1
|
Optimized production and characterization of a detergent-stable protease from Lysinibacillus fusiformis C250R. Int J Biol Macromol 2017; 101:383-397. [PMID: 28315440 DOI: 10.1016/j.ijbiomac.2017.03.051] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 02/23/2017] [Accepted: 03/10/2017] [Indexed: 11/20/2022]
Abstract
In this study, we aimed to optimize the cultural and nutritional conditions for protease production by Lysinibacillus fusiformis strain C250R in submerged fermentation process using statistical methodology. The most significant factors (gruel, wheat bran, yeast extract, and FeSO4) were identified by Plackett-Burman design. Response surface methodology (RSM) was used to determine the optimum levels of the screened factors and their interaction. Under the optimized conditions, protease yield 3100U/mL was 4.5 folds higher than those obtained by the use of the initial conditions (680U/mL). Additionally, a new extracellular 51kDa-protease, designated SAPLF, was purified and biochemically characterized from strain C250R. It shows optimum activity at 70°C and pH 10. Its half-life times at 70 and 80°C were 10 and 6-h, respectively. Irreversible inhibition of enzyme activity of SAPLF with serine protease inhibitors demonstrated that it belongs to the serine protease family. Interestingly, its catalytic efficiency was higher than that of SPVP from Aeribacillus pallidus strain VP3 and Alcalase Ultra 2.5L from Bacillus licheniformis. This study demonstrated that SAPLF has a high detergent compatibility and an excellent stain removal compared to Alcalase Ultra 2.5L; which offers an interesting potential for its application in the laundry detergent industry.
Collapse
|
2
|
Sharma AK, Singh SP. Effect of amino acids on the repression of alkaline protease synthesis in haloalkaliphilic Nocardiopsis dassonvillei. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2016; 12:40-51. [PMID: 28352553 PMCID: PMC5361074 DOI: 10.1016/j.btre.2016.10.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 09/05/2016] [Accepted: 10/11/2016] [Indexed: 11/20/2022]
Abstract
A newly isolated salt-tolerant alkaliphilic actinomycete, Nocardiopsis dassonvillei strain OK-18 grows on mineral salts medium with glucose as carbon source. It also grows and produces protease with amino acids as sole carbon source. The synthesis of extracellular alkaline protease parallel to growth was repressible by substrate concentrations. The absolute production of the protease was delinked with growth under nutritional stress, as protease production was high, despite poor growth. When amino acids served as the sole source of carbon and nitrogen, the enzyme production was significantly controlled by the number of amino acids. Maximal protease production was achieved with proline, asparagine, tyrosine, alanine, methionine and valine as sole source of carbon and nitrogen in minimal medium. With the increasing number of different amino acids in the presence and absence of glucose, the protease production was synergistically lower as compared to complex medium.
Collapse
Affiliation(s)
| | - Satya P. Singh
- UGC-CAS Department of Biosciences, Saurashtra University, Rajkot 360 005 Gujarat, India
| |
Collapse
|
3
|
Embaby AM, Saeed H, Hussein A. SHG10 keratinolytic alkaline protease fromBacillus licheniformisSHG10 DSM 28096: Robust stability and unusual non-cumbersome purification. J Basic Microbiol 2016; 56:1317-1330. [DOI: 10.1002/jobm.201600073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 05/29/2016] [Indexed: 12/30/2022]
Affiliation(s)
- Amira M. Embaby
- Department of Biotechnology, Institute of Graduate Studies and Research; Alexandria University; Egypt
| | - Hesham Saeed
- Department of Biotechnology, Institute of Graduate Studies and Research; Alexandria University; Egypt
| | - Ahmed Hussein
- Department of Biotechnology, Institute of Graduate Studies and Research; Alexandria University; Egypt
- Department of Chemistry and Biochemistry; Texas Tech University; Lubbock Texas USA
| |
Collapse
|
4
|
A novel detergent-stable solvent-tolerant serine thiol alkaline protease from Streptomyces koyangensis TN650. Int J Biol Macromol 2015; 79:871-82. [DOI: 10.1016/j.ijbiomac.2015.06.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 06/02/2015] [Accepted: 06/03/2015] [Indexed: 11/22/2022]
|
5
|
Purification and biochemical characterization of two detergent-stable serine alkaline proteases from Streptomyces sp. strain AH4. World J Microbiol Biotechnol 2015; 31:1079-92. [PMID: 26002109 DOI: 10.1007/s11274-015-1858-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Accepted: 04/22/2015] [Indexed: 10/23/2022]
Abstract
Streptomyces sp. strain AH4 exhibited a high ability to produce two extracellular proteases when cultured on a yeast malt-extract (ISP2)-casein-based medium. Pure proteins were obtained after heat treatment (30 min at 70 °C) and ammonium sulphate fractionation (30-60 %), followed by size exclusion HPLC column. Matrix assisted laser desorption ionization-time of flight mass spectrometry analysis revealed that the purified enzymes (named SAPS-P1 and SAPS-P2) were monomers with molecular masses of 36,417.13 and 21,099.10 Da, respectively. Their identified N-terminal amino acid displayed high homologies with those of Streptomyces proteases. While SAPS-P1 was optimally active at pH 12.0 and 70 °C, SAPS-P2 showed optimum activity at pH 10.0 and 60 °C. Both enzymes were completely stable within a wide range of temperature (45-75 °C) and pH (8.0-11.5). They were noted to be completely inhibited by phenylmethanesulfonyl fluoride and diisopropyl fluorophosphates, which confirmed their belonging to the serine proteases family. Compared to SAPS-P2, SAPS-P1 showed high thermostability and excellent stability towards bleaching, denaturing, and oxidizing agents. Both enzymes displayed marked stability and compatibility with a wide range of commercial laundry detergents and significant catalytic efficiencies compared to Subtilisin Carlsberg and Protease SG-XIV. Overall, the results indicated that SAPS-P1 and SAPS-P2 can be considered as potential promising candidates for future application as bioadditives in detergent formulations.
Collapse
|
6
|
Aswati Nair R, Geethu C. Purification and characterization of secretory serine protease from necrotrophic oomycete, Pythium myriotylum Dreschler. World J Microbiol Biotechnol 2014; 31:85-94. [DOI: 10.1007/s11274-014-1767-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 10/28/2014] [Indexed: 01/14/2023]
|
7
|
Sharma AK, Gohel S, Singh SP. Actinobase: Database on molecular diversity, phylogeny and biocatalytic potential of salt tolerant alkaliphilic actinomycetes. Bioinformation 2012; 8:535-8. [PMID: 22829726 PMCID: PMC3398770 DOI: 10.6026/97320630008535] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 06/08/2012] [Indexed: 11/26/2022] Open
Abstract
UNLABELLED Actinobase is a relational database of molecular diversity, phylogeny and biocatalytic potential of haloalkaliphilic actinomycetes. The main objective of this data base is to provide easy access to range of information, data storage, comparison and analysis apart from reduced data redundancy, data entry, storage, retrieval costs and improve data security. Information related to habitat, cell morphology, Gram reaction, biochemical characterization and molecular features would allow researchers in understanding identification and stress adaptation of the existing and new candidates belonging to salt tolerant alkaliphilic actinomycetes. The PHP front end helps to add nucleotides and protein sequence of reported entries which directly help researchers to obtain the required details. Analysis of the genus wise status of the salt tolerant alkaliphilic actinomycetes indicated 6 different genera among the 40 classified entries of the salt tolerant alkaliphilic actinomycetes. The results represented wide spread occurrence of salt tolerant alkaliphilic actinomycetes belonging to diverse taxonomic positions. Entries and information related to actinomycetes in the database are publicly accessible at http://www.actinobase.in. On clustalW/X multiple sequence alignment of the alkaline protease gene sequences, different clusters emerged among the groups. The narrow search and limit options of the constructed database provided comparable information. The user friendly access to PHP front end facilitates would facilitate addition of sequences of reported entries. AVAILABILITY The database is available for free at http://www.actinobase.in.
Collapse
Affiliation(s)
- Amit K Sharma
- Department of Biosciences, Saurashtra University, Rajkot, Gujarat, India-360 005
| | - Sangeeta Gohel
- Department of Biosciences, Saurashtra University, Rajkot, Gujarat, India-360 005
| | - Satya P Singh
- Department of Biosciences, Saurashtra University, Rajkot, Gujarat, India-360 005
| |
Collapse
|
8
|
Abstract
The structure of the GAG (glycosaminoglycan) chain of recombinantly expressed decorin proteoglycan was examined using a combination of intact-chain analysis and domain compositional analysis. The GAG had a number-average molecular mass of 22 kDa as determined by PAGE. NMR spectroscopic analysis using two-dimensional correlation spectroscopy indicated that the ratio of glucuronic acid to iduronic acid in decorin peptidoglycan was 5 to 1. GAG domains terminated with a specific disaccharide obtained by enzymatic degradation of decorin GAG with highly specific endolytic and exolytic lyases were analysed by PAGE and further depolymerized with the enzymes. The disaccharide compositional profiles of the resulting domains were obtained using LC with mass spectrometric and photometric detection and compared with that of the polysaccharide. The information obtained through the disaccharide compositional profiling was combined with the NMR and PAGE data to construct a map of the decorin GAG sequence motifs.
Collapse
|
9
|
Characterization of a thermostable alkaline protease produced by marine Streptomyces fungicidicus MML1614. Bioprocess Biosyst Eng 2009; 32:791-800. [PMID: 19234861 DOI: 10.1007/s00449-009-0305-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Accepted: 01/30/2009] [Indexed: 10/21/2022]
Abstract
Totally 191 different marine actinomycetes were isolated from 256 different marine samples collected from the Bay of Bengal and its associated Pulicat lake and Pichavaram mangrove, India. Among them, 157 produced caseinase, 113 produced gelatinase and 108 produced both the protease enzymes. An isolate coded as MML1614 was selected for further study as it exhibited high proteolytic activity. The MML1614 was identified as Streptomyces fungicidicus based on polyphasic taxonomical approach including 16S rRNA sequence analysis. The culture conditions were standardized for the growth and protease production in S. fungicidicus MML1614. The protease was isolated from a 6-day-old culture filtrate of S. fungicidicus MML1614 and partially purified up to 4.5-fold. The protease was optimally active at pH 9 and 40 degrees C and it was stable up to pH 11 and 60 degrees C. PMSF and NaCl inhibited the enzyme activity up to 22 and 11%, respectively. The partially purified protease removed the blood stain more effectively when combined with different detergents than the detergents alone.
Collapse
|
10
|
Venugopal M, Saramma AV. An alkaline protease from Bacillus circulans BM15, newly isolated from a mangrove station: characterization and application in laundry detergent formulations. Indian J Microbiol 2008; 47:298-303. [PMID: 23100681 DOI: 10.1007/s12088-007-0055-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2007] [Revised: 09/07/2007] [Accepted: 10/31/2007] [Indexed: 11/28/2022] Open
Abstract
An investigation on the properties of an alkaline protease secreted by Bacillus circulans BM15 strain isolated from a mangrove sediment sample was carried out in order to characterize the enzyme and to test its potency as a detergent additive. The protease was purified to apparent homogeneity by ammonium sulphate precipitation and was a 30-kDa protease as shown by SDS-PAGE and its proteolytic activity was detected by casein zymography. It had optimum activity at pH 7, was stable at alkaline pH range (7 to 11), had optimum temperature of activity 40°C and was stable up to a temperature of 55°C after incubation for one hour. Hg(2+), Zn(2+), Co(2+), and Cu(2+)completely inhibited the enzyme activity, while Ca(2+), Mg(2+), K(+) and Fe(3+) were enhancing the same. The serine protease inhibitor PMSF and metal chelator EDTA inhibited the activity of this protease while the classic metalloprotease inhibitor 1, 10 phenanthroline did not show inhibition. The enzyme was stable in SDS, Triton-X-100 and H(2) O(2) as well as in various commercial detergents after incubation for one hour. The extracellular production of the enzyme, the pH and temperature stability and stability in presence of oxidants, surfactants and commercial detergents suggest its possible use as a detergent additive.
Collapse
Affiliation(s)
- Meera Venugopal
- Department of Marine Biology, Microbiology and Biochemistry, Cochin University of Science and Technology, Cochin, 682 016 India
| | | |
Collapse
|
11
|
Meng K, Li J, Cao Y, Shi P, Wu B, Han X, Bai Y, Wu N, Yao B. Gene cloning and heterologous expression of a serine protease fromStreptomyces fradiaevar.k11. Can J Microbiol 2007; 53:186-95. [PMID: 17496966 DOI: 10.1139/w06-122] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The gene sfp1, which encodes a predicted serine proteinase designated SFP1, was isolated by the screening of a gene library of the feather-degrading strain Streptomyces fradiae var.k11. The open reading frame of sfp1 encodes a protein of 454 amino acids with a calculated molecular mass of 46.19 kDa. Sequence analysis reveals that SFP1 possesses a typical pre-pro-mature organization that consists of a signal sequence, an N-terminal propeptide region, and a mature proteinase domain. The pre-enzyme of SFP1 was expressed in Escherichia coli and consequently purified. The 25.6 kDa fraction with protease activity separated by gel filtration chromatography indicated that the mature enzyme of SFP1 was formed by autolysis of the propeptide after its expression. The purified SFP1 is active under a broad range of pH and temperature. SFP1 has pH and temperature optima of pH 8.5 and 65 °C for its caseinolytic activity and pH 9 and 62 °C for its keratinolytic activity. SFP1 was sharply inhibited by the serine proteinase inhibitor phenylmethyl sulfonyl fluoride and exhibited a good stability to solvents, detergents, and salts. Comparison of the protease activity of SFP1 with other commercial proteases indicates that SFP1 has a considerable caseinolytic and keratinolytic activity as does proteinase K.
Collapse
Affiliation(s)
- Kun Meng
- Microbiological Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancunnandajie Road, Beijing 100081, China
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
|
13
|
Hui Z, Minamiguchi K, Doi H, Kinoshita N, Kanouchi H, Oka T. Recombinant alkaline serine protease II degrades scrapie isoform of prion protein. In Vitro Cell Dev Biol Anim 2005; 40:293-6. [PMID: 15723565 DOI: 10.1290/0406041.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
An efficient Escherichia coli expression system for the production of mature-type alkaline serine protease II (mASP II) has been constructed. Complementary deoxyribonucleic acid-encoding mASP II was inserted into the inducible bacterial expression vector pGE-30. After introduction into E. coli, the plasmid was expressed by isopropyl-1-thio-beta-D-galactopyranoside, and the recombinant product was purified using a Ni-nitrilotriacetic acid column. The purified product had the expected NH2-terminal sequence and showed a scrapie isoform of prion protein-degrading activity using hamster scrapie 263K prions as a substrate.
Collapse
Affiliation(s)
- Zhao Hui
- Department of Veterinary Physiology, Faculty of Agriculture, Kagoshima University, Kagoshima 890-0065, Japan
| | | | | | | | | | | |
Collapse
|
14
|
Hui Z, Doi H, Kanouchi H, Matsuura Y, Mohri S, Nonomura Y, Oka T. Alkaline serine protease produced by Streptomyces sp. degrades PrPSc. Biochem Biophys Res Commun 2004; 321:45-50. [PMID: 15358213 DOI: 10.1016/j.bbrc.2004.06.100] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2004] [Indexed: 11/25/2022]
Abstract
A PrP(Sc)-degrading enzyme was isolated from the culture medium of Streptomyces sp. using perchloric acid-soluble protein (PSP) as a substrate. The media of 500 microbial species were screened to obtain the PSP-degrading enzyme. The medium containing the protease secreted from strain 99-GP-2D-5 showed the highest PSP-degrading activity. Strain 99-GP-2D-5 was assigned as the genus Streptomyces by its morphological and chemotaxonomic characteristics. When scrapie prion was used as the substrate, it was completely digested by the enzyme. The amino acid sequence of the enzyme was identical to that of the C-terminal region of alkaline serine protease (ASP) I. ASP I may be the precursor of the enzyme, and the enzyme seems to be the mature type of ASP I. The maximal activity of the enzyme was observed at 60 degrees C and pH 11, and the scrapie prion was degraded within 3 min under the optimum conditions.
Collapse
Affiliation(s)
- Zhao Hui
- Department of Veterinary Physiology, Faculty of Agriculture, Kagoshima University, Kagoshima 890-0065, Japan
| | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Alkaline proteases are of considerable interest in view of their activity and stability at alkaline pH. This review describes the proteases that can resist extreme alkaline environments produced by a wide range of alkalophilic microorganisms. Different isolation methods are discussed which enable the screening and selection of promising organisms for industrial production. Further, strain improvement using mutagenesis and/or recombinant DNA technology can be applied to augment the efficiency of the producer strain to a commercial status. The various nutritional and environmental parameters affecting the production of alkaline proteases are delineated. The purification and properties of these proteases is discussed, and the use of alkaline proteases in diverse industrial applications is highlighted.
Collapse
Affiliation(s)
- C G Kumar
- Dairy Microbiology Division, National Dairy Research Institute, Karnal 132 001, India
| | | |
Collapse
|
16
|
|
17
|
Horikoshi K. Alkaliphiles: some applications of their products for biotechnology. Microbiol Mol Biol Rev 1999; 63:735-50, table of contents. [PMID: 10585964 PMCID: PMC98975 DOI: 10.1128/mmbr.63.4.735-750.1999] [Citation(s) in RCA: 410] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The term "alkaliphile" is used for microorganisms that grow optimally or very well at pH values above 9 but cannot grow or grow only slowly at the near-neutral pH value of 6.5. Alkaliphiles include prokaryotes, eukaryotes, and archaea. Many different taxa are represented among the alkaliphiles, and some of these have been proposed as new taxa. Alkaliphiles can be isolated from normal environments such as garden soil, although viable counts of alkaliphiles are higher in samples from alkaline environments. The cell surface may play a key role in keeping the intracellular pH value in the range between 7 and 8.5, allowing alkaliphiles to thrive in alkaline environments, although adaptation mechanisms have not yet been clarified. Alkaliphiles have made a great impact in industrial applications. Biological detergents contain alkaline enzymes, such as alkaline cellulases and/or alkaline proteases, that have been produced from alkaliphiles. The current proportion of total world enzyme production destined for the laundry detergent market exceeds 60%. Another important application is the industrial production of cyclodextrin by alkaline cyclomaltodextrin glucanotransferase. This enzyme has reduced the production cost and paved the way for cyclodextrin use in large quantities in foodstuffs, chemicals, and pharmaceuticals. It has also been reported that alkali-treated wood pulp could be biologically bleached by xylanases produced by alkaliphiles. Other applications of various aspects of alkaliphiles are also discussed.
Collapse
Affiliation(s)
- K Horikoshi
- Japan Marine Science and Technology Center, Yokosuka, Kanagawa and Toyo University, Kawagoe, Japan.
| |
Collapse
|
18
|
Bressollier P, Letourneau F, Urdaci M, Verneuil B. Purification and characterization of a keratinolytic serine proteinase from Streptomyces albidoflavus. Appl Environ Microbiol 1999; 65:2570-6. [PMID: 10347045 PMCID: PMC91380 DOI: 10.1128/aem.65.6.2570-2576.1999] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptomyces strain K1-02, which was identified as a strain of Streptomyces albidoflavus, secreted at least six extracellular proteases when it was cultured on feather meal-based medium. The major keratinolytic serine proteinase was purified to homogeneity by a two-step procedure. This enzyme had a molecular weight of 18,000 and was optimally active at pH values ranging from 6 to 9.5 and at temperatures ranging from 40 to 70 degrees C. Its sensitivity to protease inhibitors, its specificity on synthetic substrates, and its remarkably high level of NH2-terminal sequence homology with Streptomyces griseus protease B (SGPB) showed that the new enzyme, designated SAKase, was homologous to SGPB. We tested the activity of SAKase with soluble and fibrous substrates (elastin, keratin, and type I collagen) and found that it was very specific for keratinous substrates compared to SGPB and proteinase K.
Collapse
Affiliation(s)
- P Bressollier
- Laboratoire de Génie Enzymatique et Biovalorisation (Unité du Laboratoire de Chimie des Substances Naturelles), I.U.T., Département de Génie Biologique, Limoges, France
| | | | | | | |
Collapse
|