de Bioquímica y Microbiología, UACh, Valdivia, Chile; Center for Interdisciplinary Studies on Nervous System (CISNe), UACh, Valdivia, Chile
| | - Mara E Silva-Januàrio
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Alejandro Rojas
- Center for Interdisciplinary Studies on Nervous System (CISNe), UACh, Valdivia, Chile; Instituto de Medicina, UACh, Valdivia, Chile
| | - Luis L P daSilva
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Felipe Court
- Center for Aging Research and Healthy Longevity, Faculty of Sciences, Universidad Mayor, Santiago, Chile; Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile; Buck Institute for Research on Aging, Novato, CA, USA
| | | | - Luis Federico Bátiz
- Centro de Investigación e Innovación Biomédica (CIIB), Universidad de Los Andes, Santiago, Chile; Escuela de Medicina, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Patricio Rojas
- Departamento de Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Francisco J Rivera
- Translational Regenerative Neurobiology Group (TReN), Molecular and Integrative Biosciences Research Program (MIBS), Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.
| | - Maite A Castro
- Instituto de Bioquímica y Microbiología, UACh, Valdivia, Chile; Center for Interdisciplinary Studies on Nervous System (CISNe), UACh, Valdivia, Chile; Janelia Research Campus HHMI, Ashburn, VA, USA.
| |
Collapse
|
2
|
Wozna‐Wysocka M, Jazurek‐Ciesiolka M, Przybyl L, Wronka D, Misiorek JO, Suszynska‐Zajczyk J, Figura G, Ciesiolka A, Sobieszczanska P, Zeller A, Niemira M, Switonski PM, Fiszer A. Insights into RNA-mediated pathology in new mouse models of Huntington's disease. FASEB J 2024; 38:e70182. [PMID: 39604147 PMCID: PMC11602643 DOI: 10.1096/fj.202401465r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/09/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024]
Abstract
Huntington's disease (HD) is a neurodegenerative polyglutamine (polyQ) disease resulting from the expansion of CAG repeats located in the ORF of the huntingtin gene (HTT). The extent to which mutant mRNA-driven disruptions contribute to HD pathogenesis, particularly in comparison to the dominant mechanisms related to the gain-of-function effects of the mutant polyQ protein, is still debatable. To evaluate this contribution in vivo, we generated two mouse models through a knock-in strategy at the Rosa26 locus. These models expressed distinct variants of human mutant HTT cDNA fragment: a translated variant (HD/100Q model, serving as a reference) and a nontranslated variant (HD/100CAG model). The cohorts of animals were subjected to a broad spectrum of molecular, behavioral, and cognitive analysis for 21 months. Behavioral testing revealed alterations in both models, with the HD/100Q model exhibiting late disease phenotype. The rotarod, static rod, and open-field tests showed some motor deficits in HD/100CAG and HD/100Q model mice during the light phase, while ActiMot indicated hyperkinesis during the dark phase. Both models also exhibited certain gene deregulations in the striatum that are related to disrupted pathways and phenotype alterations observed in HD. In conclusion, we provide in vivo evidence for a minor contributory role of mutant RNA in HD pathogenesis. The separated effects resulting from the presence of mutant RNA in the HD/100CAG model led to less severe but, to some extent, similar types of impairments as in the HD/100Q model. Increased anxiety was one of the most substantial effects caused by mutant HTT RNA.
Collapse
Affiliation(s)
| | | | - Lukasz Przybyl
- Institute of Bioorganic ChemistryPolish Academy of SciencesPoznanPoland
| | - Dorota Wronka
- Institute of Bioorganic ChemistryPolish Academy of SciencesPoznanPoland
| | | | | | - Grzegorz Figura
- Institute of Bioorganic ChemistryPolish Academy of SciencesPoznanPoland
- Present address:
Department of Bioenergetics, Institute of Molecular Biology and BiotechnologyAdam Mickiewicz UniversityPoznanPoland
| | - Adam Ciesiolka
- Institute of Bioorganic ChemistryPolish Academy of SciencesPoznanPoland
- Present address:
Department of Gene Expression, Institute of Molecular Biology and BiotechnologyAdam Mickiewicz UniversityPoznanPoland
| | | | - Anna Zeller
- Genomics and Epigenomics Laboratory, Clinical Research CentreMedical University of BialystokBialystokPoland
| | - Magdalena Niemira
- Genomics and Epigenomics Laboratory, Clinical Research CentreMedical University of BialystokBialystokPoland
| | | | - Agnieszka Fiszer
- Institute of Bioorganic ChemistryPolish Academy of SciencesPoznanPoland
| |
Collapse
|
3
|
Kanoh T, Mizoguchi T, Tonoki A, Itoh M. Modeling of age-related neurological disease: utility of zebrafish. Front Aging Neurosci 2024; 16:1399098. [PMID: 38765773 PMCID: PMC11099255 DOI: 10.3389/fnagi.2024.1399098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/18/2024] [Indexed: 05/22/2024] Open
Abstract
Many age-related neurological diseases still lack effective treatments, making their understanding a critical and urgent issue in the globally aging society. To overcome this challenge, an animal model that accurately mimics these diseases is essential. To date, many mouse models have been developed to induce age-related neurological diseases through genetic manipulation or drug administration. These models help in understanding disease mechanisms and finding potential therapeutic targets. However, some age-related neurological diseases cannot be fully replicated in human pathology due to the different aspects between humans and mice. Although zebrafish has recently come into focus as a promising model for studying aging, there are few genetic zebrafish models of the age-related neurological disease. This review compares the aging phenotypes of humans, mice, and zebrafish, and provides an overview of age-related neurological diseases that can be mimicked in mouse models and those that cannot. We presented the possibility that reproducing human cerebral small vessel diseases during aging might be difficult in mice, and zebrafish has potential to be another animal model of such diseases due to their similarity of aging phenotype to humans.
Collapse
Affiliation(s)
- Tohgo Kanoh
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Takamasa Mizoguchi
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Ayako Tonoki
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Motoyuki Itoh
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
- Research Institute of Disaster Medicine, Chiba University, Chiba, Japan
- Health and Disease Omics Center, Chiba University, Chiba, Japan
| |
Collapse
|
4
|
Li C, Lin Y, Chen Y, Song X, Zheng X, Li J, He J, Chen X, Huang C, Wang W, Wu J, Wu J, Gao J, Tu Z, Li XJ, Yan S, Li S. A Specific Mini-Intrabody Mediates Lysosome Degradation of Mutant Huntingtin. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301120. [PMID: 37688357 PMCID: PMC10625127 DOI: 10.1002/advs.202301120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 08/01/2023] [Indexed: 09/10/2023]
Abstract
Accumulation of misfolded proteins leads to many neurodegenerative diseases that can be treated by lowering or removing mutant proteins. Huntington's disease (HD) is characterized by the intracellular accumulation of mutant huntingtin (mHTT) that can be soluble and aggregated in the central nervous system and causes neuronal damage and death. Here, an intracellular antibody (intrabody) fragment is generated that can specifically bind mHTT and link to the lysosome for degradation. It is found that delivery of this peptide by either brain injection or intravenous administration can efficiently clear the soluble and aggregated mHTT by activating the lysosomal degradation pathway, resulting in amelioration of gliosis and dyskinesia in HD knock-in (KI-140Q) mice. These findings suggest that the small intrabody peptide linked to lysosomes can effectively lower mutant proteins and provide a new approach for treating neurodegenerative diseases that are caused by the accumulation of mutant proteins.
Collapse
Affiliation(s)
- Caijuan Li
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Yingqi Lin
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Yizhi Chen
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Xichen Song
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Xiao Zheng
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Jiawei Li
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Jun He
- Institute of Laboratory Animal Science, Jinan University, Guangzhou, 510632, China
| | - Xiusheng Chen
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Chunhui Huang
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Wei Wang
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Jianhao Wu
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Jiaxi Wu
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Jiale Gao
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Zhuchi Tu
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Xiao-Jiang Li
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Sen Yan
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Shihua Li
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
5
|
Merino M, González S, Tronch MC, Sánchez-Sánchez AV, Clares MP, García-España A, García-España E, Mullor JL. Small Molecule Pytren-4QMn Metal Complex Slows down Huntington's Disease Progression in Male zQ175 Transgenic Mice. Int J Mol Sci 2023; 24:15153. [PMID: 37894844 PMCID: PMC10607077 DOI: 10.3390/ijms242015153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Huntington's disease (HD) is an inherited neurodegenerative disorder considered a rare disease with a prevalence of 5.7 per 100,000 people. It is caused by an autosomal dominant mutation consisting of expansions of trinucleotide repeats that translate into poly-glutamine enlarged mutant huntingtin proteins (mHTT), which are particularly deleterious in brain tissues. Since there is no cure for this progressive fatal disease, searches for new therapeutic approaches are much needed. The small molecule pytren-4QMn (4QMn), a highly water-soluble mimic of the enzyme superoxide dismutase, has shown in vivo beneficial anti-inflammatory activity in mice and was able to remove mHTT deposits in a C. elegans model of HD. In this study, we assessed 4QMn therapeutic potential in zQ175 neo-deleted knock-in mice, a model of HD that closely mimics the heterozygosity, genetic injury, and progressive nature of the human disease. We provide evidence that 4QMn has good acute and chronic tolerability, and can cross the blood-brain barrier, and in male, but not female, zQ175 mice moderately ameliorate HD-altered gene expression, mHtt aggregation, and HD disease phenotype. Our data highlight the importance of considering sex-specific differences when testing new therapies using animal models and postulate 4QMn as a potential novel type of small water-soluble metal complex that could be worth further investigating for its therapeutic potential in HD, as well as in other polyglutamine diseases.
Collapse
Affiliation(s)
- Marián Merino
- Bionos Biotech SL, Biopolo Hospital La Fe, 46026 Valencia, Spain; (M.M.); (S.G.); (M.C.T.); (A.V.S.-S.); (A.G.-E.)
| | - Sonia González
- Bionos Biotech SL, Biopolo Hospital La Fe, 46026 Valencia, Spain; (M.M.); (S.G.); (M.C.T.); (A.V.S.-S.); (A.G.-E.)
| | - Mª Carmen Tronch
- Bionos Biotech SL, Biopolo Hospital La Fe, 46026 Valencia, Spain; (M.M.); (S.G.); (M.C.T.); (A.V.S.-S.); (A.G.-E.)
| | - Ana Virginia Sánchez-Sánchez
- Bionos Biotech SL, Biopolo Hospital La Fe, 46026 Valencia, Spain; (M.M.); (S.G.); (M.C.T.); (A.V.S.-S.); (A.G.-E.)
| | - Mª Paz Clares
- Departamento de Química Orgánica e Inorgánica, Instituto de Ciencia Molecular, Universidad de Valencia, 46980 Valencia, Spain; (M.P.C.); (E.G.-E.)
| | - Antonio García-España
- Bionos Biotech SL, Biopolo Hospital La Fe, 46026 Valencia, Spain; (M.M.); (S.G.); (M.C.T.); (A.V.S.-S.); (A.G.-E.)
| | - Enrique García-España
- Departamento de Química Orgánica e Inorgánica, Instituto de Ciencia Molecular, Universidad de Valencia, 46980 Valencia, Spain; (M.P.C.); (E.G.-E.)
| | - José L. Mullor
- Bionos Biotech SL, Biopolo Hospital La Fe, 46026 Valencia, Spain; (M.M.); (S.G.); (M.C.T.); (A.V.S.-S.); (A.G.-E.)
| |
Collapse
|
6
|
Sneha NP, Dharshini SAP, Taguchi YH, Gromiha MM. Investigating Neuron Degeneration in Huntington's Disease Using RNA-Seq Based Transcriptome Study. Genes (Basel) 2023; 14:1801. [PMID: 37761940 PMCID: PMC10530489 DOI: 10.3390/genes14091801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/02/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Huntington's disease (HD) is a progressive neurodegenerative disorder caused due to a CAG repeat expansion in the huntingtin (HTT) gene. The primary symptoms of HD include motor dysfunction such as chorea, dystonia, and involuntary movements. The primary motor cortex (BA4) is the key brain region responsible for executing motor/movement activities. Investigating patient and control samples from the BA4 region will provide a deeper understanding of the genes responsible for neuron degeneration and help to identify potential markers. Previous studies have focused on overall differential gene expression and associated biological functions. In this study, we illustrate the relationship between variants and differentially expressed genes/transcripts. We identified variants and their associated genes along with the quantification of genes and transcripts. We also predicted the effect of variants on various regulatory activities and found that many variants are regulating gene expression. Variants affecting miRNA and its targets are also highlighted in our study. Co-expression network studies revealed the role of novel genes. Function interaction network analysis unveiled the importance of genes involved in vesicle-mediated transport. From this unified approach, we propose that genes expressed in immune cells are crucial for reducing neuron death in HD.
Collapse
Affiliation(s)
- Nela Pragathi Sneha
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India; (N.P.S.); (S.A.P.D.)
| | - S. Akila Parvathy Dharshini
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India; (N.P.S.); (S.A.P.D.)
| | - Y.-h. Taguchi
- Department of Physics, Chuo University, Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan;
| | - M. Michael Gromiha
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India; (N.P.S.); (S.A.P.D.)
| |
Collapse
|
7
|
Lutfi Ismaeel G, Makki AlHassani OJ, S Alazragi R, Hussein Ahmed A, H Mohamed A, Yasir Jasim N, Hassan Shari F, Almashhadani HA. Genetically engineered neural stem cells (NSCs) therapy for neurological diseases; state-of-the-art. Biotechnol Prog 2023; 39:e3363. [PMID: 37221947 DOI: 10.1002/btpr.3363] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/28/2023] [Accepted: 05/01/2023] [Indexed: 05/25/2023]
Abstract
Neural stem cells (NSCs) are multipotent stem cells with remarkable self-renewal potential and also unique competencies to differentiate into neurons, astrocytes, and oligodendrocytes (ODCs) and improve the cellular microenvironment. In addition, NSCs secret diversity of mediators, including neurotrophic factors (e.g., BDNF, NGF, GDNF, CNTF, and NT-3), pro-angiogenic mediators (e.g., FGF-2 and VEGF), and anti-inflammatory biomolecules. Thereby, NSCs transplantation has become a reasonable and effective treatment for various neurodegenerative disorders by their capacity to induce neurogenesis and vasculogenesis and dampen neuroinflammation and oxidative stress. Nonetheless, various drawbacks such as lower migration and survival and less differential capacity to a particular cell lineage concerning the disease pathogenesis hinder their application. Thus, genetic engineering of NSCs before transplantation is recently regarded as an innovative strategy to bypass these hurdles. Indeed, genetically modified NSCs could bring about more favored therapeutic influences post-transplantation in vivo, making them an excellent option for neurological disease therapy. This review for the first time offers a comprehensive review of the therapeutic capability of genetically modified NSCs rather than naïve NSCs in neurological disease beyond brain tumors and sheds light on the recent progress and prospect in this context.
Collapse
Affiliation(s)
- Ghufran Lutfi Ismaeel
- Department of Pharmacology, College of Pharmacy, University of Al-Ameed, Karbala, Iraq
| | | | - Reem S Alazragi
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Ammar Hussein Ahmed
- Department of Radiology and Sonar, College of Medical Techniques, Al-Farahidi University, Baghdad, Iraq
| | - Asma'a H Mohamed
- Intelligent Medical Systems Department, Al-Mustaqbal University College, Babylon, Iraq
| | - Nisreen Yasir Jasim
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | - Falah Hassan Shari
- Department of Clinical Laboratory Sciences, College of Pharmacy, University of Basrah, Basrah, Iraq
| | | |
Collapse
|
8
|
Abstract
Huntington's disease (HD) is a fatal, monogenic, autosomal dominant neurodegenerative disease caused by a polyglutamine-encoding CAG expansion in the huntingtin (HTT) gene that results in mutant huntingtin proteins (mHTT) in cells throughout the body. Although large parts of the central nervous system (CNS) are affected, the striatum is especially vulnerable and undergoes marked atrophy. Astrocytes are abundant within the striatum and contain mHTT in HD, as well as in mouse models of the disease. We focus on striatal astrocytes and summarize how they participate in, and contribute to, molecular pathophysiology and disease-related phenotypes in HD model mice. Where possible, reference is made to pertinent astrocyte alterations in human HD. Astrocytic dysfunctions related to cellular morphology, extracellular ion and neurotransmitter homeostasis, and metabolic support all accompany the development and progression of HD, in both transgenic mouse and human cellular and chimeric models of HD. These findings reveal the potential for the therapeutic targeting of astrocytes so as to restore synaptic as well as tissue homeostasis in HD. Elucidation of the mechanisms by which astrocytes contribute to HD pathogenesis may inform a broader understanding of the role of glial pathology in neurodegenerative disorders and, by so doing, enable new strategies of glial-directed therapeutics.
Collapse
Affiliation(s)
- Baljit S. Khakh
- Department of Physiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
- Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Steven A. Goldman
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York, USA
- Center for Translational Neuromedicine, University of Copenhagen Faculty of Health and Medical Sciences, Copenhagen, Denmark
| |
Collapse
|
9
|
Gangwani MR, Soto JS, Jami-Alahmadi Y, Tiwari S, Kawaguchi R, Wohlschlegel JA, Khakh BS. Neuronal and astrocytic contributions to Huntington's disease dissected with zinc finger protein transcriptional repressors. Cell Rep 2023; 42:111953. [PMID: 36640336 PMCID: PMC9898160 DOI: 10.1016/j.celrep.2022.111953] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 12/15/2022] [Accepted: 12/15/2022] [Indexed: 01/09/2023] Open
Abstract
Huntington's disease (HD) is caused by expanded CAG repeats in the huntingtin gene (HTT) resulting in expression of mutant HTT proteins (mHTT) with extended polyglutamine tracts, including in striatal neurons and astrocytes. It is unknown whether pathophysiology in vivo can be attenuated by lowering mHTT in either cell type throughout the brain, and the relative contributions of neurons and astrocytes to HD remain undefined. We use zinc finger protein (ZFP) transcriptional repressors to cell-selectively lower mHTT in vivo. Astrocytes display loss of essential functions such as cholesterol metabolism that are partly driven by greater neuronal dysfunctions, which encompass neuromodulation, synaptic, and intracellular signaling pathways. Using transcriptomics, proteomics, electrophysiology, and behavior, we dissect neuronal and astrocytic contributions to HD pathophysiology. Remarkably, brain-wide delivery of neuronal ZFPs results in strong mHTT lowering, rescue of HD-associated behavioral and molecular phenotypes, and significant extension of lifespan, findings that support translational development.
Collapse
Affiliation(s)
- Mohitkumar R. Gangwani
- Department of Physiology, University of California Los Angeles. Los Angeles, CA 90095-1751, USA
| | - Joselyn S. Soto
- Department of Physiology, University of California Los Angeles. Los Angeles, CA 90095-1751, USA
| | - Yasaman Jami-Alahmadi
- Department of Biological Chemistry, University of California Los Angeles. Los Angeles, CA 90095-1751, USA
| | - Srushti Tiwari
- Department of Physiology, University of California Los Angeles. Los Angeles, CA 90095-1751, USA
| | - Riki Kawaguchi
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles. Los Angeles, CA 90095-1751, USA
| | - James A. Wohlschlegel
- Department of Biological Chemistry, University of California Los Angeles. Los Angeles, CA 90095-1751, USA
| | - Baljit S. Khakh
- Department of Physiology, University of California Los Angeles. Los Angeles, CA 90095-1751, USA,Department of Neurobiology, University of California Los Angeles. Los Angeles, CA 90095-1751, USA
| |
Collapse
|
10
|
In Vitro 3D Modeling of Neurodegenerative Diseases. BIOENGINEERING (BASEL, SWITZERLAND) 2023; 10:bioengineering10010093. [PMID: 36671665 PMCID: PMC9855033 DOI: 10.3390/bioengineering10010093] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/29/2022] [Accepted: 01/05/2023] [Indexed: 01/13/2023]
Abstract
The study of neurodegenerative diseases (such as Alzheimer's disease, Parkinson's disease, Huntington's disease, or amyotrophic lateral sclerosis) is very complex due to the difficulty in investigating the cellular dynamics within nervous tissue. Despite numerous advances in the in vivo study of these diseases, the use of in vitro analyses is proving to be a valuable tool to better understand the mechanisms implicated in these diseases. Although neural cells remain difficult to obtain from patient tissues, access to induced multipotent stem cell production now makes it possible to generate virtually all neural cells involved in these diseases (from neurons to glial cells). Many original 3D culture model approaches are currently being developed (using these different cell types together) to closely mimic degenerative nervous tissue environments. The aim of these approaches is to allow an interaction between glial cells and neurons, which reproduces pathophysiological reality by co-culturing them in structures that recapitulate embryonic development or facilitate axonal migration, local molecule exchange, and myelination (to name a few). This review details the advantages and disadvantages of techniques using scaffolds, spheroids, organoids, 3D bioprinting, microfluidic systems, and organ-on-a-chip strategies to model neurodegenerative diseases.
Collapse
|
11
|
Podvin S, Mosier C, Poon W, Wei E, Rossitto LA, Hook V. Dysregulation of Human Juvenile Huntington's Disease Brain Proteomes in Cortex and Putamen Involves Mitochondrial and Neuropeptide Systems. J Huntingtons Dis 2023; 12:315-333. [PMID: 38108356 DOI: 10.3233/jhd-230577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
BACKGROUND Huntington's disease (HD) is a genetic neurodegenerative disease caused by trinucleotide repeat CAG expansions in the human HTT gene. Early onset juvenile HD (JHD) in children is the most severe form of the disease caused by high CAG repeat numbers of the HTT gene. OBJECTIVE To gain understanding of human HD mechanisms hypothesized to involve dysregulated proteomes of brain regions that regulate motor and cognitive functions, this study analyzed the proteomes of human JHD cortex and putamen brain regions compared to age-matched controls. METHODS JHD and age-matched control brain tissues were assessed for CAG repeat numbers of HTT by PCR. Human brain JHD brain cortex regions of BA4 and BA6 with the putamen region (n = 5) were analyzed by global proteomics, compared to age-matched controls (n = 7). Protein interaction pathways were assessed by gene ontology (GO), STRING-db, and KEGG bioinformatics. RESULTS JHD brain tissues were heterozygous for one mutant HTT allele containing 60 to 120 CAG repeats, and one normal HTT allele with 10 to 19 CAG repeats. Proteomics data for JHD brain regions showed dysregulated mitochondrial energy pathways and changes in synaptic systems including peptide neurotransmitters. JHD compared to control proteomes of cortex and putamen displayed (a) proteins present only in JHD, (b) proteins absent in JHD, and (c) proteins that were downregulated or upregulated. CONCLUSIONS Human JHD brain cortex and putamen regions display significant dysregulation of proteomes representing deficits in mitochondrial and synaptic neurotransmission functions. These findings advance understanding of JHD brain molecular mechanisms associated with HD disabilities.
Collapse
Affiliation(s)
- Sonia Podvin
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Charles Mosier
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - William Poon
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Enlin Wei
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Leigh-Ana Rossitto
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA, USA
- Department of Neuroscience and Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Vivian Hook
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
- Department of Neuroscience and Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
12
|
Tanaka M, Szabó Á, Spekker E, Polyák H, Tóth F, Vécsei L. Mitochondrial Impairment: A Common Motif in Neuropsychiatric Presentation? The Link to the Tryptophan-Kynurenine Metabolic System. Cells 2022; 11:2607. [PMID: 36010683 PMCID: PMC9406499 DOI: 10.3390/cells11162607] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/14/2022] [Accepted: 08/19/2022] [Indexed: 02/07/2023] Open
Abstract
Nearly half a century has passed since the discovery of cytoplasmic inheritance of human chloramphenicol resistance. The inheritance was then revealed to take place maternally by mitochondrial DNA (mtDNA). Later, a number of mutations in mtDNA were identified as a cause of severe inheritable metabolic diseases with neurological manifestation, and the impairment of mitochondrial functions has been probed in the pathogenesis of a wide range of illnesses including neurodegenerative diseases. Recently, a growing number of preclinical studies have revealed that animal behaviors are influenced by the impairment of mitochondrial functions and possibly by the loss of mitochondrial stress resilience. Indeed, as high as 54% of patients with one of the most common primary mitochondrial diseases, mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes (MELAS) syndrome, present psychiatric symptoms including cognitive impairment, mood disorder, anxiety, and psychosis. Mitochondria are multifunctional organelles which produce cellular energy and play a major role in other cellular functions including homeostasis, cellular signaling, and gene expression, among others. Mitochondrial functions are observed to be compromised and to become less resilient under continuous stress. Meanwhile, stress and inflammation have been linked to the activation of the tryptophan (Trp)-kynurenine (KYN) metabolic system, which observably contributes to the development of pathological conditions including neurological and psychiatric disorders. This review discusses the functions of mitochondria and the Trp-KYN system, the interaction of the Trp-KYN system with mitochondria, and the current understanding of the involvement of mitochondria and the Trp-KYN system in preclinical and clinical studies of major neurological and psychiatric diseases.
Collapse
Affiliation(s)
- Masaru Tanaka
- ELKH-SZTE Neuroscience Research Group, Danube Neuroscience Research Laboratory, Eötvös Loránd Research Network, University of Szeged (ELKH-SZTE), Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| | - Ágnes Szabó
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
- Doctoral School of Clinical Medicine, University of Szeged, Korányi fasor 6, H-6720 Szeged, Hungary
| | - Eleonóra Spekker
- ELKH-SZTE Neuroscience Research Group, Danube Neuroscience Research Laboratory, Eötvös Loránd Research Network, University of Szeged (ELKH-SZTE), Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| | - Helga Polyák
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
- Doctoral School of Clinical Medicine, University of Szeged, Korányi fasor 6, H-6720 Szeged, Hungary
| | - Fanni Tóth
- ELKH-SZTE Neuroscience Research Group, Danube Neuroscience Research Laboratory, Eötvös Loránd Research Network, University of Szeged (ELKH-SZTE), Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| | - László Vécsei
- ELKH-SZTE Neuroscience Research Group, Danube Neuroscience Research Laboratory, Eötvös Loránd Research Network, University of Szeged (ELKH-SZTE), Tisza Lajos krt. 113, H-6725 Szeged, Hungary
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| |
Collapse
|
13
|
Kaye J, Reisine T, Finkbeiner S. Huntington's disease iPSC models-using human patient cells to understand the pathology caused by expanded CAG repeats. Fac Rev 2022; 11:16. [PMID: 35865413 PMCID: PMC9264339 DOI: 10.12703/r/11-16] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
A major advance in the study of Huntington's disease (HD) has been the development of human disease models employing induced pluripotent stem cells (iPSCs) derived from patients with HD. Because iPSCs provide an unlimited source of cells and can be obtained from large numbers of HD patients, they are a uniquely valuable tool for investigating disease mechanisms and for discovering potential disease-modifying therapeutics. Here, we summarize some of the important findings in HD pathophysiology that have emerged from studies of patient-derived iPSC lines. Because they retain the genome and actual disease mutations of the patient, they provide a cell source to investigate genetic contributions to the disease. iPSCs provide advantages over other disease models. While iPSC-based technology erases some epigenetic marks, newly developed transdifferentiation methods now let us investigate epigenetic factors that control expression of mutant huntingtin (mHTT). Human HD iPSC lines allow us to investigate how endogenous levels of mHTT affect cell health, in contrast to other models that often rely on overexpressing the protein. iPSCs can be differentiated into neurons and other disease-related cells such as astrocytes from different brain regions to study brain regional differences in the disease process, as well as the cell-cell dependencies involved in HD-associated neurodegeneration. They also serve as a tissue source to investigate factors that impact CAG repeat instability, which is involved in regional differences in neurodegeneration in the HD brain. Human iPSC models can serve as a powerful model system to identify genetic modifiers that may impact disease onset, progression, and symptomatology, providing novel molecular targets for drug discovery.
Collapse
Affiliation(s)
- Julia Kaye
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA, USA
| | - Terry Reisine
- Independent Scientific Consultant, Santa Cruz, CA, USA
| | - Steven Finkbeiner
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA, USA
- Taube/Koret Center for Neurodegenerative Disease Research, Gladstone Institutes, San Francisco, CA, USA
- Department of Neurology and Physiology, University of California, San Francisco, CA, USA
| |
Collapse
|
14
|
Insights into the use of genetically modified decellularized biomaterials for tissue engineering and regenerative medicine. Adv Drug Deliv Rev 2022; 188:114413. [PMID: 35777666 DOI: 10.1016/j.addr.2022.114413] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/25/2022] [Accepted: 06/25/2022] [Indexed: 11/24/2022]
Abstract
Various modifications have been performed on biomaterials to improve their applications in tissue engineering and regenerative medicine. However, the challenges of immunogenicity and biocompatibility existed since the application of biomaterials. As a method to solve this problem, the decellularization process removes most living cells from biomaterials to minimize their immunogenicity; and preserves the native structures and compositions that favour cell growth and the subsequent construction of functional tissue. On the other hand, genetic modification of biomaterials aims to achieve specific functions (low immunogenicity, osteogenesis, etc.) or analyse the genetic mechanisms underlying some diseases (cardiac dysfunction, liver fibrosis, etc.). The combination of decellularization and gene modification is highly superior to biomaterials; thus, we must obtain a deeper understanding of these novel biomaterials. In this review, we summarize the fabrication approaches and current applications of genetically modified decellularized biomaterials and then discuss their disadvantages and corresponding future perspectives.
Collapse
|
15
|
Molecular Pathophysiological Mechanisms in Huntington's Disease. Biomedicines 2022; 10:biomedicines10061432. [PMID: 35740453 PMCID: PMC9219859 DOI: 10.3390/biomedicines10061432] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 12/11/2022] Open
Abstract
Huntington’s disease is an inherited neurodegenerative disease described 150 years ago by George Huntington. The genetic defect was identified in 1993 to be an expanded CAG repeat on exon 1 of the huntingtin gene located on chromosome 4. In the following almost 30 years, a considerable amount of research, using mainly animal models or in vitro experiments, has tried to unravel the complex molecular cascades through which the transcription of the mutant protein leads to neuronal loss, especially in the medium spiny neurons of the striatum, and identified excitotoxicity, transcriptional dysregulation, mitochondrial dysfunction, oxidative stress, impaired proteostasis, altered axonal trafficking and reduced availability of trophic factors to be crucial contributors. This review discusses the pathogenic cascades described in the literature through which mutant huntingtin leads to neuronal demise. However, due to the ubiquitous presence of huntingtin, astrocytes are also dysfunctional, and neuroinflammation may additionally contribute to Huntington’s disease pathology. The quest for therapies to delay the onset and reduce the rate of Huntington’s disease progression is ongoing, but is based on findings from basic research.
Collapse
|
16
|
Huntingtin Co-Isolates with Small Extracellular Vesicles from Blood Plasma of TgHD and KI-HD Pig Models of Huntington's Disease and Human Blood Plasma. Int J Mol Sci 2022; 23:ijms23105598. [PMID: 35628406 PMCID: PMC9147436 DOI: 10.3390/ijms23105598] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/12/2022] [Accepted: 05/15/2022] [Indexed: 12/16/2022] Open
Abstract
(1) Background: Huntington’s disease (HD) is rare incurable hereditary neurodegenerative disorder caused by CAG repeat expansion in the gene coding for the protein huntingtin (HTT). Mutated huntingtin (mHTT) undergoes fragmentation and accumulation, affecting cellular functions and leading to neuronal cell death. Porcine models of HD are used in preclinical testing of currently emerging disease modifying therapies. Such therapies are aimed at reducing mHTT expression, postpone the disease onset, slow down the progression, and point out the need of biomarkers to monitor disease development and therapy efficacy. Recently, extracellular vesicles (EVs), particularly exosomes, gained attention as possible carriers of disease biomarkers. We aimed to characterize HTT and mHTT forms/fragments in blood plasma derived EVs in transgenic (TgHD) and knock-in (KI-HD) porcine models, as well as in HD patients’ plasma. (2) Methods: Small EVs were isolated by ultracentrifugation and HTT forms were visualized by western blotting. (3) Results: The full length 360 kDa HTT co-isolated with EVs from both the pig model and HD patient plasma. In addition, a ~70 kDa mutant HTT fragment was specific for TgHD pigs. Elevated total huntingtin levels in EVs from plasma of HD groups compared to controls were observed in both pig models and HD patients, however only in TgHD were they significant (p = 0.02). (4) Conclusions: Our study represents a valuable initial step towards the characterization of EV content in the search for HD biomarkers.
Collapse
|
17
|
Genetically modified mice for research on human diseases: A triumph for Biotechnology or a work in progress? THE EUROBIOTECH JOURNAL 2022. [DOI: 10.2478/ebtj-2022-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022] Open
Abstract
Abstract
Genetically modified mice are engineered as models for human diseases. These mouse models include inbred strains, mutants, gene knockouts, gene knockins, and ‘humanized’ mice. Each mouse model is engineered to mimic a specific disease based on a theory of the genetic basis of that disease. For example, to test the amyloid theory of Alzheimer’s disease, mice with amyloid precursor protein genes are engineered, and to test the tau theory, mice with tau genes are engineered. This paper discusses the importance of mouse models in basic research, drug discovery, and translational research, and examines the question of how to define the “best” mouse model of a disease. The critiques of animal models and the caveats in translating the results from animal models to the treatment of human disease are discussed. Since many diseases are heritable, multigenic, age-related and experience-dependent, resulting from multiple gene-gene and gene-environment interactions, it will be essential to develop mouse models that reflect these genetic, epigenetic and environmental factors from a developmental perspective. Such models would provide further insight into disease emergence, progression and the ability to model two-hit and multi-hit theories of disease. The summary examines the biotechnology for creating genetically modified mice which reflect these factors and how they might be used to discover new treatments for complex human diseases such as cancers, neurodevelopmental and neurodegenerative diseases.
Collapse
|