1
|
Toporkova YY, Gorina SS, Iljina TM, Lantsova NV, Grechkin AN. CYP74B34 Enzyme from Carrot ( Daucus carota) with a Double Hydroperoxide Lyase/Epoxyalcohol Synthase Activity: Identification and Biochemical Properties. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1519-1530. [PMID: 39245459 DOI: 10.1134/s0006297924080108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 09/10/2024]
Abstract
The lipoxygenase cascade in plants is a source of oxylipins (oxidized fatty acid derivatives), which play an important role in regulatory processes and formation of plant response to stress factors. Some of the most common enzymes of the lipoxygenase cascade are 13-specific hydroperoxide lyases (HPLs, also called hemiacetal synthases) of the CYP74B subfamily. In this work, we identified and cloned the CYP74B34 gene from carrot (Daucus carota L.) and described the biochemical properties of the corresponding recombinant enzyme. The CYP74B34 enzyme was active towards 9- and 13-hydroperoxides of linoleic (9-HPOD and 13-HPOD, respectively) and α-linolenic (9-HPOT and 13-HPOT, respectively) acids. CYP74B34 specifically converted 9-HPOT and 13-HPOT into aldo acids (HPL products). The transformation of 13-HPOD led to the formation of aldo acids and epoxyalcohols [products of epoxyalcohol synthase (EAS) activity] as major and minor products, respectively. At the same time, conversion of 9-HPOD resulted in the formation of epoxyalcohols as the main products and aldo acids as the minor ones. Therefore, CYP74B34 is the first enzyme with a double HPL/EAS activity described in carrot. The presence of these catalytic activities was confirmed by analysis of the oxylipin profiles for the roots from young seedlings and mature plants. In addition, we substituted amino acid residues in one of the catalytically essential sites of the CYP74B34 and CYP74B33 proteins and investigated the properties of the obtained mutant enzymes.
Collapse
Affiliation(s)
- Yana Y Toporkova
- Kazan Institute of Biochemistry and Biophysics, Kazan Scientific Center of the Russian Academy of Sciences, Kazan, 420111, Russia.
| | - Svetlana S Gorina
- Kazan Institute of Biochemistry and Biophysics, Kazan Scientific Center of the Russian Academy of Sciences, Kazan, 420111, Russia
| | - Tatiana M Iljina
- Kazan Institute of Biochemistry and Biophysics, Kazan Scientific Center of the Russian Academy of Sciences, Kazan, 420111, Russia
| | - Natalia V Lantsova
- Kazan Institute of Biochemistry and Biophysics, Kazan Scientific Center of the Russian Academy of Sciences, Kazan, 420111, Russia
| | - Alexander N Grechkin
- Kazan Institute of Biochemistry and Biophysics, Kazan Scientific Center of the Russian Academy of Sciences, Kazan, 420111, Russia
| |
Collapse
|
2
|
Synthesis of Polymer Precursor 12-Oxododecenoic Acid Utilizing Recombinant Papaya Hydroperoxide Lyase in an Enzyme Cascade. Appl Biochem Biotechnol 2022. [PMID: 35904676 DOI: 10.1007/s12010-022-04095-0/figures/7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Hydroperoxide lyases (HPLs) catalyze the splitting of 13S-hydroperoxyoctadecadienoic acid (13S-HPODE) into the green note flavor hexanal and 12-oxo-9(Z)-dodecenoic acid, which is not yet used industrially. Here, HPL from Carica papaya (HPLCP) was cloned and functionally expressed in Escherichia coli to investigate synthesis of 12-oxo-9(Z)-dodecenoic acid in detail. To improve the low catalytic activity of full-length HPLCP, the hydrophobic, non-conserved N-terminal sequence was deleted. This enhanced enzyme activity from initial 10 to 40 U/l. With optimization of solubilization buffer, expression media enzyme activity was increased to 2700 U/l. The tetrameric enzyme was produced in a 1.5 l fermenter and enriched by affinity chromatography. The enzyme preparation possesses a slightly acidic pH optimum and a catalytic efficiency (kcat/KM) of 2.73 × 106 s-1·M-1 towards 13S-HPODE. Interestingly, HPLCP-N could be applied for the synthesis of 12-oxo-9(Z)-dodecenoic acid, and 1 mM of 13S-HPODE was transformed in just 10 s with a yield of 90%. At protein concentrations of 10 mg/ml, the slow formation of the 10(E)-isomer traumatin was observed, pointing to a non-enzymatic isomerization process. Bearing this in mind, a one-pot enzyme cascade starting from safflower oil was developed with consecutive addition of Pseudomonas fluorescens lipase, Glycine max lipoxygenase (LOX-1), and HPLCP-N. A yield of 43% was obtained upon fast extraction of the reaction mixtures after 1 min of HPLCP-N reaction. This work provides first insights into an enzyme cascade synthesis of 12-oxo-9(Z)-dodecenoic acid, which may serve as a bifunctional precursor for bio-based polymer synthesis.
Collapse
|
3
|
Yactayo-Chang JP, Hunter CT, Alborn HT, Christensen SA, Block AK. Production of the Green Leaf Volatile (Z)-3-Hexenal by a Zea mays Hydroperoxide Lyase. PLANTS 2022; 11:plants11172201. [PMID: 36079583 PMCID: PMC9460041 DOI: 10.3390/plants11172201] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/17/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022]
Abstract
Plant-produced volatile compounds play important roles in plant signaling and in the communication of plants with other organisms. Many plants emit green leaf volatiles (GLVs) in response to damage or attack, which serve to warn neighboring plants or attract predatory or parasitic insects to help defend against insect pests. GLVs include aldehydes, esters, and alcohols of 6-carbon compounds that are released rapidly following wounding. One GLV produced by maize (Zea mays) is the volatile (Z)-3-hexenal; this volatile is produced from the cleavage of (9Z,11E,15Z)-octadecatrienoic acid by hydroperoxide lyases (HPLs) of the cytochrome P450 CYP74B family. The specific HPL in maize involved in (Z)-3-hexenal production had not been determined. In this study, we used phylogenetics with known HPLs from other species to identify a candidate HPL from maize (ZmHPL). To test the ability of the putative HPL to produce (Z)-3-hexenal, we constitutively expressed the gene in Arabidopsis thaliana ecotype Columbia-0 that contains a natural loss-of-function mutant in AtHPL and examined the transgenic plants for restored (Z)-3-hexenal production. Volatile analysis of leaves from these transgenic plants showed that they did produce (Z)-3-hexenal, confirming that ZmHPL can produce (Z)-3-hexenal in vivo. Furthermore, we used gene expression analysis to show that expression of ZmHPL is induced in maize in response to both wounding and the insect pests Spodoptera frugiperda and Spodoptera exigua. Our study demonstrates that ZmHPL can produce GLVs and highlights its likely role in (Z)-3-hexenal production in response to mechanical damage and herbivory in maize.
Collapse
|
4
|
Coenen A, Marti VG, Müller K, Sheremetiev M, Finamore L, Schörken U. Synthesis of Polymer Precursor 12-Oxododecenoic Acid Utilizing Recombinant Papaya Hydroperoxide Lyase in an Enzyme Cascade. Appl Biochem Biotechnol 2022; 194:6194-6212. [PMID: 35904676 DOI: 10.1007/s12010-022-04095-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2022] [Indexed: 11/02/2022]
Abstract
Hydroperoxide lyases (HPLs) catalyze the splitting of 13S-hydroperoxyoctadecadienoic acid (13S-HPODE) into the green note flavor hexanal and 12-oxo-9(Z)-dodecenoic acid, which is not yet used industrially. Here, HPL from Carica papaya (HPLCP) was cloned and functionally expressed in Escherichia coli to investigate synthesis of 12-oxo-9(Z)-dodecenoic acid in detail. To improve the low catalytic activity of full-length HPLCP, the hydrophobic, non-conserved N-terminal sequence was deleted. This enhanced enzyme activity from initial 10 to 40 U/l. With optimization of solubilization buffer, expression media enzyme activity was increased to 2700 U/l. The tetrameric enzyme was produced in a 1.5 l fermenter and enriched by affinity chromatography. The enzyme preparation possesses a slightly acidic pH optimum and a catalytic efficiency (kcat/KM) of 2.73 × 106 s-1·M-1 towards 13S-HPODE. Interestingly, HPLCP-N could be applied for the synthesis of 12-oxo-9(Z)-dodecenoic acid, and 1 mM of 13S-HPODE was transformed in just 10 s with a yield of 90%. At protein concentrations of 10 mg/ml, the slow formation of the 10(E)-isomer traumatin was observed, pointing to a non-enzymatic isomerization process. Bearing this in mind, a one-pot enzyme cascade starting from safflower oil was developed with consecutive addition of Pseudomonas fluorescens lipase, Glycine max lipoxygenase (LOX-1), and HPLCP-N. A yield of 43% was obtained upon fast extraction of the reaction mixtures after 1 min of HPLCP-N reaction. This work provides first insights into an enzyme cascade synthesis of 12-oxo-9(Z)-dodecenoic acid, which may serve as a bifunctional precursor for bio-based polymer synthesis.
Collapse
Affiliation(s)
- Anna Coenen
- TH Köln - Campus Leverkusen, Campusplatz 1, 51379, Leverkusen, Germany
| | | | - Kira Müller
- TH Köln - Campus Leverkusen, Campusplatz 1, 51379, Leverkusen, Germany
| | - Maria Sheremetiev
- TH Köln - Campus Leverkusen, Campusplatz 1, 51379, Leverkusen, Germany
| | - Lorenzo Finamore
- TH Köln - Campus Leverkusen, Campusplatz 1, 51379, Leverkusen, Germany
| | - Ulrich Schörken
- TH Köln - Campus Leverkusen, Campusplatz 1, 51379, Leverkusen, Germany.
| |
Collapse
|
5
|
Kaur I, Korrapati N, Bonello J, Mukherjee A, Rishi V, Bendigiri C. Biosynthesis of natural aroma compounds using recombinant whole-cell tomato hydroperoxide lyase biocatalyst. J Biosci 2022. [DOI: 10.1007/s12038-022-00269-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Han X, Wang X, Shen C, Mo Y, Tian R, Mao L, Luo Z, Yang H. Exogenous ABA promotes aroma biosynthesis of postharvest kiwifruit after low-temperature storage. PLANTA 2022; 255:82. [PMID: 35257207 DOI: 10.1007/s00425-022-03855-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Exogenous ABA played a positive role in the accumulation and biosynthesis of aroma components of postharvest kiwifruit after low-temperature storage, especially the esters production during ripening. Low-temperature storage (LTS) generally affects the aroma formation associated with the decrease in aroma quality in kiwifruit. In this work, abscisic acid (ABA) treatment after LTS increased the production of aroma components in postharvest kiwifruit and enhanced the related enzyme activity, especially alcohol acyltransferase (AAT), branched amino acid transaminase (BCAT) and hydroperoxide lyase (HPL). Corresponding to the enzyme activity, the gene expression of AchnAAT, AchnADH, AchnBCAT and AchnHPL was significantly up-regulated by ABA. The principal component analysis further illustrated the differences in aroma components between ABA and the control. The positive correlation of aroma accumulation with the expression levels of AchnPDC and AchnLOX and the enzyme activities of BCAT and pyruvate decarboxylase (PDC) was also revealed by correlation analysis. In addition, the promoter sequences of the key genes involved in aroma biosynthesis contained multiple cis-elements (ABRE and G-box) of ABA-responsive proteins. Combining the transcriptome sequencing data, the promoting role of ABA signaling in the regulation of aroma biosynthesis of postharvest kiwifruit after LTS was discussed. This study would provide a reference for improving aroma quality of postharvest kiwifruit after LTS, as well the molecular mechanism of kiwifruit aroma fading after LTS.
Collapse
Affiliation(s)
- Xueyuan Han
- School of Life Science, Shaoxing University, Shaoxing, 312000, Zhejiang Province, China
| | - Xiaoyu Wang
- School of Life Science, Shaoxing University, Shaoxing, 312000, Zhejiang Province, China
| | - Chi Shen
- School of Life Science, Shaoxing University, Shaoxing, 312000, Zhejiang Province, China
| | - Yiwei Mo
- School of Life Science, Shaoxing University, Shaoxing, 312000, Zhejiang Province, China
| | - Rungang Tian
- School of Life Science, Shaoxing University, Shaoxing, 312000, Zhejiang Province, China
| | - Linchun Mao
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory of Agro-Food Processing, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, 310058, China
| | - Zisheng Luo
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory of Agro-Food Processing, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, 310058, China
| | - Huanyi Yang
- School of Life Science, Shaoxing University, Shaoxing, 312000, Zhejiang Province, China.
| |
Collapse
|
7
|
Toporkova YY, Askarova EK, Gorina SS, Ogorodnikova AV, Mukhtarova LS, Grechkin AN. Epoxyalcohol synthase activity of the CYP74B enzymes of higher plants. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158743. [PMID: 32464332 DOI: 10.1016/j.bbalip.2020.158743] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/24/2020] [Accepted: 05/19/2020] [Indexed: 01/06/2023]
Abstract
The CYP74B subfamily of fatty acid hydroperoxide transforming cytochromes P450 includes the most common plant enzymes. All CYP74Bs studied yet except the CYP74B16 (flax divinyl ether synthase, LuDES) and the CYP74B33 (carrot allene oxide synthase, DcAOS) are 13-hydroperoxide lyases (HPLs, synonym: hemiacetal synthases). The results of present work demonstrate that additional products (except the HPL products) of fatty acid hydroperoxides conversion by the recombinant StHPL (CYP74B3, Solanum tuberosum), MsHPL (CYP74B4v1, Medicago sativa), and CsHPL (CYP74B6, Cucumis sativus) are epoxyalcohols. MsHPL, StHPL, and CsHPL converted the 13-hydroperoxides of linoleic (13-HPOD) and α-linolenic acids (13-HPOT) primarily to the chain cleavage products. The minor by-products of 13-HPOD and 13-HPOT conversions by these enzymes were the oxiranyl carbinols, 11-hydroxy-12,13-epoxy-9-octadecenoic and 11-hydroxy-12,13-epoxy-9,15-octadecadienoic acid. At the same time, all enzymes studied converted 9-hydroperoxides into corresponding oxiranyl carbinols with HPL by-products. Thus, the results showed the additional epoxyalcohol synthase activity of studied CYP74B enzymes. The 13-HPOD conversion reliably resulted in smaller yields of the HPL products and bigger yields of the epoxyalcohols compared to the 13-HPOT transformation. Overall, the results show the dualistic HPL/EAS behaviour of studied CYP74B enzymes, depending on hydroperoxide isomerism and unsaturation.
Collapse
Affiliation(s)
- Yana Y Toporkova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, P.O. Box 30, 420111 Kazan, Russia.
| | - Elena K Askarova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, P.O. Box 30, 420111 Kazan, Russia
| | - Svetlana S Gorina
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, P.O. Box 30, 420111 Kazan, Russia
| | - Anna V Ogorodnikova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, P.O. Box 30, 420111 Kazan, Russia
| | - Lucia S Mukhtarova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, P.O. Box 30, 420111 Kazan, Russia
| | - Alexander N Grechkin
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, P.O. Box 30, 420111 Kazan, Russia.
| |
Collapse
|
8
|
Stolterfoht H, Rinnofner C, Winkler M, Pichler H. Recombinant Lipoxygenases and Hydroperoxide Lyases for the Synthesis of Green Leaf Volatiles. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:13367-13392. [PMID: 31591878 DOI: 10.1021/acs.jafc.9b02690] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Green leaf volatiles (GLVs) are mainly C6- and in rare cases also C9-aldehydes, -alcohols, and -esters, which are released by plants in response to biotic or abiotic stresses. These compounds are named for their characteristic smell reminiscent of freshly mowed grass. This review focuses on GLVs and the two major pathway enzymes responsible for their formation: lipoxygenases (LOXs) and fatty acid hydroperoxide lyases (HPLs). LOXs catalyze the peroxidation of unsaturated fatty acids, such as linoleic and α-linolenic acids. Hydroperoxy fatty acids are further converted by HPLs into aldehydes and oxo-acids. In many industrial applications, plant extracts have been used as LOX and HPL sources. However, these processes are limited by low enzyme concentration, stability, and specificity. Alternatively, recombinant enzymes can be used as biocatalysts for GLV synthesis. The increasing number of well-characterized enzymes efficiently expressed by microbial hosts will foster the development of innovative biocatalytic processes for GLV production.
Collapse
Affiliation(s)
- Holly Stolterfoht
- Austrian Centre of Industrial Biotechnology , Petersgasse 14 , 8010 Graz , Austria
| | - Claudia Rinnofner
- Austrian Centre of Industrial Biotechnology , Petersgasse 14 , 8010 Graz , Austria
- bisy e.U. , Wetzawinkel 20 , 8200 Hofstaetten , Austria
| | - Margit Winkler
- Austrian Centre of Industrial Biotechnology , Petersgasse 14 , 8010 Graz , Austria
- Institute of Molecular Biotechnology , TU Graz, NAWI Graz, BioTechMed Graz , Petersgasse 14 , 8010 Graz , Austria
| | - Harald Pichler
- Austrian Centre of Industrial Biotechnology , Petersgasse 14 , 8010 Graz , Austria
- Institute of Molecular Biotechnology , TU Graz, NAWI Graz, BioTechMed Graz , Petersgasse 14 , 8010 Graz , Austria
| |
Collapse
|
9
|
Biocatalytic Synthesis of Natural Green Leaf Volatiles Using the Lipoxygenase Metabolic Pathway. Catalysts 2019. [DOI: 10.3390/catal9100873] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In higher plants, the lipoxygenase enzymatic pathway combined actions of several enzymes to convert lipid substrates into signaling and defense molecules called phytooxylipins including short chain volatile aldehydes, alcohols, and esters, known as green leaf volatiles (GLVs). GLVs are synthesized from C18:2 and C18:3 fatty acids that are oxygenated by lipoxygenase (LOX) to form corresponding hydroperoxides, then the action of hydroperoxide lyase (HPL) produces C6 or C9 aldehydes that can undergo isomerization, dehydrogenation, and esterification. GLVs are commonly used as flavors to confer a fresh green odor of vegetable to perfumes, cosmetics, and food products. Given the increasing demand in these natural flavors, biocatalytic processes using the LOX pathway reactions constitute an interesting application. Vegetable oils, chosen for their lipid profile are converted in natural GLVs with high added value. This review describes the enzymatic reactions of GLVs biosynthesis in the plant, as well as the structural and functional properties of the enzymes involved. The various stages of the biocatalytic production processes are approached from the lipid substrate to the corresponding aldehyde or alcoholic aromas, as well as the biotechnological improvements to enhance the production potential of the enzymatic catalysts.
Collapse
|
10
|
Gorina SS, Mukhitova FK, Ilyina TM, Toporkova YY, Grechkin AN. Detection of unprecedented allene oxide synthase member of CYP74B subfamily: CYP74B33 of carrot (Daucus carota). Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:1580-1590. [PMID: 31330195 DOI: 10.1016/j.bbalip.2019.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/01/2019] [Accepted: 07/09/2019] [Indexed: 12/31/2022]
Abstract
Enzymes of CYP74 family widespread in higher plants control the metabolism of fatty acid hydroperoxides to numerous bioactive oxylipins. Hydroperoxide lyases (HPLs, synonym: hemiacetal synthases) of CYP74B subfamily belong to the most common CYP74 enzymes. HPLs isomerize the hydroperoxides to the short-lived hemiacetals, which are spontaneously decomposed to aldehydes and aldoacids. All CYP74Bs studied yet except the CYP74B16 (flax divinyl ether synthase, LuDES) possessed the 13-HPL activity. Present work reports the cloning of the expressed CYP74B33 gene of carrot (Daucus carota L.) and studies of catalytic properties of the recombinant CYP74B33 protein. In contrast to all CYP74B proteins studied yet, CYP74B33 behaved differently in few respects. Firstly, the preferred substrates of CYP74B33 are 9-hydroperoxides. Secondly and most importantly, CYP74B33 exhibits the 9-allene oxide synthase (AOS) activity. For example, the 9(S)-hydroperoxide of linoleic acid (9-HPOD) underwent the conversion to α-ketol via the short-lived allene oxide. Uncommonly, the 9-HPOD conversion affords a minority of cis-10-oxo-11-phytoenoic acid, which is also produced by CYP74C but not the CYP74A AOSs. The similar product patterns were observed upon the incubations of CYP74B33 with 9(S)-hydroperoxide of α-linolenic acid. The enzyme possessed a mixed HPL, AOS, and the epoxyalcohol synthase activity toward the 13-hydroperoxides, but the total activity was much lower than toward 9-hydroperoxides. Thus, the obtained results show that CYP74B33 is an unprecedented 9-AOS within the CYP74B subfamily.
Collapse
Affiliation(s)
- Svetlana S Gorina
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, P.O. Box 30, 420111, Kazan, Russia
| | - Fakhima K Mukhitova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, P.O. Box 30, 420111, Kazan, Russia
| | - Tatiana M Ilyina
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, P.O. Box 30, 420111, Kazan, Russia
| | - Yana Y Toporkova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, P.O. Box 30, 420111, Kazan, Russia.
| | - Alexander N Grechkin
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, P.O. Box 30, 420111, Kazan, Russia.
| |
Collapse
|
11
|
Sugio A, Østergaard LH, Matsui K, Takagi S. Characterization of two fungal lipoxygenases expressed in Aspergillus oryzae. J Biosci Bioeng 2018; 126:436-444. [PMID: 29805113 DOI: 10.1016/j.jbiosc.2018.04.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/20/2018] [Accepted: 04/06/2018] [Indexed: 11/30/2022]
Affiliation(s)
- Akiko Sugio
- Novozymes Japan Ltd., CB-6 MTG, 1-3 Nakase, Mihama-ku, Chiba 261-8501, Japan
| | | | - Kenji Matsui
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Shinobu Takagi
- Novozymes Japan Ltd., CB-6 MTG, 1-3 Nakase, Mihama-ku, Chiba 261-8501, Japan.
| |
Collapse
|
12
|
Koeduka T. Functional evolution of biosynthetic enzymes that produce plant volatiles. Biosci Biotechnol Biochem 2018; 82:192-199. [PMID: 29338642 DOI: 10.1080/09168451.2017.1422968] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Plants synthesize volatile compounds to attract pollinators. The volatiles emitted by flowers are often complex mixtures of organic compounds; pollinators are capable of distinctly recognizing different volatile compounds. Plants also produce volatile compounds to protect themselves against herbivores and pathogens. Some of the volatile compounds produced in floral and vegetative tissues are toxic to insects and microbes. To adapt changes in the environment, plants have evolved the ability to synthesize a unique set of volatiles. Intensive studies have identified and characterized the enzymes responsible for the formation of plant volatiles. In particular, many biosynthetic genes have been isolated and their enzymatic functions have been proposed. This review describes how plants have evolved the biosynthetic pathways leading to the formation of green leaf volatiles and phenylpropene volatiles.
Collapse
Affiliation(s)
- Takao Koeduka
- a Graduate School of Sciences and Technology for Innovation (Agriculture), Department of Biological Chemistry , Yamaguchi University , Yamaguchi , Japan
| |
Collapse
|
13
|
Rambla JL, Medina A, Fernández-Del-Carmen A, Barrantes W, Grandillo S, Cammareri M, López-Casado G, Rodrigo G, Alonso A, García-Martínez S, Primo J, Ruiz JJ, Fernández-Muñoz R, Monforte AJ, Granell A. Identification, introgression, and validation of fruit volatile QTLs from a red-fruited wild tomato species. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:429-442. [PMID: 28040800 PMCID: PMC5444475 DOI: 10.1093/jxb/erw455] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Volatile organic compounds (VOCs) are major determinants of fruit flavor, a primary objective in tomato breeding. A recombinant inbred line (RIL) population consisting of 169 lines derived from a cross between Solanum lycopersicum and a red-fruited wild tomato species Solanum pimpinellifolium accession (SP) was characterized for VOCs in three different seasons. Correlation and hierarchical cluster analyses were performed on the 52 VOCs identified, providing a tool for the putative assignation of individual compounds to metabolic pathways. Quantitative trait locus (QTL) analysis, based on a genetic linkage map comprising 297 single nucleotide polymorphisms (SNPs), revealed 102 QTLs (75% not described previously) corresponding to 39 different VOCs. The SP alleles exerted a positive effect on most of the underlying apocarotenoid volatile QTLs-regarded as desirable for liking tomato-indicating that alleles inherited from SP are a valuable resource for flavor breeding. An introgression line (IL) population developed from the same parental genotypes provided 12 ILs carrying a single SP introgression and covering 85 VOC QTLs, which were characterized at three locations. The results showed that almost half of the QTLs previously identified in the RILs maintained their effect in an IL form, reinforcing the value of these QTLs for flavor/aroma breeding in cultivated tomato.
Collapse
Affiliation(s)
- José L Rambla
- CSIC-Universidad Politécnica de Valencia, Instituto de Biología Molecular y Celular de Plantas, Valencia, Spain
| | - Aurora Medina
- CSIC-Universidad Politécnica de Valencia, Instituto de Biología Molecular y Celular de Plantas, Valencia, Spain
| | - Asun Fernández-Del-Carmen
- CSIC-Universidad Politécnica de Valencia, Instituto de Biología Molecular y Celular de Plantas, Valencia, Spain
| | - Walter Barrantes
- CSIC-Universidad Politécnica de Valencia, Instituto de Biología Molecular y Celular de Plantas, Valencia, Spain
| | - Silvana Grandillo
- National Research Council of Italy, Institute of Biosciences and Bioresources (CNR-IBBR), Research Division Portici, Via Università 133, Portici (Naples), Italy
| | - Maria Cammareri
- National Research Council of Italy, Institute of Biosciences and Bioresources (CNR-IBBR), Research Division Portici, Via Università 133, Portici (Naples), Italy
| | - Gloria López-Casado
- CSIC-Universidad de Málaga, Instituto de Hortofruticultura Subtropical y Mediterránea, Algarrobo Costa, Málaga, Spain
| | - Guillermo Rodrigo
- CSIC-Universidad Politécnica de Valencia, Instituto de Biología Molecular y Celular de Plantas, Valencia, Spain
| | - Arancha Alonso
- Departamento de Biología Aplicada, EPSO-UMH. Ctra, Beniel Km 3,2, Orihuela, Alicante, Spain
| | | | - Jaime Primo
- Universidad Politécnica de Valencia, Centro de Ecología Química Agrícola, Instituto Agroforestal Mediterráneo, Valencia, Spain
| | - Juan J Ruiz
- Departamento de Biología Aplicada, EPSO-UMH. Ctra, Beniel Km 3,2, Orihuela, Alicante, Spain
| | - Rafael Fernández-Muñoz
- CSIC-Universidad de Málaga, Instituto de Hortofruticultura Subtropical y Mediterránea, Algarrobo Costa, Málaga, Spain
| | - Antonio J Monforte
- CSIC-Universidad Politécnica de Valencia, Instituto de Biología Molecular y Celular de Plantas, Valencia, Spain
| | - Antonio Granell
- CSIC-Universidad Politécnica de Valencia, Instituto de Biología Molecular y Celular de Plantas, Valencia, Spain
| |
Collapse
|
14
|
Jacopini S, Vincenti S, Mariani M, Brunini-Bronzini de Caraffa V, Gambotti C, Desjobert JM, Muselli A, Costa J, Tomi F, Berti L, Maury J. Activation and Stabilization of Olive Recombinant 13-Hydroperoxide Lyase Using Selected Additives. Appl Biochem Biotechnol 2016; 182:1000-1013. [DOI: 10.1007/s12010-016-2377-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 12/14/2016] [Indexed: 01/12/2023]
|
15
|
Brühlmann F, Bosijokovic B. Efficient Biochemical Cascade for Accessing Green Leaf Alcohols. Org Process Res Dev 2016. [DOI: 10.1021/acs.oprd.6b00303] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Fredi Brühlmann
- Firmenich SA, Corporate R&D, Route des Jeunes 1, CH-1211 Geneva 8, Switzerland
| | - Bojan Bosijokovic
- Firmenich SA, Corporate R&D, Route des Jeunes 1, CH-1211 Geneva 8, Switzerland
| |
Collapse
|
16
|
Koeduka T, Ishizaki K, Mwenda CM, Hori K, Sasaki-Sekimoto Y, Ohta H, Kohchi T, Matsui K. Biochemical characterization of allene oxide synthases from the liverwort Marchantia polymorpha and green microalgae Klebsormidium flaccidum provides insight into the evolutionary divergence of the plant CYP74 family. PLANTA 2015; 242:1175-86. [PMID: 26105654 DOI: 10.1007/s00425-015-2355-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 06/15/2015] [Indexed: 05/26/2023]
Abstract
Allene oxide synthases (AOSs) were isolated from liverworts and charophytes. These AOSs exhibited enzymatic properties similar to those of angiosperms but formed a distinct phylogenetic clade. Allene oxide synthase (AOS) and hydroperoxide lyase (HPL) mediate the formation of precursors of jasmonates and carbon-six volatiles, respectively. AOS and HPL utilize fatty acid hydroperoxides and belong to the plant cytochrome P450 74 (CYP74) family that mediates plant defense against herbivores, pathogens, or abiotic stresses. Although members of the CYP74 family have been reported in mosses and other species, the evolution and function of multiple CYP74 genes in plants remain elusive. Here, we show that the liverwort Marchantia polymorpha belongs to a basal group in the evolution of land plants; has two closely related proteins (59% identity), MpAOS1 and MpAOS2, that are similar to moss PpAOS1 (49 and 47% identity, respectively); and exhibits AOS activity but not HPL activity. We also found that the green microalgae Klebsormidium flaccidum, consist of multicellular and non-branching filaments, contains an enzyme, KfAOS, that is similar to PpAOS1 (37% identity), and converts 13-hydroperoxide of linolenic acid to 12-oxo-phytodienoic acid in a coupled reaction with allene oxide cyclase. Phylogenetic analysis showed two evolutionarily distinct clusters. One cluster comprised AOS and HPL from charophytic algae, liverworts, and mosses, including MpAOSs and KfAOS. The other cluster was formed by angiosperm CYP74. Our results suggest that plant CYP74 enzymes with AOS, HPL, and divinyl ether synthase activities have arisen multiple times and in the two different clades, which occurred prior to the divergence of the flowering plant lineage.
Collapse
Affiliation(s)
- Takao Koeduka
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, 753-8515, Japan.
| | | | - Cynthia Mugo Mwenda
- Applied Molecular Bioscience, Graduate School of Medicine, Yamaguchi University, Yamaguchi, 753-8515, Japan
| | - Koichi Hori
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, Kanagawa, 226-8501, Japan
| | - Yuko Sasaki-Sekimoto
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, 152-8551, Japan
| | - Hiroyuki Ohta
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, Kanagawa, 226-8501, Japan
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, 152-8551, Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Kenji Matsui
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, 753-8515, Japan.
- Applied Molecular Bioscience, Graduate School of Medicine, Yamaguchi University, Yamaguchi, 753-8515, Japan.
| |
Collapse
|
17
|
Teder T, Lõhelaid H, Boeglin WE, Calcutt WM, Brash AR, Samel N. A Catalase-related Hemoprotein in Coral Is Specialized for Synthesis of Short-chain Aldehydes: DISCOVERY OF P450-TYPE HYDROPEROXIDE LYASE ACTIVITY IN A CATALASE. J Biol Chem 2015; 290:19823-32. [PMID: 26100625 DOI: 10.1074/jbc.m115.660282] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Indexed: 11/06/2022] Open
Abstract
In corals a catalase-lipoxygenase fusion protein transforms arachidonic acid to the allene oxide 8R,9-epoxy-5,9,11,14-eicosatetraenoic acid from which arise cyclopentenones such as the prostanoid-related clavulones. Recently we cloned two catalase-lipoxygenase fusion protein genes (a and b) from the coral Capnella imbricata, form a being an allene oxide synthase and form b giving uncharacterized polar products (Lõhelaid, H., Teder, T., Tõldsepp, K., Ekins, M., and Samel, N. (2014) PloS ONE 9, e89215). Here, using HPLC-UV, LC-MS, and NMR methods, we identify a novel activity of fusion protein b, establishing its role in cleaving the lipoxygenase product 8R-hydroperoxy-eicosatetraenoic acid into the short-chain aldehydes (5Z)-8-oxo-octenoic acid and (3Z,6Z)-dodecadienal; these primary products readily isomerize in an aqueous medium to the corresponding 6E- and 2E,6Z derivatives. This type of enzymatic cleavage, splitting the carbon chain within the conjugated diene of the hydroperoxide substrate, is known only in plant cytochrome P450 hydroperoxide lyases. In mechanistic studies using (18)O-labeled substrate and incubations in H2(18)O, we established synthesis of the C8-oxo acid and C12 aldehyde with the retention of the hydroperoxy oxygens, consistent with synthesis of a short-lived hemiacetal intermediate that breaks down spontaneously into the two aldehydes. Taken together with our initial studies indicating differing gene regulation of the allene oxide synthase and the newly identified catalase-related hydroperoxide lyase and given the role of aldehydes in plant defense, this work uncovers a potential pathway in coral stress signaling and a novel enzymatic activity in the animal kingdom.
Collapse
Affiliation(s)
- Tarvi Teder
- From the Department of Chemistry, Tallinn University of Technology, 12618 Tallinn, Estonia, Department of Pharmacology and the Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, and
| | - Helike Lõhelaid
- From the Department of Chemistry, Tallinn University of Technology, 12618 Tallinn, Estonia
| | - William E Boeglin
- Department of Pharmacology and the Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, and
| | - Wade M Calcutt
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee
| | - Alan R Brash
- Department of Pharmacology and the Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, and
| | - Nigulas Samel
- From the Department of Chemistry, Tallinn University of Technology, 12618 Tallinn, Estonia,
| |
Collapse
|
18
|
Brühlmann F, Bosijokovic B, Ullmann C, Auffray P, Fourage L, Wahler D. Directed evolution of a 13-hydroperoxide lyase (CYP74B) for improved process performance. J Biotechnol 2012. [PMID: 23183385 DOI: 10.1016/j.jbiotec.2012.11.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The performance of a 13-hydroperoxide lyase from guava, an enzyme of the CYP74 family, which is of interest for the industrial production of saturated and unsaturated C6-aldehydes and their derivatives, was improved by directed evolution. Four rounds of gene shuffling and random mutagenesis improved the functional expression in E. coli by offering a 15-fold higher product yield factor. The increased product yield factor relates to an improved total turnover number of the variant enzyme, which also showed higher solubility and increased heme content. Thermal stability was also dramatically improved even though there was no direct selection pressure applied for evolving this trait. A structure based sequence alignment with the recently solved allene oxide synthase of Arabidopsis thaliana showed that most amino acid alterations occurred on the surface of the protein, distant of the active site and often outside of secondary structures. These results demonstrate the power of directed evolution for improving a complex trait such as the total turnover number of a cytochrome P450, a critical parameter for process performance that is difficult to predict even with good structural information at hand.
Collapse
Affiliation(s)
- Fredi Brühlmann
- Firmenich SA, Corporate R&D, Route des Jeunes 1, CH-1211 Geneva 8, Switzerland.
| | | | | | | | | | | |
Collapse
|
19
|
Molecular cloning, expression, and enzymatic characterization of Solanum tuberosum hydroperoxide lyase. Eur Food Res Technol 2012. [DOI: 10.1007/s00217-012-1685-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Mariutto M, Duby F, Adam A, Bureau C, Fauconnier ML, Ongena M, Thonart P, Dommes J. The elicitation of a systemic resistance by Pseudomonas putida BTP1 in tomato involves the stimulation of two lipoxygenase isoforms. BMC PLANT BIOLOGY 2011; 11:29. [PMID: 21294872 PMCID: PMC3042376 DOI: 10.1186/1471-2229-11-29] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Accepted: 02/04/2011] [Indexed: 05/05/2023]
Abstract
BACKGROUND Some non-pathogenic rhizobacteria called Plant Growth Promoting Rhizobacteria (PGPR) possess the capacity to induce in plant defense mechanisms effective against pathogens. Precedent studies showed the ability of Pseudomonas putida BTP1 to induce PGPR-mediated resistance, termed ISR (Induced Systemic Resistance), in different plant species. Despite extensive works, molecular defense mechanisms involved in ISR are less well understood that in the case of pathogen induced systemic acquired resistance. RESULTS We analyzed the activities of phenylalanine ammonia-lyase (PAL) and lipoxygenase (LOX), key enzymes of the phenylpropanoid and oxylipin pathways respectively, in tomato treated or not with P. putida BTP1. The bacterial treatment did not stimulate PAL activity and linoleate-consuming LOX activities. Linolenate-consuming LOX activity, on the contrary, was significantly stimulated in P. putida BTP1-inoculated plants before and two days after infection by B. cinerea. This stimulation is due to the increase of transcription level of two isoforms of LOX: TomLoxD and TomLoxF, a newly identified LOX gene. We showed that recombinant TomLOXF preferentially consumes linolenic acid and produces 13-derivative of fatty acids. After challenging with B. cinerea, the increase of transcription of these two LOX genes and higher linolenic acid-consuming LOX activity were associated with a more rapid accumulation of free 13-hydroperoxy-octadecatrienoic and 13-hydroxy-octadecatrienoic acids, two antifungal oxylipins, in bacterized plants. CONCLUSION In addition to the discovery of a new LOX gene in tomato, this work is the first to show differential induction of LOX isozymes and a more rapid accumulation of 13-hydroperoxy-octadecatrienoic and 13-hydroxy-octadecatrienoic acids in rhizobacteria mediated-induced systemic resistance.
Collapse
Affiliation(s)
- Martin Mariutto
- Laboratory of Plant Molecular Biology and Biotechnology, Faculty of Sciences, Department of Life Sciences, University of Liège, Boulevard du Rectorat, 27, Liège, Belgium
| | - Francéline Duby
- Laboratory of Plant Molecular Biology and Biotechnology, Faculty of Sciences, Department of Life Sciences, University of Liège, Boulevard du Rectorat, 27, Liège, Belgium
| | - Akram Adam
- Walloon Centre of Industrial Biology, University of Liège, Boulevard du Rectorat, 29, Liège, Belgium
| | - Charlotte Bureau
- Laboratory of Plant Molecular Biology and Biotechnology, Faculty of Sciences, Department of Life Sciences, University of Liège, Boulevard du Rectorat, 27, Liège, Belgium
| | - Marie-Laure Fauconnier
- Plant Biology Unit, Gembloux Agro-Bio Tech, University of Liège, Avenue de la Faculté, 2A, Gembloux, Belgium
| | - Marc Ongena
- Walloon Centre of Industrial Biology, Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés, 2, Gembloux, Belgium
| | - Philippe Thonart
- Walloon Centre of Industrial Biology, University of Liège, Boulevard du Rectorat, 29, Liège, Belgium
- Walloon Centre of Industrial Biology, Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés, 2, Gembloux, Belgium
| | - Jacques Dommes
- Laboratory of Plant Molecular Biology and Biotechnology, Faculty of Sciences, Department of Life Sciences, University of Liège, Boulevard du Rectorat, 27, Liège, Belgium
| |
Collapse
|
21
|
Mosblech A, Feussner I, Heilmann I. Oxylipins: structurally diverse metabolites from fatty acid oxidation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2009; 47:511-7. [PMID: 19167233 DOI: 10.1016/j.plaphy.2008.12.011] [Citation(s) in RCA: 283] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Revised: 11/13/2008] [Accepted: 12/08/2008] [Indexed: 05/19/2023]
Abstract
Oxylipins are lipophilic signaling molecules derived from the oxidation of polyunsaturated fatty acids. Initial fatty acid oxidation occurs mainly by the enzymatic or chemical formation of fatty acid hydroperoxides. An array of alternative reactions further converting fatty acid hydroperoxides gives rise to a multitude of oxylipin classes, many with reported signaling functions in plants. Oxylipins include the phytohormone, jasmonic acid, and a number of other molecules including hydroxy-, oxo- or keto-fatty acids or volatile aldehydes that may perform various biological roles as second messengers, messengers in inter-organismic signaling, or even as bactericidal agents. The structural diversity of oxylipins is further increased by esterification of the compounds in plastidial glycolipids, for instance the Arabidopsides, or by conjugation of oxylipins to amino acids or other metabolites. The enzymes involved in oxylipin metabolism are diverse and comprise a multitude of examples with interesting and unusual catalytic properties. In addition, the interplay of different subcellular compartments during oxylipin biosynthesis suggests complex mechanisms of regulation that are not well understood. This review aims at giving an overview of plant oxylipins and the multitude of enzymes responsible for their biosynthesis.
Collapse
Affiliation(s)
- Alina Mosblech
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University Göttingen, Göttingen, Germany
| | | | | |
Collapse
|
22
|
Casey R, Hughes RK. Recombinant Lipoxygenases and Oxylipin Metabolism in Relation to Food Quality. FOOD BIOTECHNOL 2007. [DOI: 10.1081/fbt-200025673] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
23
|
Oh K, Asami T, Matsui K, Howe GA, Murofushi N. Characterization of novel imidazole derivative, JM-8686, a potent inhibitor of allene oxide synthase. FEBS Lett 2006; 580:5791-6. [PMID: 17022976 DOI: 10.1016/j.febslet.2006.09.044] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2006] [Revised: 09/15/2006] [Accepted: 09/15/2006] [Indexed: 10/24/2022]
Abstract
The inhibitory properties of a first synthetic jasmonic acid biosynthesis inhibitor, JM-8686, were investigated. Steady-state kinetic analysis indicates that the compound is a competitive inhibitor of allene oxide synthase (AOS) with a K(i) value of approximate 0.62+/-0.15 microM. Dialysis experiment indicates that AOS inactivation by JM-8686 is reversible. The optical difference spectroscopy analysis of JM-8686 and AOS interaction indicates that JM-8686 induced type II binding spectra with a K(d) value of approximate 1.6+/-0.2 microM, suggesting that JM-8686 binds to the prosthetic heme iron of AOS. Comparison of the inhibitory potency of the compound against HPL (CYP74B) from tomato revealed that JM-8686 was a highly selective inhibitor for AOS.
Collapse
Affiliation(s)
- Keimei Oh
- Department of Biotechnology, Faculty of Bio-resource Sciences, Akita Prefectural University, Akita 010-0195, Japan.
| | | | | | | | | |
Collapse
|
24
|
Hughes RK, Belfield EJ, Muthusamay M, Khan A, Rowe A, Harding SE, Fairhurst SA, Bornemann S, Ashton R, Thorneley RNF, Casey R. Characterization of Medicago truncatula (barrel medic) hydroperoxide lyase (CYP74C3), a water-soluble detergent-free cytochrome P450 monomer whose biological activity is defined by monomer-micelle association. Biochem J 2006; 395:641-52. [PMID: 16454766 PMCID: PMC1462683 DOI: 10.1042/bj20051667] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We describe the detailed biochemical characterization of CYP74C3 (cytochrome P450 subfamily 74C3), a recombinant plant cytochrome P450 enzyme with HPL (hydroperoxide lyase) activity from Medicago truncatula (barrel medic). Steady-state kinetic parameters, substrate and product specificities, RZ (Reinheitszahl or purity index), molar absorption coefficient, haem content, and new ligands for an HPL are reported. We show on the basis of gel filtration, sedimentation velocity (sedimentation coefficient distribution) and sedimentation equilibrium (molecular mass) analyses that CYP74C3 has low enzyme activity as a detergent-free, water-soluble, monomer. The enzyme activity can be completely restored by re-activation with detergent micelles, but not detergent monomers. Corresponding changes in the spin state equilibrium, and probably co-ordination of the haem iron, are novel for cytochrome P450 enzymes and suggest that detergent micelles have a subtle effect on protein conformation, rather than substrate presentation, which is sufficient to improve substrate binding and catalytic-centre activity by an order of magnitude. The kcat/K(m) of up to 1.6x10(8) M(-1) x s(-1) is among the highest recorded, which is remarkable for an enzyme whose reaction mechanism involves the scission of a C-C bond. We carried out both kinetic and biophysical studies to demonstrate that this effect is a result of the formation of a complex between a protein monomer and a single detergent micelle. Association with a detergent micelle rather than oligomeric state represents a new mechanism of activation for membrane-associated cytochrome P450 enzymes. Highly concentrated and monodispersed samples of detergent-free CYP74C3 protein may be well suited for the purposes of crystallization and structural resolution of the first plant cytochrome P450 enzyme.
Collapse
|
25
|
Waché Y, Husson F, Feron G, Belin JM. Yeast as an efficient biocatalyst for the production of lipid-derived flavours and fragrances. Antonie van Leeuwenhoek 2006; 89:405-16. [PMID: 16779636 DOI: 10.1007/s10482-005-9049-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/21/2005] [Indexed: 11/29/2022]
Abstract
Responding to consumer' demand for natural products, biotechnology is constantly seeking new biocatalysts. In the field of hydrophobic substrate degradation, some yeast species known some years ago as non-conventional, have acquired their right to be considered as good biocatalysts. These Candida, Yarrowia, Sporobolomyces ... are now used for themselves or for their lipases in processes to produce flavours and fragrances. In this paper we present some examples of use of these biocatalysts to generate high-value compounds and discuss the new trends related to progress in the development of molecular tools or the mastering of the redox characteristics of the medium.
Collapse
Affiliation(s)
- Y Waché
- Laboratoire de Microbiologie UMR UB-INRA, ENSBANA, 1 esplanade Erasme, 21000, Dijon, France.
| | | | | | | |
Collapse
|
26
|
|
27
|
Fatty acid hydroperoxide lyase of green bell pepper: cloning in Yarrowia lipolytica and biogenesis of volatile aldehydes. Enzyme Microb Technol 2004. [DOI: 10.1016/j.enzmictec.2003.12.014] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
28
|
Koeduka T, Stumpe M, Matsui K, Kajiwara T, Feussner I. Kinetics of barley FA hydroperoxide lyase are modulated by salts and detergents. Lipids 2004; 38:1167-72. [PMID: 14733362 DOI: 10.1007/s11745-003-1175-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The cDNA from barley coding FA hydroperoxide lyase (HPL) was cloned. A recombinant protein derived from the cDNA was expressed in Escherichia coli as an active enzyme. Thus far, there have been no reports on HPL in monocotyledonous plants. The recombinant protein was shown to be most active to linolenic acid 13-hydroperoxide, followed by linoleic acid 13-hydroperoxide. 9-Hydroperoxides of the FA could not be substrates for the recombinant HPL. The activity was dramatically enhanced in the presence of a detergent and/or a salt in the reaction mixture. At the same time, the kinetics of the reaction, including inactivation and the Vmax value of the HPL, were also greatly modulated, depending on the concentration of a monovalent cation and/or a detergent in the reaction mixture. These results suggest that these effectors induced a conformational change in barley HPL, resulting in an improvement in substrate binding and in enzyme activity.
Collapse
Affiliation(s)
- Takao Koeduka
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yoshida 1677-1, Yamaguchi, 753-8515, Japan
| | | | | | | | | |
Collapse
|
29
|
Matsui K, Sasahara S, Akakabe Y, Kajiwara T. Linoleic acid 10-hydroperoxide as an intermediate during formation of 1-octen-3-ol from linoleic acid in Lentinus decadetes. Biosci Biotechnol Biochem 2004; 67:2280-2. [PMID: 14586122 DOI: 10.1271/bbb.67.2280] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In order to confirm the biosynthetic pathway to 1-octen-3-ol from linoleic acid, a crude enzyme solution was prepared from the edible mushroom, Lentinus decadetes. When the reaction was performed in the presence of glutathione peroxidase, which can reduce organic hydroperoxide to the corresponding hydroxide, the amount of 1-octen-3-ol formed from linoleic acid was decreased. At the same time, an accumulation of linoleic acid 10-hydroxide could be detected. The 10-hydroperoxide therefore seems to be an intermediate on the biosynthetic pathway.
Collapse
Affiliation(s)
- Kenji Matsui
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, Japan.
| | | | | | | |
Collapse
|
30
|
Kandzia R, Stumpe M, Berndt E, Szalata M, Matsui K, Feussner I. On the specificity of lipid hydroperoxide fragmentation by fatty acid hydroperoxide lyase from Arabidopsis thaliana. JOURNAL OF PLANT PHYSIOLOGY 2003; 160:803-809. [PMID: 12940547 DOI: 10.1078/0176-1617-01026] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Fatty acid hydroperoxide lyase (HPL) is a membrane associated P450 enzyme that cleaves fatty acid hydroperoxides into aldehydes and omega-oxo fatty acids. One of the major products of this reaction is (3Z)-hexenal. It is a constituent of many fresh smelling fruit aromas. For its biotechnological production and because of the lack of structural data on the HPL enzyme family, we investigated the mechanistic reasons for the substrate specificity of HPL by using various structural analogues of HPL substrates. To approach this 13-HPL from Arabidopsis thaliana was cloned and expressed in E. coli utilising a His-Tag expression vector. The fusion protein was purified by affinity chromatography from the E. coli membrane fractions and its pH optimum was detected to be pH 7.2. Then, HPL activity against the respective (9S)- and (13S)-hydroperoxides derived either from linoleic, alpha-linolenic or gamma-linolenic acid, respectively, as well as that against the corresponding methyl esters was analysed. Highest enzyme activity was observed with the (13S)-hydroperoxide of alpha-linolenic acid (13alpha-HPOT) followed by that with its methyl ester. Most interestingly, when the hydroperoxy isomers of gamma-linolenic acid were tested as substrates, 9gamma-HPOT and not 13gamma-HPOT was found to be a better substrate of the enzyme. Taken together from these studies on the substrate specificity it is concluded that At13HPL may not recognise the absolute position of the hydroperoxy group within the substrate, but shows highest activities against substrates with a (1Z4S,5E,7Z)-4-hydroperoxy-1,5,7-triene motif. Thus, At13HPL may not only be used for the production of C6-derived volatiles, but depending on the substrate may be further used for the production of Cg-derived volatiles as well.
Collapse
Affiliation(s)
- Romy Kandzia
- Institute of Plant Biochemistry-Halle/Saale, Weinberg 3, D-06120 Halle/Saale, Germany
| | | | | | | | | | | |
Collapse
|
31
|
Abstract
"Heterolytic" hydroperoxide lyase (HPL) and divinyl ether synthase (DES) are important enzymes of the plant lipoxygenase pathway. HPL cleaves fatty acid hydroperoxides into the aldehyde fragments. DES converts hydroperoxides into the divinyl ethers. The present paper is concerned with recent studies on HPL and DES including their occurrence, properties, mechanisms of action, the cloning of their cDNAs and physiological importance of the enzymes and their products.
Collapse
|
32
|
Abstract
Oxylipins comprise a group of biologically active compounds whose structural diversity is generated by the coordinate action of lipases, lipoxygenases, and a group of cytochromes P450 that are specialized for the metabolism of hydroperoxy fatty acids. Research on oxylipins has focused mainly on the biosynthesis of the plant signaling molecule jasmonic acid, and its role in the regulation of developmental and defense-related processes. Recent genetic studies indicate that metabolic precursors of jasmonate are active as signals in their own right, and that the synthesis and perception of jasmonates is critical for wound-induced systemic defense responses. Increasing evidence indicates that the collective biological importance of oxylipins in plants is comparable to that of the eicosanoid family of lipid mediators in animals.
Collapse
Affiliation(s)
- Gregg A Howe
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824, USA.
| | | |
Collapse
|
33
|
Abstract
Lipid peroxidation is common to all biological systems, both appearing in developmentally and environmentally regulated processes of plants. The hydroperoxy polyunsaturated fatty acids, synthesized by the action of various highly specialized forms of lipoxygenases, are substrates of at least seven different enzyme families. Signaling compounds such as jasmonates, antimicrobial and antifungal compounds such as leaf aldehydes or divinyl ethers, and a plant-specific blend of volatiles including leaf alcohols are among the numerous products. Cloning of many lipoxygenases and other key enzymes within the lipoxygenase pathway, as well as analyses by reverse genetic and metabolic profiling, revealed new reactions and the first hints of enzyme mechanisms, multiple functions, and regulation. These aspects are reviewed with respect to activation of this pathway as an initial step in the interaction of plants with pathogens, insects, or abiotic stress and at distinct stages of development.
Collapse
Affiliation(s)
- Ivo Feussner
- Department of Molecular Cell Biology, Institute of Plant Genetics and Crop Plant Research (IPK), D-06466 Gatersleben, Germany.
| | | |
Collapse
|
34
|
Stumpe M, Kandzia R, Göbel C, Rosahl S, Feussner I. A pathogen-inducible divinyl ether synthase (CYP74D) from elicitor-treated potato suspension cells. FEBS Lett 2001; 507:371-6. [PMID: 11696374 DOI: 10.1016/s0014-5793(01)03019-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In elicitor-treated potato cells, 9-lipoxygenase-derived oxylipins accumulate with the divinyl ether colneleic acid as the major metabolite. Here, the identification of a potato cDNA is described, whose predicted amino acid sequence corresponds to divinyl ether synthases, belonging to the recently identified new P450 subfamily CYP74D. The recombinant protein was expressed in Escherichia coli and shown to metabolize 9-hydroperoxy linoleic acid to colneleic acid at pH 6.5. This fatty acid derivative has been implicated in functioning as a plant antimicrobial compound. RNA blot analyses revealed accumulation of divinyl ether synthase transcripts both upon infiltration of potato leaves with Pseudomonas syringae and after infection with Phytophthora infestans.
Collapse
Affiliation(s)
- M Stumpe
- Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | | | | | | | | |
Collapse
|
35
|
Noordermeer MA, Veldink GA, Vliegenthart JF. Fatty acid hydroperoxide lyase: a plant cytochrome p450 enzyme involved in wound healing and pest resistance. Chembiochem 2001; 2:494-504. [PMID: 11828481 DOI: 10.1002/1439-7633(20010803)2:7/8<494::aid-cbic494>3.0.co;2-1] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Plants continuously have to defend themselves against life-threatening events such as drought, mechanical damage, temperature stress, and potential pathogens. Nowadays, more and more similarities between the defense mechanism of plants and that of animals are being discovered. In both cases, the lipoxygenase pathway plays an important role. In plants, products of this pathway are involved in wound healing, pest resistance, and signaling, or they have antimicrobial and antifungal activity. The first step in the lipoxygenase pathway is the reaction of linoleic or linolenic acids with molecular oxygen, catalyzed by the enzyme lipoxygenase. The hydroperoxy fatty acids thus formed are highly reactive and dangerous for the plant and therefore further metabolized by other enzymes such as allene oxide synthase, hydroperoxide lyase, peroxygenase, or divinyl ether synthase. Recently, these enzymes have been characterized as a special class of cytochrome P450 enzymes. Hydroperoxide lyases cleave the lipoxygenase products, resulting in the formation of omega-oxo acids and volatile C6- and C9-aldehydes and -alcohols. These compounds are major contributors to the characteristic "fresh green" odor of fruit and vegetables. They are widely used as food flavors, for example, to restore the freshness of food after sterilization processes. The low abundance of these compounds in nature and the high demand make it necessary to synthesize them on a large scale. Lipoxygenase and hydroperoxide lyase are suitable biocatalysts for the production of "natural" food flavors. In contrast to lipoxygenase, which has been extensively studied, little is yet known about hydroperoxide lyase. Hydroperoxide lyases from different organisms have been isolated, and a few genes have been published lately. However, the structure and reaction mechanism of this enzyme are still unclear. The identification of this enzyme as a cytochrome P450 sheds new light on its structure and possible reaction mechanism, whereas recombinant expression brings a biocatalytic application into sight.
Collapse
Affiliation(s)
- M A Noordermeer
- Bijvoet Center for Biomolecular Research, Department of Bio-Organic Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | | | |
Collapse
|
36
|
Noordermeer MA, Veldink GA, Vliegenthart JF. Spectroscopic studies on the active site of hydroperoxide lyase; the influence of detergents on its conformation. FEBS Lett 2001; 489:229-32. [PMID: 11165255 DOI: 10.1016/s0014-5793(01)02107-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Expression of high quantities of alfalfa hydroperoxide lyase in Escherichia coli made it possible to study its active site and structure in more detail. Circular dichroism (CD) spectra showed that hydroperoxide lyase consists for about 75% of alpha-helices. Electron paramagnetic resonance (EPR) spectra confirmed its classification as a cytochrome P450 enzyme. The positive influence of detergents on the enzyme activity is paralleled by a spin state transition of the heme Fe(III) from low to high spin. EPR and CD spectra showed that detergents induce a subtle conformational change, which might result in improved substrate binding. Because hydroperoxide lyase is thought to be a membrane bound protein and detergents mimic a membrane environment, the more active, high spin form likely represents the in vivo conformation. Furthermore, the spin state appeared to be temperature-dependent, with the low spin state favored at low temperature. Point mutants of the highly conserved cysteine in domain D indicated that this residue might be involved in heme binding.
Collapse
Affiliation(s)
- M A Noordermeer
- Bijvoet Center for Biomolecular Research, Department of Bio-organic Chemistry, Utrecht University, Padualaan 8, NL-3584 CH, Utrecht, The Netherlands
| | | | | |
Collapse
|