1
|
Ma D, Wang G, Zhu J, Mu W, Dou D, Liu F. Green Leaf Volatile Trans-2-Hexenal Inhibits the Growth of Fusarium graminearum by Inducing Membrane Damage, ROS Accumulation, and Cell Dysfunction. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5646-5657. [PMID: 35481379 DOI: 10.1021/acs.jafc.2c00942] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Fusarium graminearum, the main agent of Fusarium head blight (FHB), can cause serious yield loss and secrete mycotoxins to contaminate grain. Here, the biological activity of trans-2-hexenal (T2H) against F. graminearum was determined and its mode of action (MOA) was investigated. Furthermore, surface plasmon resonance with liquid chromatography-tandem mass spectrometry (SPR-LC-MS/MS), bioinformatic analysis, and gene knockout technique were combined to identify the binding proteins of T2H in F. graminearum cells. T2H exhibited satisfactory inhibitory activity against F. graminearum in vitro. Good lipophilicity greatly enhanced the affinity of T2H to F. graminearum mycelia and further caused membrane damage. The FgTRR (thioredoxin reductase) gene negatively regulates the sensitivity of F. graminearum to T2H by reducing the generation of reactive oxygen species (ROS) induced by T2H. Two mutant strains with FgSLX1 (structure-specific endonuclease subunit) and FgCOPB (coatomer subunit β) genes knockout showed decreased sensitivity to T2H, suggesting that these two genes may be involved in the antimicrobial activity of T2H. Taken together, T2H can inhibit F. graminearum growth by multiple MOAs and can be used as a biofumigant to control the occurrence of FHB in the field.
Collapse
Affiliation(s)
- Dicheng Ma
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Guoxian Wang
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Jiamei Zhu
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Wei Mu
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Daolong Dou
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Feng Liu
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| |
Collapse
|
2
|
Pennerman KK, Yin G, Bennett JW. Eight-carbon volatiles: prominent fungal and plant interaction compounds. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:487-497. [PMID: 34727164 DOI: 10.1093/jxb/erab438] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Signaling via volatile organic compounds (VOCs) has historically been studied mostly by entomologists; however, botanists and mycologists are increasingly aware of the physiological potential of chemical communication in the gas phase. Most research to date focuses on the observed effects of VOCs on different organisms such as differential growth or metabolite production. However, with the increased interest in volatile signaling, more researchers are investigating the molecular mechanisms for these effects. Eight-carbon VOCs are among the most prevalent and best-studied fungal volatiles. Therefore, this review emphasizes examples of eight-carbon VOCs affecting plants and fungi. These compounds display different effects that include growth suppression in both plants and fungi, induction of defensive behaviors such as accumulation of mycotoxins, phytohormone signaling cascades, and the inhibition of spore and seed germination. Application of '-omics' and other next-generation sequencing techniques is poised to decipher the mechanistic basis of volatiles in plant-fungal communication.
Collapse
Affiliation(s)
- Kayla K Pennerman
- Joint Institute for Food Safety and Applied Nutrition, University of Maryland, College Park, MD 20742, USA
- United States Department of Agriculture, Toxicology and Mycotoxin Research Unit, Athens, GA 30605, USA
| | - Guohua Yin
- United States Department of Agriculture, Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Peoria, IL 61604, USA
- Department of Plant Biology, Rutgers University, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Joan W Bennett
- Department of Plant Biology, Rutgers University, The State University of New Jersey, New Brunswick, NJ 08901, USA
| |
Collapse
|
3
|
El-Desouky TA. Evaluation of effectiveness aqueous extract for some leaves of wild edible plants in Egypt as anti-fungal and anti-toxigenic. Heliyon 2021; 7:e06209. [PMID: 33659741 PMCID: PMC7892916 DOI: 10.1016/j.heliyon.2021.e06209] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/04/2020] [Accepted: 02/03/2021] [Indexed: 11/29/2022] Open
Abstract
Plants are one of a prefect source of natural effective compounds that have antimicrobial, and other activities. This study investigated the activity of the aqueous extract for three wild edible plants (Sonchus oleraceus, Cichorium pumilum, and Portulaca oleracea) at three concentrations (1.5, 2.5 and 5 mg/ml) as antifungal and antitoxigenic. Many functional groups such as alcohols, phenols, alkanes and alkenes, etc were appeared in aqueous extracts by Fourier Transform Infrared Spectroscopy (FTIR) analysis. Where an extract of Portulaca oleracea gave a greater total phenolic and flavonoids were 210.4 ± 1.15 and 36.7 ± 0.79 mg/mL, respectively, followed by Sonchus oleraceus (192.3 ± 2.11 mg/mL) and Cichorium pumilum (186.4 ± 2.18 mg/mL). The results indicated that increasing the concentration of the extract, the area of inhibition zone increased with all treatments, where the highest inhibition zone was observed using 5 mg/ml for Portulaca oleracea extract was 17.1 ± 1.7, 26.5 ± 1.5 and 22.8.±2.3 mm against Aspergillus flavus, Aspergillus ochraceus and Aspergillus parasiticus, respectively, while the lowest antifungal activity was marked with Cichorium pumilum extract with all tested fungi. The results have also indicated that the aqueous extract has inhibited formed of aflatoxin B1 (AFB1) and ochratoxin A (OTA), where the percentages of inhibition AFB1 were 78.03, 68.8 and 81.7% after treated yeast extract sucrose (YES) media by 5 mg crude extract for extract Sonchus oleraceus, Cichorium pumilum and Portulaca oleracea, respectively. In contrast, the inhibitory effect against OTA at the same concentration was 77.5, 72.3, and 85.2% in the same order for plants. Finally, these plants provide an aqueous extract that contains many effective compounds that enable to play the role of antifungal and antitoxigenic.
Collapse
Affiliation(s)
- Tarek A. El-Desouky
- Department of Food Toxicology and Contaminant, National Research Centre, Dokki, Giza, Egypt
| |
Collapse
|
4
|
Zheng X, Wei W, Zhou W, Li H, Rao S, Gao L, Yang Z. Prevention and detoxification of patulin in apple and its products: A review. Food Res Int 2020; 140:110034. [PMID: 33648261 DOI: 10.1016/j.foodres.2020.110034] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/19/2020] [Accepted: 12/14/2020] [Indexed: 01/09/2023]
Abstract
Patulin-producing fungi pose an unavoidable problem for apple and its product quality, thereby threatening human and/or animal health. Studies on controlling the patulin-producing fungal growth and patulin contamination in apple and its products by physical methods, chemical fungicides, and biological methods have been performed for decades, but patulin contamination has not been addressed. Here, the important of studying regulation mechanism of patulin production in apple at the protein expression and metabolism levels is proposed, which will facilitate the development of controlling patulin production by using physical, chemical, and biological methods. Furthermore, the advantages or disadvantages and effects or mechanisms of using physical, chemical, biological methods to control the decay caused by Penicillium expansum and to remove patulin in food was discussed. The development of physical methods to remove patulin depends on the development of special equipment. Chemical methods are economical and efficient, if we have ensured that there are no unknown reactions or toxic by-products by using these chemicals. The biological method not only effectively controls the decay caused by Penicillium espansum, but also removes the toxins that already exist in the food. Degradation of patulin by microorganisms or biodegradation enzymes is an efficient and promising method to remove patulin in food if the microorganisms used and the degradation products are completely non-toxic.
Collapse
Affiliation(s)
- Xiangfeng Zheng
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Wanning Wei
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Wenyuan Zhou
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Huaxiang Li
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Shengqi Rao
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Lu Gao
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Zhenquan Yang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|
5
|
Pennerman KK, Scarsella JB, Yin GH, Hua SST, Hartman TG, Bennett JW. Volatile 1-octen-3-ol increases patulin production by Penicillium expansum on a patulin-suppressing medium. Mycotoxin Res 2019; 35:329-340. [PMID: 31025195 DOI: 10.1007/s12550-019-00348-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/26/2019] [Accepted: 02/27/2019] [Indexed: 12/21/2022]
Abstract
1-Octen-3-ol is one of the most abundant volatile compounds associated with fungi and functions as a germination and growth inhibitor in several species. By investigating its effect on the biosynthesis of patulin, a mycotoxin made by Penicillium expansum, it was found that a sub-inhibitory level of volatile 1-octen-3-ol increased accumulation of patulin on a medium that normally suppresses the mycotoxin. Transcriptomic sequencing and comparisons of control and treated P. expansum grown on potato dextrose agar (PDA; patulin permissive) or secondary medium agar (SMA; patulin suppressive) revealed that the expression of gox2, a gene encoding a glucose oxidase, was significantly affected, decreasing 10-fold on PDA and increasing 85-fold on SMA. Thirty other genes, mostly involved in transmembrane transport, oxidation-reduction, and carbohydrate metabolism were also differently expressed on the two media. Transcription factors previously found to be involved in regulation of patulin biosynthesis were not significantly affected despite 1-octen-3-ol increasing patulin production on SMA. Further study is needed to determine the relationship between the upregulation of patulin biosynthesis genes and gox2 on SMA, and to identify the molecular mechanism by which 1-octen-3-ol induced this effect.
Collapse
Affiliation(s)
- Kayla K Pennerman
- Department of Plant Biology, Rutgers University, The State University of New Jersey, New Brunswick, NJ, 08901, USA.
| | - Joseph B Scarsella
- Department of Food Science, Rutgers University, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Guo-Hua Yin
- Department of Plant Biology, Rutgers University, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Sui-Sheng T Hua
- Foodborne Toxin Detection and Prevention Research, United States Department of Agriculture, Agricultural Research Service, Albany, CA, 94710, USA
| | - Thomas G Hartman
- Department of Food Science, Rutgers University, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Joan W Bennett
- Department of Plant Biology, Rutgers University, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| |
Collapse
|
6
|
|
7
|
Vijayababu P, Samykannu G, Antonyraj CB, Thomas J, Narayanan S, Basheer Ahamed SI, Piramanayagam S. Patulin interference with ATP binding cassette transferring auto inducer −2 in Salmonella typhi and biofilm inhibition via quorum sensing. INFORMATICS IN MEDICINE UNLOCKED 2018. [DOI: 10.1016/j.imu.2018.02.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
8
|
Zhu R, Yu T, Guo S, Hu H, Zheng X, Karlovsky P. Effect of the yeast Rhodosporidium paludigenum on postharvest decay and patulin accumulation in apples and pears. J Food Prot 2015; 78:157-63. [PMID: 25581191 DOI: 10.4315/0362-028x.jfp-14-218] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The effect of a strain of marine yeast Rhodosporidium paludigenum on postharvest blue mold and patulin accumulation in apples and pears stored at 23°C was evaluated. The occurrence and severity of apple and pear decay caused by Penicillium expansum were significantly inhibited by R. paludigenum. However, the application of the yeast at a high concentration (10(8) cells per ml) enhanced patulin accumulation after 7 days of storage; the amount of patulin increased 24.2 times and 12.6 times compared to the controls in infected apples and pears, respectively. However, R. paludigenum reduced the patulin concentration in the growth medium by both biological degradation and physical adsorption. Optimal in vitro patulin reduction was observed at 30°C and at pH 6.0. R. paludigenum incubated at 28°C was tolerant to patulin at concentrations up to 100 mg/liter. In conclusion, R. paludigenum was able to control postharvest decay in apples and pears and to remove patulin in vitro effectively. However, because the yeast induced patulin accumulation in fruit, the assessment of mycotoxin content after biological treatments in postharvest decay control is important. R. paludigenum may also be a promising source of gene(s) and enzyme(s) for patulin degradation and may be a tool to decrease patulin contamination in commercial fruit-derived products.
Collapse
Affiliation(s)
- Ruiyu Zhu
- Institute of Food Science, Zhejiang University, Yuhangtang Road 388, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Ting Yu
- Institute of Food Science, Zhejiang University, Yuhangtang Road 388, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Shuanghuan Guo
- Institute of Food Science, Zhejiang University, Yuhangtang Road 388, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Hao Hu
- Institute of Food Science, Zhejiang University, Yuhangtang Road 388, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Xiaodong Zheng
- Institute of Food Science, Zhejiang University, Yuhangtang Road 388, Hangzhou, Zhejiang 310058, People's Republic of China.
| | - Petr Karlovsky
- Molecular Phytopathology and Mycotoxin Research Section, University of Goettingen, Grisebachstrasse 6, D-37077 Goettingen, Germany.
| |
Collapse
|