1
|
Tarasova EV, Luchnikova NA, Grishko VV, Ivshina IB. Actinomycetes as Producers of Biologically Active Terpenoids: Current Trends and Patents. Pharmaceuticals (Basel) 2023; 16:872. [PMID: 37375819 PMCID: PMC10301674 DOI: 10.3390/ph16060872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Terpenes and their derivatives (terpenoids and meroterpenoids, in particular) constitute the largest class of natural compounds, which have valuable biological activities and are promising therapeutic agents. The present review assesses the biosynthetic capabilities of actinomycetes to produce various terpene derivatives; reports the main methodological approaches to searching for new terpenes and their derivatives; identifies the most active terpene producers among actinomycetes; and describes the chemical diversity and biological properties of the obtained compounds. Among terpene derivatives isolated from actinomycetes, compounds with pronounced antifungal, antiviral, antitumor, anti-inflammatory, and other effects were determined. Actinomycete-produced terpenoids and meroterpenoids with high antimicrobial activity are of interest as a source of novel antibiotics effective against drug-resistant pathogenic bacteria. Most of the discovered terpene derivatives are produced by the genus Streptomyces; however, recent publications have reported terpene biosynthesis by members of the genera Actinomadura, Allokutzneria, Amycolatopsis, Kitasatosporia, Micromonospora, Nocardiopsis, Salinispora, Verrucosispora, etc. It should be noted that the use of genetically modified actinomycetes is an effective tool for studying and regulating terpenes, as well as increasing productivity of terpene biosynthesis in comparison with native producers. The review includes research articles on terpene biosynthesis by Actinomycetes between 2000 and 2022, and a patent analysis in this area shows current trends and actual research directions in this field.
Collapse
Affiliation(s)
- Ekaterina V. Tarasova
- Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, 13A Lenina Str., 614990 Perm, Russia; (N.A.L.); (V.V.G.); (I.B.I.)
| | - Natalia A. Luchnikova
- Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, 13A Lenina Str., 614990 Perm, Russia; (N.A.L.); (V.V.G.); (I.B.I.)
- Department of Microbiology and Immunology, Perm State University, 15 Bukirev Str., 614990 Perm, Russia
| | - Victoria V. Grishko
- Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, 13A Lenina Str., 614990 Perm, Russia; (N.A.L.); (V.V.G.); (I.B.I.)
| | - Irina B. Ivshina
- Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, 13A Lenina Str., 614990 Perm, Russia; (N.A.L.); (V.V.G.); (I.B.I.)
- Department of Microbiology and Immunology, Perm State University, 15 Bukirev Str., 614990 Perm, Russia
| |
Collapse
|
2
|
Gong K, Yong D, Fu J, Li A, Zhang Y, Li R. Diterpenoids from Streptomyces: Structures, Biosyntheses and Bioactivities. Chembiochem 2022; 23:e202200231. [PMID: 35585772 DOI: 10.1002/cbic.202200231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/16/2022] [Indexed: 11/09/2022]
Abstract
Bacteria, especially Streptomyces spp., have been emerging as rich sources of natural diterpenoids with diverse structures and broad bioactivities. Here, we review diterpenoids biosynthesized by Streptomyces , with an emphasis on their structures, biosyntheses, and bioactivities. Although diterpenoids from Streptomyces are relatively rare compared to those from plants and fungi, their novel skeletons, biosyntheses and bioactivities present opportunities for discovering new drugs, enzyme mechanisms, and applications in bio-catalysis and metabolic pathway engineering.
Collapse
Affiliation(s)
- Kai Gong
- Shandong University, State Key Laboratory of Microbial Technology, CHINA
| | - Daojing Yong
- Shandong University, State Key Laboratory of Microbial Technology, CHINA
| | - Jun Fu
- Shandong University, State Key Laboratory of Microbial Technology, CHINA
| | - Aiying Li
- Shandong University, State Key Laboratory of Microbial Technology, CHINA
| | - Youming Zhang
- Shandong University, State Key Laboratory of Microbial Technology, CHINA
| | - Ruijuan Li
- Shandong University, State Key Laboratory of Microbial Technology, Binhai Road 72, 266237, Qingdao, CHINA
| |
Collapse
|
3
|
Abstract
Covering: up to mid-2020 Terpenoids, also called isoprenoids, are the largest and most structurally diverse family of natural products. Found in all domains of life, there are over 80 000 known compounds. The majority of characterized terpenoids, which include some of the most well known, pharmaceutically relevant, and commercially valuable natural products, are produced by plants and fungi. Comparatively, terpenoids of bacterial origin are rare. This is counter-intuitive to the fact that recent microbial genomics revealed that almost all bacteria have the biosynthetic potential to create the C5 building blocks necessary for terpenoid biosynthesis. In this review, we catalogue terpenoids produced by bacteria. We collected 1062 natural products, consisting of both primary and secondary metabolites, and classified them into two major families and 55 distinct subfamilies. To highlight the structural and chemical space of bacterial terpenoids, we discuss their structures, biosynthesis, and biological activities. Although the bacterial terpenome is relatively small, it presents a fascinating dichotomy for future research. Similarities between bacterial and non-bacterial terpenoids and their biosynthetic pathways provides alternative model systems for detailed characterization while the abundance of novel skeletons, biosynthetic pathways, and bioactivies presents new opportunities for drug discovery, genome mining, and enzymology.
Collapse
Affiliation(s)
- Jeffrey D Rudolf
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA.
| | - Tyler A Alsup
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA.
| | - Baofu Xu
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA.
| | - Zining Li
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA.
| |
Collapse
|
4
|
Xu Y, Geng L, Zhao S. Biosynthesis of bioactive ingredients of Salvia miltiorrhiza and advanced biotechnologies for their production. BIOTECHNOL BIOTEC EQ 2018. [DOI: 10.1080/13102818.2018.1532318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Affiliation(s)
- Yingpeng Xu
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Shanghai, P.R. China
| | - Lijun Geng
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai, P.R. China
| | - Shujuan Zhao
- Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| |
Collapse
|
5
|
Rehman R, Hanif MA, Mushtaq Z, Al-Sadi AM. Biosynthesis of essential oils in aromatic plants: A review. FOOD REVIEWS INTERNATIONAL 2015. [DOI: 10.1080/87559129.2015.1057841] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
Xu M, Hillwig ML, Lane AL, Tiernan MS, Moore BS, Peters RJ. Characterization of an orphan diterpenoid biosynthetic operon from Salinispora arenicola. JOURNAL OF NATURAL PRODUCTS 2014; 77:2144-7. [PMID: 25203741 PMCID: PMC4176389 DOI: 10.1021/np500422d] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Indexed: 05/29/2023]
Abstract
While more commonly associated with plants than microbes, diterpenoid natural products have been reported to have profound effects in marine microbe-microbe interactions. Intriguingly, the genome of the marine bacterium Salinispora arenicola CNS-205 contains a putative diterpenoid biosynthetic operon, terp1. Here recombinant expression studies are reported, indicating that this three-gene operon leads to the production of isopimara-8,15-dien-19-ol (4). Although 4 is not observed in pure cultures of S. arenicola, it is plausible that the terp1 operon is only expressed under certain physiologically relevant conditions such as in the presence of other marine organisms.
Collapse
Affiliation(s)
- Meimei Xu
- Department of Biochemistry, Biophysics
& Molecular Biology, Iowa State University, Ames, Iowa 50011 United States
| | - Matthew L. Hillwig
- Department of Biochemistry, Biophysics
& Molecular Biology, Iowa State University, Ames, Iowa 50011 United States
| | - Amy L. Lane
- Scripps
Institution of Oceanography and Skaggs School of Pharmacy and Pharmaceutical
Sciences, University of California at San
Diego, La Jolla, California 92093 United States
| | - Mollie S. Tiernan
- Department of Biochemistry, Biophysics
& Molecular Biology, Iowa State University, Ames, Iowa 50011 United States
| | - Bradley S. Moore
- Scripps
Institution of Oceanography and Skaggs School of Pharmacy and Pharmaceutical
Sciences, University of California at San
Diego, La Jolla, California 92093 United States
| | - Reuben J. Peters
- Department of Biochemistry, Biophysics
& Molecular Biology, Iowa State University, Ames, Iowa 50011 United States
| |
Collapse
|
7
|
Workalemahu G, Wang H, Puan KJ, Nada MH, Kuzuyama T, Jones BD, Jin C, Morita CT. Metabolic engineering of Salmonella vaccine bacteria to boost human Vγ2Vδ2 T cell immunity. THE JOURNAL OF IMMUNOLOGY 2014; 193:708-21. [PMID: 24943221 DOI: 10.4049/jimmunol.1302746] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Human Vγ2Vδ2 T cells monitor isoprenoid metabolism by recognizing foreign (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP), a metabolite in the 2-C-methyl-D-erythritol-4-phosphate pathway used by most eubacteria and apicomplexan parasites, and self isopentenyl pyrophosphate, a metabolite in the mevalonate pathway used by humans. Whereas microbial infections elicit prolonged expansion of memory Vγ2Vδ2 T cells, immunization with prenyl pyrophosphates or aminobisphosphonates elicit short-term Vγ2Vδ2 expansion with rapid anergy and deletion upon subsequent immunizations. We hypothesized that a live, attenuated bacterial vaccine that overproduces HMBPP would elicit long-lasting Vγ2Vδ2 T cell immunity by mimicking a natural infection. Therefore, we metabolically engineered the avirulent aroA(-) Salmonella enterica serovar Typhimurium SL7207 strain by deleting the gene for LytB (the downstream enzyme from HMBPP) and functionally complementing for this loss with genes encoding mevalonate pathway enzymes. LytB(-) Salmonella SL7207 had high HMBPP levels, infected human cells as efficiently as did the wild-type bacteria, and stimulated large ex vivo expansions of Vγ2Vδ2 T cells from human donors. Importantly, vaccination of a rhesus monkey with live lytB(-) Salmonella SL7207 stimulated a prolonged expansion of Vγ2Vδ2 T cells without significant side effects or anergy induction. These studies provide proof-of-principle that metabolic engineering can be used to derive live bacterial vaccines that boost Vγ2Vδ2 T cell immunity. Similar engineering of metabolic pathways to produce lipid Ags or B vitamin metabolite Ags could be used to derive live bacterial vaccine for other unconventional T cells that recognize nonpeptide Ags.
Collapse
Affiliation(s)
- Grefachew Workalemahu
- Division of Immunology, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242; Department of Veterans Affairs, Iowa City Health Care System, Iowa City, IA 52246
| | - Hong Wang
- Division of Immunology, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242; Department of Veterans Affairs, Iowa City Health Care System, Iowa City, IA 52246
| | - Kia-Joo Puan
- Division of Immunology, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242; Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648
| | - Mohanad H Nada
- Division of Immunology, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242; Department of Veterans Affairs, Iowa City Health Care System, Iowa City, IA 52246; Interdisciplinary Graduate Program in Immunology, University of Iowa Carver College of Medicine, Iowa City, IA 52242
| | - Tomohisa Kuzuyama
- Biotechnology Research Center, The University of Tokyo, Tokyo 113-8657, Japan
| | - Bradley D Jones
- Department of Microbiology, University of Iowa Carver College of Medicine, Iowa City, IA 52242; Interdisciplinary Graduate Program in Genetics, University of Iowa Carver College of Medicine, Iowa City, IA 52242; and Inflammation Program, University of Iowa Carver College of Medicine, Iowa City, IA 52242
| | - Chenggang Jin
- Division of Immunology, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242; Department of Veterans Affairs, Iowa City Health Care System, Iowa City, IA 52246
| | - Craig T Morita
- Division of Immunology, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242; Department of Veterans Affairs, Iowa City Health Care System, Iowa City, IA 52246; Interdisciplinary Graduate Program in Immunology, University of Iowa Carver College of Medicine, Iowa City, IA 52242;
| |
Collapse
|
8
|
Functional conservation of the capacity for ent-kaurene biosynthesis and an associated operon in certain rhizobia. J Bacteriol 2013; 196:100-6. [PMID: 24142247 DOI: 10.1128/jb.01031-13] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial interactions with plants are accompanied by complex signal exchange processes. Previously, the nitrogen-fixing symbiotic (rhizo)bacterium Bradyrhizobium japonicum was found to carry adjacent genes encoding two sequentially acting diterpene cyclases that together transform geranylgeranyl diphosphate to ent-kaurene, the olefin precursor to the gibberellin plant hormones. Species from the three other major genera of rhizobia were found to have homologous terpene synthase genes. Cloning and functional characterization of a representative set of these enzymes confirmed the capacity of each genus to produce ent-kaurene. Moreover, comparison of their genomic context revealed that these diterpene synthases are found in a conserved operon which includes an adjacent isoprenyl diphosphate synthase, shown here to produce the geranylgeranyl diphosphate precursor, providing a critical link to central metabolism. In addition, the rest of the operon consists of enzymatic genes that presumably lead to a more elaborated diterpenoid, although the production of gibberellins was not observed. Nevertheless, it has previously been shown that the operon is selectively expressed during nodulation, and the scattered distribution of the operon via independent horizontal gene transfer within the symbiotic plasmid or genomic island shown here suggests that such diterpenoid production may modulate the interaction of these particular symbionts with their host plants.
Collapse
|
9
|
Doroghazi JR, Metcalf WW. Comparative genomics of actinomycetes with a focus on natural product biosynthetic genes. BMC Genomics 2013; 14:611. [PMID: 24020438 PMCID: PMC3848822 DOI: 10.1186/1471-2164-14-611] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 09/04/2013] [Indexed: 01/15/2023] Open
Abstract
Background Actinomycetes are a diverse group of medically, industrially and ecologically important bacteria, studied as much for the diseases they cause as for the cures they hold. The genomes of actinomycetes revealed that these bacteria have a large number of natural product gene clusters, although many of these are difficult to tie to products in the laboratory. Large scale comparisons of these clusters are difficult to perform due to the presence of highly similar repeated domains in the most common biosynthetic machinery: polyketide synthases (PKSs) and nonribosomal peptide synthetases (NRPSs). Results We have used comparative genomics to provide an overview of the genomic features of a set of 102 closed genomes from this important group of bacteria with a focus on natural product biosynthetic genes. We have focused on well-represented genera and determine the occurrence of gene cluster families therein. Conservation of natural product gene clusters within Mycobacterium, Streptomyces and Frankia suggest crucial roles for natural products in the biology of each genus. The abundance of natural product classes is also found to vary greatly between genera, revealing underlying patterns that are not yet understood. Conclusions A large-scale analysis of natural product gene clusters presents a useful foundation for hypothesis formulation that is currently underutilized in the field. Such studies will be increasingly necessary to study the diversity and ecology of natural products as the number of genome sequences available continues to grow.
Collapse
Affiliation(s)
- James R Doroghazi
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, IL 61801, USA.
| | | |
Collapse
|
10
|
Smanski MJ, Peterson RM, Huang SX, Shen B. Bacterial diterpene synthases: new opportunities for mechanistic enzymology and engineered biosynthesis. Curr Opin Chem Biol 2012; 16:132-41. [PMID: 22445175 DOI: 10.1016/j.cbpa.2012.03.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2012] [Revised: 02/22/2012] [Accepted: 03/02/2012] [Indexed: 11/15/2022]
Abstract
Diterpenoid biosynthesis has been extensively studied in plants and fungi, yet cloning and engineering diterpenoid pathways in these organisms remain challenging. Bacteria are emerging as prolific producers of diterpenoid natural products, and bacterial diterpene synthases are poised to make significant contributions to our understanding of terpenoid biosynthesis. Here we will first survey diterpenoid natural products of bacterial origin and briefly review their biosynthesis with emphasis on diterpene synthases (DTSs) that channel geranylgeranyl diphosphate to various diterpenoid scaffolds. We will then highlight differences of DTSs of bacterial and higher organism origins and discuss the challenges in discovering novel bacterial DTSs. We will conclude by discussing new opportunities for DTS mechanistic enzymology and applications of bacterial DTS in biocatalysis and metabolic pathway engineering.
Collapse
Affiliation(s)
- Michael J Smanski
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | | | | | | |
Collapse
|
11
|
Kuzuyama T, Seto H. Two distinct pathways for essential metabolic precursors for isoprenoid biosynthesis. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2012; 88:41-52. [PMID: 22450534 PMCID: PMC3365244 DOI: 10.2183/pjab.88.41] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Isoprenoids are a diverse group of molecules found in all organisms, where they perform such important biological functions as hormone signaling (e.g., steroids) in mammals, antioxidation (e.g., carotenoids) in plants, electron transport (e.g., ubiquinone), and cell wall biosynthesis intermediates in bacteria. All isoprenoids are synthesized by the consecutive condensation of the five-carbon monomer isopentenyl diphosphate (IPP) to its isomer, dimethylallyl diphosphate (DMAPP). The biosynthetic pathway for the formation of IPP from acetyl-CoA (i.e., the mevalonate pathway) had been established mainly in mice and the budding yeast Saccharomyces cerevisiae. Curiously, most prokaryotic microorganisms lack homologs of the genes in the mevalonate pathway, even though IPP and DMAPP are essential for isoprenoid biosynthesis in bacteria. This observation provided an impetus to search for an alternative pathway to synthesize IPP and DMAPP, ultimately leading to the discovery of the mevalonate-independent 2-C-methyl-D-erythritol 4-phosphate pathway. This review article focuses on our significant contributions to a comprehensive understanding of the biosynthesis of IPP and DMAPP.
Collapse
Affiliation(s)
- Tomohisa Kuzuyama
- Biotechnology Research Center, The University of Tokyo, Tokyo, Japan.
| | | |
Collapse
|
12
|
Dairi T, Kuzuyama T, Nishiyama M, Fujii I. Convergent strategies in biosynthesis. Nat Prod Rep 2011; 28:1054-86. [PMID: 21547300 DOI: 10.1039/c0np00047g] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This review article focuses on how nature sometimes solves the same problem in the biosynthesis of small molecules but using very different approaches. Four examples, involving isopentenyl diphosphate, menaquinone, lysine, and aromatic polyketides, are highlighted that represent different strategies in convergent metabolism.
Collapse
Affiliation(s)
- Tohru Dairi
- Faculty of Engineering and Graduate School of Engineering, Hokkaido University, Sapporo 060-8628, Japan.
| | | | | | | |
Collapse
|
13
|
Khan ST, Izumikawa M, Motohashi K, Mukai A, Takagi M, Shin-Ya K. Distribution of the 3-hydroxyl-3-methylglutaryl coenzyme A reductase gene and isoprenoid production in marine-derived Actinobacteria. FEMS Microbiol Lett 2009; 304:89-96. [PMID: 20067528 DOI: 10.1111/j.1574-6968.2009.01886.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
During the course of our screening program to isolate isoprenoids from marine Actinobacteria, 523 actinobacterial strains were isolated from 18 marine sponges, a tunicate, and two marine sediments. These strains belonged to 21 different genera, but most were members of Streptomyces, Nocardia, Rhodococcus, and Micromonospora. Some Actinobacteria have been reported to use the mevalonate pathway for the production of isoprenoids as secondary metabolites. Therefore, we investigated whether these strains possessed the 3-hydroxyl-3-methylglutaryl coenzyme A reductase (hmgr) gene, which indicates the presence of the mevalonate pathway. As a result, six strains belonging to the genera Streptomyces (SpC080624SC-11, SpA080624GE-02, and Sp080513GE-23), Nocardia (Sp080513SC-18), and Micromonospora (Se080624GE-07 and SpC080624GE-05) were found to possess the hmgr gene, and these genes were highly similar to hmgr genes in isoprenoid biosynthetic gene clusters. Among the six strains, the two strains SpC080624SC-11 and SpA080624GE-02 produced the novel isoprenoids, JBIR-46, -47, and -48, which consisted of phenazine chromophores, and Sp080513GE-23 produced a known isoprenoid, fumaquinone. Furthermore, these compounds showed cytotoxic activity against human acute myelogenous leukemia HL-60 cells.
Collapse
Affiliation(s)
- Shams Tabrez Khan
- Biomedicinal Information Research Center, Japan Biological Informatics Consortium,Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
14
|
Genes and enzymes involved in bacterial isoprenoid biosynthesis. Curr Opin Chem Biol 2009; 13:180-8. [DOI: 10.1016/j.cbpa.2009.02.029] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Revised: 02/17/2009] [Accepted: 02/20/2009] [Indexed: 11/24/2022]
|
15
|
Bosak T, Losick RM, Pearson A. A polycyclic terpenoid that alleviates oxidative stress. Proc Natl Acad Sci U S A 2008; 105:6725-9. [PMID: 18436644 PMCID: PMC2373358 DOI: 10.1073/pnas.0800199105] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Indexed: 11/18/2022] Open
Abstract
Polycyclic terpenoid lipids such as hopanes and steranes have been widely used to understand ancient biology, Earth history, and the oxygenation of the ocean-atmosphere system. Some of these lipids are believed to be produced only by aerobic organisms, whereas others actually require molecular oxygen for their biosynthesis. A persistent question remains: Did some polycyclic lipids initially evolve in response to certain environmental or metabolic stresses, including the presence of oxygen? Here, we identify tetracyclic isoprenoids in spores of the bacterium Bacillus subtilis. We call them sporulenes. They are produced by cyclization of regular polyprenes, a reaction that is more favorable chemically than the formation of terpenoids such as hopanoids and steroids from squalene. The simplicity of the reaction suggests that the B. subtilis cyclase may be analogous to evolutionarily ancient cyclases. We show that these molecules increase the resistance of spores to a reactive oxygen species, demonstrating a specific physiological role for a nonpigment bacterial lipid biomarker. Geostable derivatives of these compounds in sediments could thus be used as direct indicators of oxidative stress and aerobic environments.
Collapse
Affiliation(s)
- T. Bosak
- *Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - R. M. Losick
- and Departments of Molecular and Cell Biology and
| | - A. Pearson
- Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138
| |
Collapse
|
16
|
Ajikumar PK, Tyo K, Carlsen S, Mucha O, Phon TH, Stephanopoulos G. Terpenoids: Opportunities for Biosynthesis of Natural Product Drugs Using Engineered Microorganisms. Mol Pharm 2008; 5:167-90. [DOI: 10.1021/mp700151b] [Citation(s) in RCA: 311] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Parayil Kumaran Ajikumar
- Department of Chemical Engineering, Room 56-469, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, and Chemical and Pharmaceutical Engineering, Singapore−MIT Alliance, 4 Engineering Drive 3, Singapore 117 576
| | - Keith Tyo
- Department of Chemical Engineering, Room 56-469, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, and Chemical and Pharmaceutical Engineering, Singapore−MIT Alliance, 4 Engineering Drive 3, Singapore 117 576
| | - Simon Carlsen
- Department of Chemical Engineering, Room 56-469, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, and Chemical and Pharmaceutical Engineering, Singapore−MIT Alliance, 4 Engineering Drive 3, Singapore 117 576
| | - Oliver Mucha
- Department of Chemical Engineering, Room 56-469, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, and Chemical and Pharmaceutical Engineering, Singapore−MIT Alliance, 4 Engineering Drive 3, Singapore 117 576
| | - Too Heng Phon
- Department of Chemical Engineering, Room 56-469, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, and Chemical and Pharmaceutical Engineering, Singapore−MIT Alliance, 4 Engineering Drive 3, Singapore 117 576
| | - Gregory Stephanopoulos
- Department of Chemical Engineering, Room 56-469, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, and Chemical and Pharmaceutical Engineering, Singapore−MIT Alliance, 4 Engineering Drive 3, Singapore 117 576
| |
Collapse
|
17
|
Cloning of the Gene Cluster Responsible for the Biosynthesis of Brasilicardin A, a Unique Diterpenoid. J Antibiot (Tokyo) 2008; 61:164-74. [DOI: 10.1038/ja.2008.126] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
18
|
Abstract
Four bacterial hosts are reviewed in the context of either native or heterologous natural product production. E. coli, B. subtilis, pseudomonads, and Streptomyces bacterial systems are presented with each having either a long-standing or more recent application to the production of therapeutic natural compounds. The four natural product classes focused upon include the polyketides, nonribosomal peptides, terpenoids, and flavonoids. From the perspective of both innate and heterologous production potential, each bacterial host is evaluated according to biological properties that would either hinder or facilitate natural product biosynthesis.
Collapse
Affiliation(s)
- Haoran Zhang
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02155, USA
| | | | | |
Collapse
|
19
|
Bringmann G, Haagen Y, Gulder TAM, Gulder T, Heide L. Biosynthesis of the Isoprenoid Moieties of Furanonaphthoquinone I and Endophenazine A in Streptomyces cinnamonensis DSM 1042. J Org Chem 2007; 72:4198-204. [PMID: 17474781 DOI: 10.1021/jo0703404] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Streptomyces cinnamonensis DSM 1042 produces the polyketide-isoprenoid compound furanonaphthoquinone I (FNQ I) and isoprenylated phenazines, predominantly endophenazine A. However, the recently identified biosynthetic gene cluster for these compounds only contains a single gene for a mevalonate pathway enzyme, that is, a putative mevalonate kinase gene. This is in strong contrast to all Streptomyces strains examined so far, where all six genes encoding the mevalonate pathway enzymes are clustered in a single operon of 6.8 kb and, thus, raised the question about the biosynthetic origin of the isoprenoid moieties of FNQ I and endophenazine A. In this study, we investigated the incorporation of [13C2]acetate and [2-13C]glycerol into FNQ I and endophenazine A. The results unequivocally prove that the isoprenoid building blocks of both compounds are predominantly formed via the mevalonate pathway (approximately 80%) but that the MEP pathway (approximately 20%) contributes to the biosynthesis of these molecules, too. In actinomycetes, this is the first experimentally proven example of the utilization of both biosynthetic routes for the formation of one single secondary metabolite. The incorporation pattern of [2-13C]glycerol was consistent with a "reverse" prenyl transfer, that is, with the formation of a C-C bond from C-3 of GPP to the polyketide nucleus of FNQ I.
Collapse
Affiliation(s)
- Gerhard Bringmann
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany.
| | | | | | | | | |
Collapse
|
20
|
Pitera DJ, Paddon CJ, Newman JD, Keasling JD. Balancing a heterologous mevalonate pathway for improved isoprenoid production in Escherichia coli. Metab Eng 2007; 9:193-207. [PMID: 17239639 DOI: 10.1016/j.ymben.2006.11.002] [Citation(s) in RCA: 307] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Revised: 10/25/2006] [Accepted: 11/13/2006] [Indexed: 11/25/2022]
Abstract
Engineering biosynthetic pathways in microbes for the production of complex chemicals and pharmaceuticals is an attractive alternative to chemical synthesis. However, in transferring large pathways to alternate hosts and manipulating expression levels, the native regulation of carbon flux through the pathway may be lost leading to imbalances in the pathways. Previously, Escherichia coli was engineered to produce large quantities of isoprenoids by creating a mevalonate-based isopentenyl pyrophosphate biosynthetic pathway [Martin, V.J., Pitera, D.J., Withers, S.T., Newman, J.D., Keasling, J.D., 2003. Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat. Biotechnol. 21, 796-802]. The strain produces high levels of isoprenoids, but upon further investigation we discovered that the accumulation of pathway intermediates limited flux and that high-level expression of the mevalonate pathway enzymes inhibited cell growth. Gene titration studies and metabolite profiling using liquid chromatography-mass spectrometry linked the growth inhibition phenotype with the accumulation of the pathway intermediate 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA). Such an accumulation implies that the activity of HMG-CoA reductase was insufficient to balance flux in the engineered pathway. By modulating HMG-CoA reductase production, we eliminated the pathway bottleneck and increased mevalonate production. These results demonstrate that balancing carbon flux through the heterologous pathway is a key determinant in optimizing isoprenoid biosynthesis in microbial hosts.
Collapse
Affiliation(s)
- Douglas J Pitera
- Department of Chemical Engineering, University of California, Berkeley, CA 94720-1462, USA
| | | | | | | |
Collapse
|
21
|
Dürr C, Schnell HJ, Luzhetskyy A, Murillo R, Weber M, Welzel K, Vente A, Bechthold A. Biosynthesis of the Terpene Phenalinolactone in Streptomyces sp. Tü6071: Analysis of the Gene Cluster and Generation of Derivatives. ACTA ACUST UNITED AC 2006; 13:365-77. [PMID: 16632249 DOI: 10.1016/j.chembiol.2006.01.011] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2005] [Revised: 01/12/2006] [Accepted: 01/27/2006] [Indexed: 11/16/2022]
Abstract
Phenalinolactones are terpene glycosides with antibacterial activity. A striking structural feature is a highly oxidized gamma-butyrolactone of elusive biosynthetic origin. To investigate the genetic basis of the phenalinolactones biosynthesis, we cloned and sequenced the corresponding gene cluster from the producer strain Streptomyces sp. Tü6071. Spanning a 42 kbp region, 35 candidate genes could be assigned to putatively encode biosynthetic, regulatory, and resistance-conferring functions. Targeted gene inactivations were carried out to specifically manipulate the phenalinolactones pathway. The inactivation of a sugar methyltransferase gene and a cytochrome P450 monoxygenase gene led to the production of modified phenalinolactone derivatives. The inactivation of a Fe(II)/alpha-ketoglutarate-dependent dioxygenase gene disrupted the biosynthetic pathway within gamma-butyrolactone formation. The structure elucidation of the accumulating intermediate indicated that pyruvate is the biosynthetic precursor of the gamma butyrolactone moiety.
Collapse
Affiliation(s)
- Clemens Dürr
- Albert-Ludwigs-Universität, Institut für Pharmazeutische Wissenschaften, Stefan-Meier-Strasse 19, 79104 Freiburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Kawasaki T, Hayashi Y, Kuzuyama T, Furihata K, Itoh N, Seto H, Dairi T. Biosynthesis of a natural polyketide-isoprenoid hybrid compound, furaquinocin A: identification and heterologous expression of the gene cluster. J Bacteriol 2006; 188:1236-44. [PMID: 16452404 PMCID: PMC1367238 DOI: 10.1128/jb.188.4.1236-1244.2006] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Furaquinocin (FQ) A, produced by Streptomyces sp. strain KO-3988, is a natural polyketide-isoprenoid hybrid compound that exhibits a potent antitumor activity. As a first step toward understanding the biosynthetic machinery of this unique and pharmaceutically useful compound, we have cloned an FQ A biosynthetic gene cluster by taking advantage of the fact that an isoprenoid biosynthetic gene cluster generally exists in flanking regions of the mevalonate (MV) pathway gene cluster in actinomycetes. Interestingly, Streptomyces sp. strain KO-3988 was the first example of a microorganism equipped with two distinct mevalonate pathway gene clusters. We were able to localize a 25-kb DNA region that harbored FQ A biosynthetic genes (fur genes) in both the upstream and downstream regions of one of the MV pathway gene clusters (MV2) by using heterologous expression in Streptomyces lividans TK23. This was the first example of a gene cluster responsible for the biosynthesis of a polyketide-isoprenoid hybrid compound. We have also confirmed that four genes responsible for viguiepinol [3-hydroxypimara-9(11),15-diene] biosynthesis exist in the upstream region of the other MV pathway gene cluster (MV1), which had previously been cloned from strain KO-3988. This was the first example of prokaryotic enzymes with these biosynthetic functions. By phylogenetic analysis, these two MV pathway clusters were identified as probably being independently distributed in strain KO-3988 (orthologs), rather than one cluster being generated by the duplication of the other cluster (paralogs).
Collapse
Affiliation(s)
- Takashi Kawasaki
- Biotechnology Research Center, Toyama Prefectural University, Toyama 939-0398, Japan
| | | | | | | | | | | | | |
Collapse
|
23
|
Maury J, Asadollahi MA, Møller K, Clark A, Nielsen J. Microbial Isoprenoid Production: An Example of Green Chemistry through Metabolic Engineering. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2005; 100:19-51. [PMID: 16270655 DOI: 10.1007/b136410] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Saving energy, cost efficiency, producing less waste, improving the biodegradability of products, potential for producing novel and complex molecules with improved properties, and reducing the dependency on fossil fuels as raw materials are the main advantages of using biotechnological processes to produce chemicals. Such processes are often referred to as green chemistry or white biotechnology. Metabolic engineering, which permits the rational design of cell factories using directed genetic modifications, is an indispensable strategy for expanding green chemistry. In this chapter, the benefits of using metabolic engineering approaches for the development of green chemistry are illustrated by the recent advances in microbial production of isoprenoids, a diverse and important group of natural compounds with numerous existing and potential commercial applications. Accumulated knowledge on the metabolic pathways leading to the synthesis of the principal precursors of isoprenoids is reviewed, and recent investigations into isoprenoid production using engineered cell factories are described.
Collapse
Affiliation(s)
- Jérôme Maury
- Center for Microbial Biotechnology, BioCentrum-DTU, Building 223, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | | | | | | | | |
Collapse
|
24
|
Dairi T. Studies on Biosynthetic Genes and Enzymes of Isoprenoids Produced by Actinomycetes. J Antibiot (Tokyo) 2005; 58:227-43. [PMID: 15981409 DOI: 10.1038/ja.2005.27] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Most Streptomyces strains are equipped with only the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway for the formation of isopentenyl diphosphate, a common precursor of isoprenoids. In addition to this pathway, some Streptomyces strains possess the mevalonate (MV) pathway via which isoprenoid antibiotics are produced. We have recently cloned and analyzed the MV pathway gene clusters and their flanking regions from terpentecin, BE-40644, and furaquinocin A producers. All these clusters contained genes coding for mevalonate kinase, mevalonate diphosphate decarboxylase, phosphomevalonate kinase, type 2 IPP isomerase, HMG-CoA reductase, and HMG-CoA synthase. The order of each of the open reading frames (ORFs) is also the same, and the respective homologous ORFs show more than 70% amino acid identity with each other. In contrast to these conservative gene organizations, the biosynthetic genes of terpentecin, BE-40644, and furaquinocin A were located just upstream and/or downstream of the MV pathway gene cluster. These facts suggested that all the actinomycete strains possessing both the MV and MEP pathways produce isoprenoid compounds and the biosynthetic genes of one of these isoprenoids usually exist adjacent to the MV pathway gene cluster. Therefore, when the presence of the MV cluster is detected by molecular genetic techniques, isoprenoids may be produced by the cultivation of these actinomycete strains. During the course of these studies, we identified diterpene cyclases possessing unique primary structures that differ from those of eukaryotes and catalyze unique reactions.
Collapse
Affiliation(s)
- Tohru Dairi
- Biotechnology Research Center, Toyama Prefectural University, 5180 Kurokawa, Kosugi-machi, Toyama 939-0398, Japan.
| |
Collapse
|
25
|
Guevara-García A, San Román C, Arroyo A, Cortés ME, de la Luz Gutiérrez-Nava M, León P. Characterization of the Arabidopsis clb6 mutant illustrates the importance of posttranscriptional regulation of the methyl-D-erythritol 4-phosphate pathway. THE PLANT CELL 2005; 17:628-43. [PMID: 15659625 PMCID: PMC548831 DOI: 10.1105/tpc.104.028860] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2004] [Accepted: 11/24/2004] [Indexed: 05/17/2023]
Abstract
The biosynthesis of isopentenyl diphosphate and dimethylallyl diphosphate, the two building blocks for isoprenoid biosynthesis, occurs by two independent pathways in plants. The mevalonic pathway operates in the cytoplasm, and the methyl-d-erythritol 4-phosphate (MEP) pathway operates in plastids. Plastidic isoprenoids play essential roles in plant growth and development. Plants must regulate the biosynthesis of isoprenoids to fulfill metabolic requirements in specific tissues and developmental conditions. The regulatory events that modulate the plant MEP pathway are not well understood. In this article, we demonstrate that the CHLOROPLAST BIOGENESIS6 (CLB6) gene, previously shown to be required for chloroplast development, encodes 1-hydroxy-2-methyl-butenyl 4-diphosphate reductase, the last-acting enzyme of the MEP pathway. Comparative analysis of the expression levels of all MEP pathway gene transcripts and proteins in the clb6-1 mutant background revealed that posttranscriptional control modulates the levels of different proteins in this central pathway. Posttranscriptional regulation was also found during seedling development and during fosmidomycin inhibition of the pathway. Our results show that the first enzyme of the pathway, 1-deoxy-d-xylulose 5-phosphate synthase, is feedback regulated in response to the interruption of the flow of metabolites through the MEP pathway.
Collapse
Affiliation(s)
- Arturo Guevara-García
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Morelos 62271, Mexico.
| | | | | | | | | | | |
Collapse
|
26
|
Eguchi T, Dekishima Y, Hamano Y, Dairi T, Seto H, Kakinuma K. A new approach for the investigation of isoprenoid biosynthesis featuring pathway switching, deuterium hyperlabeling, and 1H NMR spectroscopy. The reaction mechanism of a novel streptomyces diterpene cyclase. J Org Chem 2003; 68:5433-8. [PMID: 12839434 DOI: 10.1021/jo026728a] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recent methodology for the investigation of isoprenoid biosynthesis featuring pathway switching and hyperdeuteration has shown significant advantages in elucidating the reaction mechanism of a novel Streptomyces diterpene cyclase with use of precise atom-level analysis. Insight into the cyclization mechanism involved in the conversion of geranylgeranyl diphosphate (GGPP) into a clerodane hydrocarbon terpentetriene was obtained by heterologous expression in doubly engineered Streptomyces lividans of a diterpene cyclase gene derived from Streptomyces griseolosporeus, a producer of an unique diterpenoid cytotoxic antibiotic terpentecin, and by in vivo labeling with mevalonate-d(9). The cyclization involved electrophilic protonation, cationic ring closure, Wagner-Meerwein-type rearrangements, and deprotonation. A key feature was that the labeled metabolite as a mixture of predominantly deuterated mosaic molecules provided sufficient information that close analysis of the labeling pattern for each individual isoprene unit was achieved primarily by (1)H NMR spectroscopy. The cyclization of GGPP into the clerodane skeleton catalyzed by the cyclase appears to involve Si-face specific protonation, intermediates with A/B chair-boat conformation, and specific methyl and hydride migrations to give an intermediary C-4 carbocation. Subsequent collapse of the cation through specific removal of the initiating proton and final elimination of diphosphate gives rise to the terpentetriene hydrocarbon.
Collapse
Affiliation(s)
- Tadashi Eguchi
- Department of Chemistry and Materials Science, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8551, Japan.
| | | | | | | | | | | |
Collapse
|
27
|
Sutherlin A, Hedl M, Sanchez-Neri B, Burgner JW, Stauffacher CV, Rodwell VW. Enterococcus faecalis 3-hydroxy-3-methylglutaryl coenzyme A synthase, an enzyme of isopentenyl diphosphate biosynthesis. J Bacteriol 2002; 184:4065-70. [PMID: 12107122 PMCID: PMC135212 DOI: 10.1128/jb.184.15.4065-4070.2002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Biosynthesis of the isoprenoid precursor isopentenyl diphosphate (IPP) proceeds via two distinct pathways. Sequence comparisons and microbiological data suggest that multidrug-resistant strains of gram-positive cocci employ exclusively the mevalonate pathway for IPP biosynthesis. Bacterial mevalonate pathway enzymes therefore offer potential targets for development of active site-directed inhibitors for use as antibiotics. We used the PCR and Enterococcus faecalis genomic DNA to isolate the mvaS gene that encodes 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) synthase, the second enzyme of the mevalonate pathway. mvaS was expressed in Escherichia coli from a pET28 vector with an attached N-terminal histidine tag. The expressed enzyme was purified by affinity chromatography on Ni(2+)-agarose to apparent homogeneity and a specific activity of 10 micromol/min/mg. Analytical ultracentrifugation showed that the enzyme is a dimer (mass, 83.9 kDa; s(20,w), 5.3). Optimal activity occurred in 2.0 mM MgCl(2) at 37(o)C. The DeltaH(a) was 6,000 cal. The pH activity profile, optimum activity at pH 9.8, yielded a pK(a) of 8.8 for a dissociating group, presumably Glu78. The stoichiometry per monomer of acetyl-CoA binding was 1.2 +/- 0.2 and that of covalent acetylation was 0.60 +/- 0.02. The K(m) for the hydrolysis of acetyl-CoA was 10 microM. Coupled conversion of acetyl-CoA to mevalonate was demonstrated by using HMG-CoA synthase and acetoacetyl-CoA thiolase/HMG-CoA reductase from E. faecalis.
Collapse
Affiliation(s)
- Autumn Sutherlin
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907-1153, USA
| | | | | | | | | | | |
Collapse
|
28
|
Dairi T, Hamano Y, Kuzuyama T, Itoh N, Furihata K, Seto H. Eubacterial diterpene cyclase genes essential for production of the isoprenoid antibiotic terpentecin. J Bacteriol 2001; 183:6085-94. [PMID: 11567009 PMCID: PMC99688 DOI: 10.1128/jb.183.20.6085-6094.2001] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A gene cluster containing the mevalonate pathway genes (open reading frame 2 [ORF2] to ORF7) for the formation of isopentenyl diphosphate and a geranylgeranyl diphosphate (GGDP) synthase gene (ORF1) had previously been cloned from Streptomyces griseolosporeus strain MF730-N6, a diterpenoid antibiotic, terpentecin (TP) producer (Y. Hamano, T. Dairi, M. Yamamoto, T. Kawasaki, K Kaneda, T. Kuzuyama, N. Itoh, and H. Seto, Biosci. Biotech. Biochem. 65:1627-1635, 2001). Sequence analysis in the upstream region of the cluster revealed seven new ORFs, ORF8 to ORF14, which were suggested to encode TP biosynthetic genes. We constructed two mutants, in which ORF11 and ORF12, which encode a protein showing similarities to eukaryotic diterpene cyclases (DCs) and a eubacterial pentalenene synthase, respectively, were inactivated by gene disruptions. The mutants produced no TP, confirming that these cyclase genes are essential for the production of TP. The two cyclase genes were also expressed in Streptomyces lividans together with the GGDP synthase gene under the control of the ermE* constitutive promoter. The transformant produced a novel cyclic diterpenoid, ent-clerod-3,13(16),14-triene (terpentetriene), which has the same basic skeleton as TP. The two enzymes, each of which was overproduced in Escherichia coli and purified to homogeneity, converted GGDP into terpentetriene. To the best of our knowledge, this is the first report of a eubacterial DC.
Collapse
Affiliation(s)
- T Dairi
- Biotechnology Research Center, Toyama Prefectural University, Toyama, Japan.
| | | | | | | | | | | |
Collapse
|