1
|
Jiang C, Ge J, He B, Zhang Z, Hu Z, Li Y, Zeng B. Transcriptomic analysis reveals Aspergillus oryzae responds to temperature stress by regulating sugar metabolism and lipid metabolism. PLoS One 2022; 17:e0274394. [PMID: 36094945 PMCID: PMC9467314 DOI: 10.1371/journal.pone.0274394] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 08/26/2022] [Indexed: 11/19/2022] Open
Abstract
Aspergillus oryzae is widely used in industrial applications, which always encounter changes within multiple environmental conditions during fermentation, such as temperature stress. However, the molecular mechanisms by which A. oryzae protects against temperature stress have not been elucidated. Therefore, this study aimed to characterize the fermentative behavior, transcriptomic profiles, and metabolic changes of A. oryzae in response to temperature stress. Both low and high temperatures inhibited mycelial growth and conidial formation of A. oryzae. Transcriptomic analysis revealed that most differentially expressed genes (DEGs) were involved in sugar metabolism and lipid metabolism under temperature stress. Specifically, the DEGs in trehalose synthesis and starch metabolism were upregulated under low-temperature stress, while high temperatures inhibited the expression of genes involved in fructose, galactose, and glucose metabolism. Quantitative analysis of intracellular sugar further revealed that low temperature increased trehalose accumulation, while high temperature increased the contents of intracellular trehalose, galactose, and glucose, consistent with transcriptome analysis. In addition, most DEGs involved in lipid metabolism were significantly downregulated under low-temperature stress. Furthermore, the metabolomic analysis revealed that linoleic acid, triacylglycerol, phosphatidylethanolamine, and phosphoribosyl were significantly decreased in response to low-temperature stress. These results increase our understanding of the coping mechanisms of A. oryzae in response to temperature stress, which lays the foundation for future improvements through genetic modification to enhance A. oryzae against extreme temperature stress.
Collapse
Affiliation(s)
- Chunmiao Jiang
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-Vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
- * E-mail: (CJ); (BZ)
| | - Jinxin Ge
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-Vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Bin He
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-Vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Zhe Zhang
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-Vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Zhihong Hu
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-Vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Yongkai Li
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-Vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Bin Zeng
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-Vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
- College of Pharmacy, Shenzhen Technology University, Shenzhen, China
- * E-mail: (CJ); (BZ)
| |
Collapse
|
2
|
Geng X, Yang D, Zhang Q, Chang M, Xu L, Cheng Y, Wang H, Meng J. Good hydrolysis activity on raffinose family oligosaccharides by a novel α-galactosidase from Tremella aurantialba. Int J Biol Macromol 2020; 150:1249-1257. [PMID: 31739012 DOI: 10.1016/j.ijbiomac.2019.10.136] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 10/12/2019] [Accepted: 10/14/2019] [Indexed: 02/06/2023]
Abstract
An α-galactosidase designated as TAG was purified from the dried fruit bodies of Tremella aurantialba with 182.5-fold purification. The purification procedure involved ion exchange chromatography on Q-sepharose, DEAE-Cellulose, and Mono Q and gel filtration by FPLC on Superdex 75. The purified α-galactosidase was a monomeric protein with a molecular mass of 88 kDa. The optimal pH of TAG was 5.0 and more than 60% of the original enzyme activity remained at pH 2.0 and 3.0. Its optimal temperature was 54 °C with good thermo-stability, 30.8% of the original activity was retained after exposure to a temperature of 70 °C for 1 h. The metal ions Hg2+, Cu2+, Fe3+ and Mg2+ strongly inhibited the enzyme activity. The enzyme activity was found to be inhibited by N-bromosuccinimide indicating that tryptophan was essential to the catalytic activity of α-galactosidase. The enzyme completely hydrolysed stachyose and partially hydrolysed raffinose to galactose at 50 °C within 6 h as detected by thin layer chromatography and the dinitrosalicylic acid method and the content of reducing sugar reached 4.36 mg/mL.
Collapse
Affiliation(s)
- Xueran Geng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China; Collaborative Innovation Center of Advancing Quality and Efficiency of Loess Plateau Edible Fungi, Taigu, Shanxi 030801, China; State Key Laboratory for Agrobiotechnology and Department of Microbiology, China Agricultural University, Beijing 100193, China
| | - Dongxue Yang
- State Key Laboratory for Agrobiotechnology and Department of Microbiology, China Agricultural University, Beijing 100193, China
| | - Qiaoyi Zhang
- Orient Science & Technology College of Hunan Agricultural University, China
| | - Mingchang Chang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China; Collaborative Innovation Center of Advancing Quality and Efficiency of Loess Plateau Edible Fungi, Taigu, Shanxi 030801, China
| | - Lijing Xu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China; Collaborative Innovation Center of Advancing Quality and Efficiency of Loess Plateau Edible Fungi, Taigu, Shanxi 030801, China
| | - Yanfen Cheng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China; Collaborative Innovation Center of Advancing Quality and Efficiency of Loess Plateau Edible Fungi, Taigu, Shanxi 030801, China
| | - Hexiang Wang
- State Key Laboratory for Agrobiotechnology and Department of Microbiology, China Agricultural University, Beijing 100193, China.
| | - Junlong Meng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China; Collaborative Innovation Center of Advancing Quality and Efficiency of Loess Plateau Edible Fungi, Taigu, Shanxi 030801, China.
| |
Collapse
|
3
|
Liu Q, Du F, Kong W, Wang H, Ng TB. Fermentation Production, Purification and Characterization of a Fungal α-galactosidase from Trametes versicolor and Its Synergistic Degradation of Guar Gum with Mannanase. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2020. [DOI: 10.3136/fstr.26.265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Qin Liu
- Institute of Plant Nutrition, Agricultural Resources and Environmental Science, Henan Academy of Agricultural Sciences
| | - Fang Du
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences
| | - Weili Kong
- Institute of Plant Nutrition, Agricultural Resources and Environmental Science, Henan Academy of Agricultural Sciences
| | - Hexiang Wang
- State Key Laboratory for Agrobiotechnology and Department of Microbiology, China Agricultural University
| | - Tzi Bun Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories
| |
Collapse
|
4
|
An JL, Zhang WX, Wu WP, Chen GJ, Liu WF. Characterization of a highly stable α-galactosidase from thermophilic Rasamsonia emersonii heterologously expressed in a modified Pichia pastoris expression system. Microb Cell Fact 2019; 18:180. [PMID: 31647018 PMCID: PMC6813122 DOI: 10.1186/s12934-019-1234-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/14/2019] [Indexed: 11/10/2022] Open
Abstract
Background Structurally stable α-galactosidases are of great interest for various biotechnological applications. More thermophilic α-galactosidases with high activity and structural stability have therefore to be mined and characterized. On the other hand, few studies have been performed to prominently enhance the AOX1 promoter activity in the commonly used Pichia pastoris system, in which production of some heterologous proteins are insufficient for further study. Results ReGal2 encoding a thermoactive α-galactosidase was identified from the thermophilic (hemi)cellulolytic fungus Rasamsonia emersonii. Significantly increased production of ReGal2 was achieved when ReGal2 was expressed in an engineered Pastoris pichia expression system with a modified AOX1 promoter and simultaneous fortified expression of Mxr1 that is involved in transcriptionally activating AOX1. Purified ReGal2 exists as an oligomer and has remarkable thermo-activity and thermo-tolerance, exhibiting maximum activity of 935 U/mg towards pNPGal at 80 °C and retaining full activity after incubation at 70 °C for 60 h. ReGal2 is insensitive to treatments by many metal ions and exhibits superior tolerance to protein denaturants. Moreover, ReGal2 efficiently hydrolyzed stachyose and raffinose in soybeans at 70 °C in 3 h and 24 h, respectively. Conclusion A modified P. pichia expression system with significantly enhanced AOX1 promoter activity has been established, in which ReGal2 production is markedly elevated to facilitate downstream purification and characterization. Purified ReGal2 exhibited prominent features in thermostability, catalytic activity, and resistance to protein denaturants. ReGal2 thus holds great potential in relevant biotechnological applications.
Collapse
Affiliation(s)
- Jian-Lu An
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, People's Republic of China
| | - Wei-Xin Zhang
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, People's Republic of China.
| | - Wei-Ping Wu
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, People's Republic of China
| | - Guan-Jun Chen
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, People's Republic of China
| | - Wei-Feng Liu
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, People's Republic of China
| |
Collapse
|
5
|
Ye F, Geng XR, Xu LJ, Chang MC, Feng CP, Meng JL. Purification and characterization of a novel protease-resistant GH27 α-galactosidase from Hericium erinaceus. Int J Biol Macromol 2018; 120:2165-2174. [PMID: 30195005 DOI: 10.1016/j.ijbiomac.2018.09.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 09/04/2018] [Accepted: 09/04/2018] [Indexed: 01/01/2023]
Abstract
A novel 57-kDa acidic α-galactosidase designated as HEG has been purified from the dry fruiting bodies of Hericium erinaceus. The isolation protocol involved ion-exchange chromatography and gel filtration on a Superdex75 column. The purification fold and specific activity were 1251 and 46 units/mg, respectively. A BLAST search of internal peptide sequences obtained by liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis suggested that the enzyme belonged to the GH27 family. The activity of the enzyme reached its maximum at a pH of 6.0 or at 60 °C. The enzyme was stable within an acidic pH range of 2.2-7.0 and in a narrow temperature range. The enzyme was strongly inhibited by Zn2+, Fe3+, Ag+ ions and SDS. The Lineweaver-Burk plot suggested that the mode of inhibition by galactose and melibiose were of a mixed type. N-bromosuccinimide drastically decreased the activity of the enzyme, whereas diethylpyrocarbonate and carbodiimide strengthened the activity slightly. Moreover, the isolated enzyme displayed remarkable resistance to acid proteases, neutral proteases and pepsin. The enzyme could also hydrolyse oligosaccharides and polysaccharides. In addition, acidic protease promoted the hydrolysis of RFOs by HEG. The Km values of the enzyme towards pNPGal, raffinose and stachyose were 0.36 mM, 40.07 mM and 54.71 mM, respectively. These favourable properties increase the potential of the enzyme in the food industry and animal feed applications.
Collapse
Affiliation(s)
- Feng Ye
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China; Collaborative Innovation Center of Advancing Quality and Efficiency of Loess Plateau Edible Fungi, Taigu, 030801, China
| | - Xue-Ran Geng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China; Collaborative Innovation Center of Advancing Quality and Efficiency of Loess Plateau Edible Fungi, Taigu, 030801, China
| | - Li-Jing Xu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China; Collaborative Innovation Center of Advancing Quality and Efficiency of Loess Plateau Edible Fungi, Taigu, 030801, China
| | - Ming-Chang Chang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China; Collaborative Innovation Center of Advancing Quality and Efficiency of Loess Plateau Edible Fungi, Taigu, 030801, China
| | - Cui-Ping Feng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China; Collaborative Innovation Center of Advancing Quality and Efficiency of Loess Plateau Edible Fungi, Taigu, 030801, China
| | - Jun-Long Meng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China; Collaborative Innovation Center of Advancing Quality and Efficiency of Loess Plateau Edible Fungi, Taigu, 030801, China.
| |
Collapse
|
6
|
Geng X, Fan J, Xu L, Wang H, Ng TB. Hydrolysis of oligosaccharides by a fungal α-galactosidase from fruiting bodies of a wild mushroom Leucopaxillus tricolor. J Basic Microbiol 2018; 58:1043-1052. [DOI: 10.1002/jobm.201800215] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/23/2018] [Accepted: 08/05/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Xueran Geng
- College of Food Science and Engineering; Shanxi Agricultural University; Taigu Shanxi China
- State Key Laboratory for Agrobiotechnology and Department of Microbiology; China Agricultural University; Beijing China
| | - Jing Fan
- Hebei Foreing Studies University; Shijiazhuang Hebei China
| | - Lijing Xu
- College of Food Science and Engineering; Shanxi Agricultural University; Taigu Shanxi China
| | - Hexiang Wang
- State Key Laboratory for Agrobiotechnology and Department of Microbiology; China Agricultural University; Beijing China
| | - Tzi Bun Ng
- Faculty of Medicine; School of Biomedical Sciences; The Chinese University of Hong Kong; Shatin, New Territories Hong Kong China
| |
Collapse
|
7
|
Characterization of a novel GH36 α-galactosidase from Bacillus megaterium and its application in degradation of raffinose family oligosaccharides. Int J Biol Macromol 2018; 108:98-104. [DOI: 10.1016/j.ijbiomac.2017.11.154] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/31/2017] [Accepted: 11/25/2017] [Indexed: 11/21/2022]
|
8
|
Isolation of a protease-resistant and pH-stable α-galactosidase displaying hydrolytic efficacy toward raffinose family oligosaccharides from the button mushroom Agaricus bisporus. Int J Biol Macromol 2017. [DOI: 10.1016/j.ijbiomac.2017.06.077] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Thermus thermophilus as source of thermozymes for biotechnological applications: homologous expression and biochemical characterization of an α-galactosidase. Microb Cell Fact 2017; 16:28. [PMID: 28193276 PMCID: PMC5307791 DOI: 10.1186/s12934-017-0638-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 01/25/2017] [Indexed: 11/17/2022] Open
Abstract
Background The genus Thermus, which has been considered for a long time as a fruitful source of biotechnological relevant enzymes, has emerged more recently as suitable host to overproduce thermozymes. Among these, α-galactosidases are widely used in several industrial bioprocesses that require high working temperatures and for which thermostable variants offer considerable advantages over their thermolabile counterparts. Results Thermus thermophilus HB27 strain was used for the homologous expression of the TTP0072 gene encoding for an α-galactosidase (TtGalA). Interestingly, a soluble and active histidine-tagged enzyme was produced in larger amounts (5 mg/L) in this thermophilic host than in Escherichia coli (0.5 mg/L). The purified recombinant enzyme showed an optimal activity at 90 °C and retained more than 40% of activity over a broad range of pH (from 5 to 8). Conclusions TtGalA is among the most thermoactive and thermostable α-galactosidases discovered so far, thus pointing to T. thermophilus as cell factory for the recombinant production of biocatalysts active at temperature values over 90 °C. Electronic supplementary material The online version of this article (doi:10.1186/s12934-017-0638-4) contains supplementary material, which is available to authorized users.
Collapse
|
10
|
Teerapatsakul C, Chitradon L. Physiological Regulation of an Alkaline-Resistant Laccase Produced by Perenniporia tephropora and Efficiency in Biotreatment of Pulp Mill Effluent. MYCOBIOLOGY 2016; 44:260-268. [PMID: 28154483 PMCID: PMC5287158 DOI: 10.5941/myco.2016.44.4.260] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 08/21/2016] [Accepted: 09/19/2016] [Indexed: 05/31/2023]
Abstract
Regulation of alkaline-resistant laccase from Perenniporia tephropora KU-Alk4 was proved to be controlled by several factors. One important factor was the initial pH, which drove the fungus to produce different kinds of ligninolytic enzymes. P. tephropora KU-Alk4 could grow at pH 4.5, 7.0, and 8.0. The fungus produced laccase and MnP at pH 7.0, but only laccase at pH 8.0. The specific activity of laccase in the pH 8.0 culture was higher than that in the pH 7.0 culture. At pH 8.0, glucose was the best carbon source for laccase production but growth was better with lactose. Low concentrations of glucose at 0.1% to 1.0% enhanced laccase production, while concentrations over 1% gave contradictory results. Veratryl alcohol induced the production of laccase. A trace concentration of copper ions was required for laccase production. Biomass increased with an increasing rate of aeration of shaking flasks from 100 to 140 rpm; however, shaking at over 120 rpm decreased laccase quantity. Highest amount of laccase produced by KU-Alk4, 360 U/mL, was at pH 8.0 with 1% glucose and 0.2 mM copper sulfate, unshaken for the first 3 days, followed by addition of 0.85 mM veratryl alcohol and shaking at 120 rpm. The crude enzyme was significantly stable in alkaline pH 8.0~10.0 for 24 hr. After treating the pulp mill effluent with the KU-Alk4 system for 3 days, pH decreased from 9.6 to 6.8, with reduction of color and chemical oxygen demand at 83.2% and 81%, respectively. Laccase was detectable during the biotreatment process.
Collapse
Affiliation(s)
- Churapa Teerapatsakul
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand.; Center for Advanced Studies in Tropical Natural Resources, Kasetsart University, Bangkok 10900, Thailand
| | - Lerluck Chitradon
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand.; Center for Advanced Studies in Tropical Natural Resources, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
11
|
Zhou J, Lu Q, Zhang R, Wang Y, Wu Q, Li J, Tang X, Xu B, Ding J, Huang Z. Characterization of two glycoside hydrolase family 36 α-galactosidases: Novel transglycosylation activity, lead–zinc tolerance, alkaline and multiple pH optima, and low-temperature activity. Food Chem 2016; 194:156-66. [DOI: 10.1016/j.foodchem.2015.08.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 08/03/2015] [Accepted: 08/05/2015] [Indexed: 11/24/2022]
|
12
|
Hydrolysis of Oligosaccharides by a Thermostable α-Galactosidase from Termitomyces eurrhizus. Int J Mol Sci 2015; 16:29226-35. [PMID: 26670230 PMCID: PMC4691104 DOI: 10.3390/ijms161226159] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 11/27/2015] [Accepted: 12/01/2015] [Indexed: 11/16/2022] Open
Abstract
The genus of Termitomyces purchased from the market has been identified as Termitomyces eurrhizus using the Internal Transcribed Spacer (ITS) method. An α-galactosidase from T. eurrhizus (TEG), a monomeric protein with a molecular mass of 72 kDa, was purified 146 fold by employing ion exchange chromatography and gel filtration. The optimum pH and temperature was 5.0 and 60 °C, respectively. TEG was stable over pH 2–6, and also exhibited good thermostablility, retaining 100% of the original activity after incubation at 60 °C for 2 h. Inhibition of the enzyme activity by N-bromosuccinimide (NBS) constituted evidence for an essential role of tryptophan in the catalytic action of the isolated enzyme. Besides 4-nitro-phenyl α-d-galactophyranoside (pNPGal), natural substrates could also be effectively hydrolyzed by TEG. Results of thin-layer chromatography (TLC) revealed complete enzymatic hydrolysis of raffinose and stachyose to galactose at 50 °C within 6 h. These properties of TEG advocate its utilization for elevating the nutritional value of soymilk.
Collapse
|
13
|
Geng X, Tian G, Zhao Y, Zhao L, Wang H, Ng TB. A Fungal α-Galactosidase from Tricholoma matsutake with Broad Substrate Specificity and Good Hydrolytic Activity on Raffinose Family Oligosaccharides. Molecules 2015; 20:13550-62. [PMID: 26213909 PMCID: PMC6332393 DOI: 10.3390/molecules200813550] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 07/17/2015] [Accepted: 07/17/2015] [Indexed: 11/16/2022] Open
Abstract
An acidic α-galactosidase designated as TMG was purified from the fruiting bodies The purification protocol entailed ion exchange chromatography on Q-Sepharose and of Tricholoma matsutake with 136-fold purification and a specific activity of 909 units/mg. Mono-Q and fast protein liquid chromatography on Superdex 75. TMG is a monomeric protein exhibiting a molecular mass of 47 kDa in SDS-PAGE and gel filtration. The purified enzyme was identified by LC-MS/MS and three inner amino acid sequences were obtained. The optimum pH and temperature for TMG with pNPGal as substrate were pH 4.5 and 55 °C, respectively. The α-galactosidase activity was strongly inhibited by K+, Ca2+, Cd2+, Hg2+, Ag+ and Zn2+ ions. The enzyme activity was inhibited by the chemical modification agent N-bromosuccinimide (NBS), indicating the importance of tryptophan residue(s) at or near the active site. Besides hydrolyzing pNPGal, TMG also efficaciously catalyzed the degradation of natural substrates such as stachyose, raffinose, and melibiose. Thus TMG can be exploited commercially for improving the nutritional value of soy milk by degradation of indigestible oligosaccharides.
Collapse
Affiliation(s)
- Xueran Geng
- State Key Laboratory for Agrobiotechnology, Department of Microbiology, China Agricultural University, Beijing 100193, China.
| | - Guoting Tian
- Institute of Biotechnology and Germplasmic Resource, Yunnan Academy of Agricultural Science, Kunming 650223, China.
| | - Yongchang Zhao
- Institute of Biotechnology and Germplasmic Resource, Yunnan Academy of Agricultural Science, Kunming 650223, China.
| | - Liyan Zhao
- College of Food Science and Technology, Nanjing Agricultural University, Weigang, Nanjing 210095, China.
| | - Hexiang Wang
- State Key Laboratory for Agrobiotechnology, Department of Microbiology, China Agricultural University, Beijing 100193, China.
| | - Tzi Bun Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| |
Collapse
|
14
|
Yu GJ, Yin YL, Yu WH, Liu W, Jin YX, Shrestha A, Yang Q, Ye XD, Sun H. Proteome exploration to provide a resource for the investigation of Ganoderma lucidum. PLoS One 2015; 10:e0119439. [PMID: 25756518 PMCID: PMC4355618 DOI: 10.1371/journal.pone.0119439] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 01/13/2015] [Indexed: 12/16/2022] Open
Abstract
Ganoderma lucidum is a basidiomycete white rot fungus that has been used for medicinal purposes worldwide. Although information concerning its genome and transcriptome has recently been reported, relatively little information is available for G. lucidum at the proteomic level. In this study, protein fractions from G. lucidum at three developmental stages (16-day mycelia, and fruiting bodies at 60 and 90 days) were prepared and subjected to LC-MS/MS analysis. A search against the G. lucidum genome database identified 803 proteins. Among these proteins, 61 lignocellulose degrading proteins were detected, most of which (49 proteins) were found in the 90-day fruiting bodies. Fourteen TCA-cycle related proteins, 17 peptidases, two argonaute-like proteins, and two immunomodulatory proteins were also detected. A majority (470) of the 803 proteins had GO annotations and were classified into 36 GO terms, with "binding", "catalytic activity", and "hydrolase activity" having high percentages. Additionally, 357 out of the 803 proteins were assigned to at least one COG functional category and grouped into 22 COG classifications. Based on the results from the proteomic and sequence alignment analyses, a potentially new immunomodulatory protein (GL18769) was expressed and shown to have high immunomodulatory activity. In this study, proteomic and biochemical analyses of G. lucidum were performed for the first time, revealing that proteins from this fungus can play significant bioactive roles and providing a new foundation for the further functional investigations that this fungus merits.
Collapse
Affiliation(s)
- Guo-Jun Yu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Ya-Lin Yin
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Wen-Hui Yu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Wei Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yan-Xia Jin
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Alok Shrestha
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Qing Yang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiang-Dong Ye
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Hui Sun
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan University, Wuhan, China
- Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China
| |
Collapse
|
15
|
Rytioja J, Hildén K, Yuzon J, Hatakka A, de Vries RP, Mäkelä MR. Plant-polysaccharide-degrading enzymes from Basidiomycetes. Microbiol Mol Biol Rev 2014; 78:614-49. [PMID: 25428937 PMCID: PMC4248655 DOI: 10.1128/mmbr.00035-14] [Citation(s) in RCA: 221] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
SUMMARY Basidiomycete fungi subsist on various types of plant material in diverse environments, from living and dead trees and forest litter to crops and grasses and to decaying plant matter in soils. Due to the variation in their natural carbon sources, basidiomycetes have highly varied plant-polysaccharide-degrading capabilities. This topic is not as well studied for basidiomycetes as for ascomycete fungi, which are the main sources of knowledge on fungal plant polysaccharide degradation. Research on plant-biomass-decaying fungi has focused on isolating enzymes for current and future applications, such as for the production of fuels, the food industry, and waste treatment. More recently, genomic studies of basidiomycete fungi have provided a profound view of the plant-biomass-degrading potential of wood-rotting, litter-decomposing, plant-pathogenic, and ectomycorrhizal (ECM) basidiomycetes. This review summarizes the current knowledge on plant polysaccharide depolymerization by basidiomycete species from diverse habitats. In addition, these data are compared to those for the most broadly studied ascomycete genus, Aspergillus, to provide insight into specific features of basidiomycetes with respect to plant polysaccharide degradation.
Collapse
Affiliation(s)
- Johanna Rytioja
- Department of Food and Environmental Sciences, Division of Microbiology and Biotechnology, University of Helsinki, Helsinki, Finland
| | - Kristiina Hildén
- Department of Food and Environmental Sciences, Division of Microbiology and Biotechnology, University of Helsinki, Helsinki, Finland
| | - Jennifer Yuzon
- Fungal Physiology, CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands
| | - Annele Hatakka
- Department of Food and Environmental Sciences, Division of Microbiology and Biotechnology, University of Helsinki, Helsinki, Finland
| | - Ronald P de Vries
- Fungal Physiology, CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands
| | - Miia R Mäkelä
- Department of Food and Environmental Sciences, Division of Microbiology and Biotechnology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
16
|
Roopashri AN, Varadaraj MC. Hydrolysis of flatulence causing oligosaccharides by α-d-galactosidase of a probiotic Lactobacillus plantarum MTCC 5422 in selected legume flours and elaboration of probiotic attributes in soy-based fermented product. Eur Food Res Technol 2014. [DOI: 10.1007/s00217-014-2207-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Purification an α-galactosidase from Coriolus versicolor with acid-resistant and good degradation ability on raffinose family oligosaccharides. World J Microbiol Biotechnol 2013; 30:1261-7. [DOI: 10.1007/s11274-013-1549-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 10/29/2013] [Indexed: 11/27/2022]
|
18
|
Du F, Zhu M, Wang H, Ng T. Purification and characterization of an α-galactosidase from Phaseolus coccineus seeds showing degrading capability on raffinose family oligosaccharides. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 69:49-53. [PMID: 23727589 DOI: 10.1016/j.plaphy.2013.04.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 04/26/2013] [Indexed: 06/02/2023]
Abstract
An acidic α-galactosidase (EC 3.2.1.22) designated as Phaseolus coccineus seeds galactosidase (PCG) was purified from P. coccineus seeds using ion-exchange chromatography on DEAE- and CM-cellulose, Q- and SP-Sepharose and gel filtration on Superdex 75. The molecular weight of PCG was 43 kDa as judged by SDS-PAGE and gel filtration. Two inner peptides of PCG were sequenced by MALDI-TOF-MS. The optimum pH and temperature was 3.0 and 70 °C, respectively but was stable up to 60 °C for 30 min. The enzyme activity was inhibited by NBS signifying the pivotal role played by tryptophan in the catalytic activity of the enzyme. The Km for hydrolysis of pNPGal was 0.0025 mM. Besides hydrolyzing pNPGal, α-galactosidases also hydrolyzed natural substrates such as melibiose, raffinose and stachyose. Hence it can be exploited commercially for improving the nutritional value of soymilk. Thus the PCG has great potential in the feed industries for removal of non-digestible oligosaccharide from legumes.
Collapse
Affiliation(s)
- Fang Du
- State Key Laboratory for Agrobiotechnology and Department of Microbiology, China Agricultural University, Beijing 100193, China
| | | | | | | |
Collapse
|
19
|
Manavalan T, Manavalan A, Thangavelu KP, Heese K. Secretome analysis of Ganoderma lucidum cultivated in sugarcane bagasse. J Proteomics 2012; 77:298-309. [DOI: 10.1016/j.jprot.2012.09.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 08/31/2012] [Accepted: 09/08/2012] [Indexed: 10/27/2022]
|
20
|
Zhou XW, Cong WR, Su KQ, Zhang YM. Ligninolytic enzymes fromGanodermaspp: Current status and potential applications. Crit Rev Microbiol 2012; 39:416-26. [DOI: 10.3109/1040841x.2012.722606] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
21
|
Viana PA, Rezende ST, Meza AN, Gomide FT, Nagem RA, Santos AM, Santoro MM, Guimarães VM. Spectroscopic and thermodynamic properties of Debaryomyces hansenii UFV-1 α-galactosidases. Int J Biol Macromol 2010; 46:298-303. [DOI: 10.1016/j.ijbiomac.2010.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Revised: 01/06/2010] [Accepted: 01/07/2010] [Indexed: 11/25/2022]
|
22
|
Chen Y, Xie MY, Wang YX, Nie SP, Li C. Analysis of the monosaccharide composition of purified polysaccharides in Ganoderma atrum by capillary gas chromatography. PHYTOCHEMICAL ANALYSIS : PCA 2009; 20:503-510. [PMID: 19743070 DOI: 10.1002/pca.1153] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
INTRODUCTION Ganoderma, one of the best-known traditional Chinese medicines, has attracted considerable attention owing to the fact that dozens of polysaccharides isolated from it have shown diverse and potentially significant pharmacological activities. However, no work has been reported on the analysis of monosaccharide composition of polysaccharide isolated from the aqueous extract of Ganoderma atrum yet. OBJECTIVE To develop a simple and sensitive GC-based method for the analysis of monosaccharide composition of purified polysaccharides in Ganoderma atrum. METHODOLOGY The polysaccharide was first hydrolysed to give the constituent monosaccharides, which were subsequently derived into acetylated aldononitriles and analysed by gas chromatography using a capillary column packed with a (5%phenyl) methylpolysiloxane stationary phase with the addition of acetyl inositol as the inner standard. High-performance liquid chromatography was also used for comparison. RESULTS The stable derivatives of the most common monosaccharides could be separated and reproducibly determined with high sensitivity. The limits of detection and quantification were 0.013 and 0.043 mg/mL, respectively. The intermediary precision values (expressed as the RSD) were less than 10%. The mean recovery of the method was 100 + or - 3%, with RSD values of less than 5%. The results obtained from GC and HPLC methods were found to be close to each other within acceptable error ranges. CONCLUSION This study demonstrated that the developed method could be applied as an accurate method for the compositional analysis of monosaccharides in the field of biological and biochemical study.
Collapse
Affiliation(s)
- Yi Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, People's Republic of China
| | | | | | | | | |
Collapse
|
23
|
A novel protease-resistant α-galactosidase with high hydrolytic activity from Gibberella sp. F75: gene cloning, expression, and enzymatic characterization. Appl Microbiol Biotechnol 2009; 83:875-84. [DOI: 10.1007/s00253-009-1939-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2008] [Revised: 02/12/2009] [Accepted: 03/01/2009] [Indexed: 10/21/2022]
|
24
|
Viana PA, de Rezende ST, Passos FML, Oliveira JS, Teixeira KN, Santos AMC, Bemquerer MP, Rosa JC, Santoro MM, Guimarães VM. Debaryomyces hansenii UFV-1 Intracellular α-Galactosidase Characterization and Comparative Studies with the Extracellular Enzyme. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2009; 57:2515-22. [PMID: 19226141 DOI: 10.1021/jf8030919] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pollyanna A. Viana
- BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, Brazil, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil, EMBRAPA Recursos Genéticos e Biotecnologia, PqEB, Brasília, DF, Brazil, and Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Sebastião T. de Rezende
- BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, Brazil, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil, EMBRAPA Recursos Genéticos e Biotecnologia, PqEB, Brasília, DF, Brazil, and Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Flávia Maria Lopes Passos
- BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, Brazil, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil, EMBRAPA Recursos Genéticos e Biotecnologia, PqEB, Brasília, DF, Brazil, and Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Jamil S. Oliveira
- BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, Brazil, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil, EMBRAPA Recursos Genéticos e Biotecnologia, PqEB, Brasília, DF, Brazil, and Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Kádima N. Teixeira
- BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, Brazil, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil, EMBRAPA Recursos Genéticos e Biotecnologia, PqEB, Brasília, DF, Brazil, and Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Alexandre M. C. Santos
- BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, Brazil, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil, EMBRAPA Recursos Genéticos e Biotecnologia, PqEB, Brasília, DF, Brazil, and Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Marcelo P. Bemquerer
- BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, Brazil, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil, EMBRAPA Recursos Genéticos e Biotecnologia, PqEB, Brasília, DF, Brazil, and Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - José C. Rosa
- BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, Brazil, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil, EMBRAPA Recursos Genéticos e Biotecnologia, PqEB, Brasília, DF, Brazil, and Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Marcelo M. Santoro
- BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, Brazil, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil, EMBRAPA Recursos Genéticos e Biotecnologia, PqEB, Brasília, DF, Brazil, and Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Valéria M. Guimarães
- BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, Brazil, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil, EMBRAPA Recursos Genéticos e Biotecnologia, PqEB, Brasília, DF, Brazil, and Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
25
|
Purification and Characterization of Thermostable α-Galactosidase from Aspergillus terreus GR. Appl Biochem Biotechnol 2008; 152:275-85. [DOI: 10.1007/s12010-008-8271-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2007] [Accepted: 05/01/2008] [Indexed: 10/22/2022]
|
26
|
Viana PA, de Rezende ST, Marques VM, Trevizano LM, Passos FML, Oliveira MGA, Bemquerer MP, Oliveira JS, Guimarães VM. Extracellular alpha-galactosidase from Debaryomyces hansenii UFV-1 and its use in the hydrolysis of raffinose oligosaccharides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2006; 54:2385-91. [PMID: 16536623 DOI: 10.1021/jf0526442] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Raffinose oligosaccharides (RO) are the factors primarily responsible for flatulence upon ingestion of soybean-derived products. ROs are hydrolyzed by alpha-galactosidases that cleave alpha-1,6-linkages of alpha-galactoside residues. The objectives of this study were the purification and characterization of extracellular alpha-galactosidase from Debaryomyces hansenii UFV-1. The enzyme purified by gel filtration and anion exchange chromatographies presented an Mr value of 60 kDa and the N-terminal amino acid sequence YENGLNLVPQMGWN. The Km values for hydrolysis of pNP alphaGal, melibiose, stachyose, and raffinose were 0.30, 2.01, 9.66, and 16 mM, respectively. The alpha-galactosidase presented absolute specificity for galactose in the alpha-position, hydrolyzing pNPGal, stachyose, raffinose, melibiose, and polymers. The enzyme was noncompetitively inhibited by galactose (Ki = 2.7 mM) and melibiose (Ki = 1.2 mM). Enzyme treatments of soy milk for 4 h at 60 degrees C reduced the amounts of stachyose and raffinose by 100%.
Collapse
Affiliation(s)
- Pollyanna A Viana
- BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, 36570-000, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|