• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4635060)   Today's Articles (272)   Subscriber (50028)
For: Watanabe S, Pack SP, Saleh AA, Annaluru N, Kodaki T, Makino K. The positive effect of the decreased NADPH-preferring activity of xylose reductase from Pichia stipitis on ethanol production using xylose-fermenting recombinant Saccharomyces cerevisiae. Biosci Biotechnol Biochem 2007;71:1365-9. [PMID: 17485825 DOI: 10.1271/bbb.70104] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Number Cited by Other Article(s)
1
Vargas BDO, dos Santos JR, Pereira GAG, de Mello FDSB. An atlas of rational genetic engineering strategies for improved xylose metabolism in Saccharomyces cerevisiae. PeerJ 2023;11:e16340. [PMID: 38047029 PMCID: PMC10691383 DOI: 10.7717/peerj.16340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 10/03/2023] [Indexed: 12/05/2023]  Open
2
Zhu Y, Zhang J, Zhu L, Jia Z, Li Q, Xiao W, Cao L. Minimize the Xylitol Production in Saccharomyces cerevisiae by Balancing the Xylose Redox Metabolic Pathway. Front Bioeng Biotechnol 2021;9:639595. [PMID: 33718341 PMCID: PMC7953151 DOI: 10.3389/fbioe.2021.639595] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/12/2021] [Indexed: 11/13/2022]  Open
3
Liu L, Jin M, Huang M, Zhu Y, Yuan W, Kang Y, Kong M, Ali S, Jia Z, Xu Z, Xiao W, Cao L. Engineered Polyploid Yeast Strains Enable Efficient Xylose Utilization and Ethanol Production in Corn Hydrolysates. Front Bioeng Biotechnol 2021;9:655272. [PMID: 33748094 PMCID: PMC7973232 DOI: 10.3389/fbioe.2021.655272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 02/08/2021] [Indexed: 02/01/2023]  Open
4
Xie CY, Yang BX, Song QR, Xia ZY, Gou M, Tang YQ. Different transcriptional responses of haploid and diploid S. cerevisiae strains to changes in cofactor preference of XR. Microb Cell Fact 2020;19:211. [PMID: 33187525 PMCID: PMC7666519 DOI: 10.1186/s12934-020-01474-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 11/07/2020] [Indexed: 01/27/2023]  Open
5
Construction of industrial xylose-fermenting Saccharomyces cerevisiae strains through combined approaches. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.05.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
6
Suzuki T, Hoshino T, Matsushika A. High-temperature ethanol production by a series of recombinant xylose-fermenting Kluyveromyces marxianus strains. Enzyme Microb Technol 2019;129:109359. [DOI: 10.1016/j.enzmictec.2019.109359] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/11/2019] [Accepted: 06/13/2019] [Indexed: 12/29/2022]
7
Zhang GC, Turner TL, Jin YS. Enhanced xylose fermentation by engineered yeast expressing NADH oxidase through high cell density inoculums. ACTA ACUST UNITED AC 2017;44:387-395. [DOI: 10.1007/s10295-016-1899-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 12/25/2016] [Indexed: 12/22/2022]
8
Guo W, Sheng J, Feng X. Synergizing 13C Metabolic Flux Analysis and Metabolic Engineering for Biochemical Production. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2017;162:265-299. [PMID: 28424826 DOI: 10.1007/10_2017_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
9
Zhang GC, Kong II, Wei N, Peng D, Turner TL, Sung BH, Sohn JH, Jin YS. Optimization of an acetate reduction pathway for producing cellulosic ethanol by engineered yeast. Biotechnol Bioeng 2016;113:2587-2596. [DOI: 10.1002/bit.26021] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 05/24/2016] [Accepted: 05/27/2016] [Indexed: 01/17/2023]
10
13C-Metabolic Flux Analysis: An Accurate Approach to Demystify Microbial Metabolism for Biochemical Production. Bioengineering (Basel) 2015;3:bioengineering3010003. [PMID: 28952565 PMCID: PMC5597161 DOI: 10.3390/bioengineering3010003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 12/10/2015] [Accepted: 12/18/2015] [Indexed: 12/15/2022]  Open
11
Zhang M, Jiang ST, Zheng Z, Li XJ, Luo SZ, Wu XF. Cloning, expression, and characterization of a novel xylose reductase fromRhizopus oryzae. J Basic Microbiol 2015;55:907-21. [DOI: 10.1002/jobm.201400786] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Accepted: 01/22/2015] [Indexed: 11/07/2022]
12
Khattab SMR, Kodaki T. Efficient bioethanol production by overexpression of endogenous Saccharomyces cerevisiae xylulokinase and NADPH-dependent aldose reductase with mutated strictly NADP+-dependent Pichia stipitis xylitol dehydrogenase. Process Biochem 2014. [DOI: 10.1016/j.procbio.2014.07.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
13
Chiang CJ, Yeh GL, Chen PT, Lin TH, Hwang WS, Chao YP. Development of a genomic engineering tool in Saccharomyces cerevisiae. J Taiwan Inst Chem Eng 2014. [DOI: 10.1016/j.jtice.2013.05.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
14
Feng X, Zhao H. Investigating xylose metabolism in recombinant Saccharomyces cerevisiae via 13C metabolic flux analysis. Microb Cell Fact 2013;12:114. [PMID: 24245823 PMCID: PMC3842631 DOI: 10.1186/1475-2859-12-114] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 11/14/2013] [Indexed: 01/06/2023]  Open
15
Harcus D, Dignard D, Lépine G, Askew C, Raymond M, Whiteway M, Wu C. Comparative xylose metabolism among the Ascomycetes C. albicans, S. stipitis and S. cerevisiae. PLoS One 2013;8:e80733. [PMID: 24236198 PMCID: PMC3827475 DOI: 10.1371/journal.pone.0080733] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 10/07/2013] [Indexed: 11/19/2022]  Open
16
Salusjärvi L, Kaunisto S, Holmström S, Vehkomäki ML, Koivuranta K, Pitkänen JP, Ruohonen L. Overexpression of NADH-dependent fumarate reductase improves D-xylose fermentation in recombinant Saccharomyces cerevisiae. J Ind Microbiol Biotechnol 2013;40:1383-92. [PMID: 24113892 DOI: 10.1007/s10295-013-1344-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 09/09/2013] [Indexed: 01/31/2023]
17
Xiong M, Woodruff A, Tang X, Tian X, Zhang J, Cao L. Comparative study on the mutated xylose reductase to increase ethanol production in xylose-utilizing Saccharomyces cerevisiae strains. J Taiwan Inst Chem Eng 2013. [DOI: 10.1016/j.jtice.2012.12.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
18
Chen Z, Zeng AP. Protein design in systems metabolic engineering for industrial strain development. Biotechnol J 2013;8:523-33. [PMID: 23589416 DOI: 10.1002/biot.201200238] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 01/24/2013] [Accepted: 02/27/2013] [Indexed: 12/20/2022]
19
Khattab SMR, Saimura M, Kodaki T. Boost in bioethanol production using recombinant Saccharomyces cerevisiae with mutated strictly NADPH-dependent xylose reductase and NADP(+)-dependent xylitol dehydrogenase. J Biotechnol 2013;165:153-6. [PMID: 23578809 DOI: 10.1016/j.jbiotec.2013.03.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 02/12/2013] [Accepted: 03/19/2013] [Indexed: 10/27/2022]
20
Improving ethanol and xylitol fermentation at elevated temperature through substitution of xylose reductase in Kluyveromyces marxianus. J Ind Microbiol Biotechnol 2013;40:305-16. [PMID: 23392758 DOI: 10.1007/s10295-013-1230-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Accepted: 01/09/2013] [Indexed: 10/27/2022]
21
Improving Biomass Sugar Utilization by Engineered Saccharomyces cerevisiae. MICROBIOLOGY MONOGRAPHS 2012. [DOI: 10.1007/978-3-642-21467-7_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
22
Decreased xylitol formation during xylose fermentation in Saccharomyces cerevisiae due to overexpression of water-forming NADH oxidase. Appl Environ Microbiol 2011;78:1081-6. [PMID: 22156411 DOI: 10.1128/aem.06635-11] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]  Open
23
Xiong M, Chen G, Barford J. Alteration of xylose reductase coenzyme preference to improve ethanol production by Saccharomyces cerevisiae from high xylose concentrations. BIORESOURCE TECHNOLOGY 2011;102:9206-15. [PMID: 21831633 DOI: 10.1016/j.biortech.2011.06.058] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 06/12/2011] [Accepted: 06/14/2011] [Indexed: 05/26/2023]
24
Krahulec S, Klimacek M, Nidetzky B. Analysis and prediction of the physiological effects of altered coenzyme specificity in xylose reductase and xylitol dehydrogenase during xylose fermentation by Saccharomyces cerevisiae. J Biotechnol 2011;158:192-202. [PMID: 21903144 PMCID: PMC3334502 DOI: 10.1016/j.jbiotec.2011.08.026] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2011] [Revised: 07/21/2011] [Accepted: 08/18/2011] [Indexed: 01/18/2023]
25
Zhang B, Zhang L, Wang D, Gao X, Hong J. Identification of a xylose reductase gene in the xylose metabolic pathway of Kluyveromyces marxianus NBRC1777. J Ind Microbiol Biotechnol 2011;38:2001-10. [PMID: 21643709 DOI: 10.1007/s10295-011-0990-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Accepted: 05/11/2011] [Indexed: 11/28/2022]
26
Khattab SMR, Watanabe S, Saimura M, Kodaki T. A novel strictly NADPH-dependent Pichia stipitis xylose reductase constructed by site-directed mutagenesis. Biochem Biophys Res Commun 2011;404:634-7. [DOI: 10.1016/j.bbrc.2010.12.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Accepted: 12/04/2010] [Indexed: 10/18/2022]
27
Wen F, Nair NU, Zhao H. Protein engineering in designing tailored enzymes and microorganisms for biofuels production. Curr Opin Biotechnol 2009;20:412-9. [PMID: 19660930 DOI: 10.1016/j.copbio.2009.07.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2009] [Accepted: 07/02/2009] [Indexed: 10/20/2022]
28
Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: current state and perspectives. Appl Microbiol Biotechnol 2009;84:37-53. [DOI: 10.1007/s00253-009-2101-x] [Citation(s) in RCA: 274] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 06/18/2009] [Accepted: 06/18/2009] [Indexed: 12/20/2022]
29
Van Vleet JH, Jeffries TW. Yeast metabolic engineering for hemicellulosic ethanol production. Curr Opin Biotechnol 2009;20:300-6. [PMID: 19545992 DOI: 10.1016/j.copbio.2009.06.001] [Citation(s) in RCA: 190] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 05/30/2009] [Accepted: 06/03/2009] [Indexed: 11/19/2022]
30
Bengtsson O, Hahn-Hägerdal B, Gorwa-Grauslund MF. Xylose reductase from Pichia stipitis with altered coenzyme preference improves ethanolic xylose fermentation by recombinant Saccharomyces cerevisiae. BIOTECHNOLOGY FOR BIOFUELS 2009;2:9. [PMID: 19416504 PMCID: PMC2688486 DOI: 10.1186/1754-6834-2-9] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Accepted: 05/05/2009] [Indexed: 05/05/2023]
31
Zeng QK, Du HL, Wang JF, Wei DQ, Wang XN, Li YX, Lin Y. Reversal of coenzyme specificity and improvement of catalytic efficiency of Pichia stipitis xylose reductase by rational site-directed mutagenesis. Biotechnol Lett 2009;31:1025-9. [PMID: 19330484 DOI: 10.1007/s10529-009-9980-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Revised: 02/27/2009] [Accepted: 03/09/2009] [Indexed: 10/21/2022]
32
Metabolic engineering of the initial stages of xylose catabolism in yeast for the purpose of constructing efficient producers of ethanol from lignocellulosics. CYTOL GENET+ 2008. [DOI: 10.1007/s11956-008-2011-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
33
Petschacher B, Nidetzky B. Altering the coenzyme preference of xylose reductase to favor utilization of NADH enhances ethanol yield from xylose in a metabolically engineered strain of Saccharomyces cerevisiae. Microb Cell Fact 2008;7:9. [PMID: 18346277 PMCID: PMC2315639 DOI: 10.1186/1475-2859-7-9] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2008] [Accepted: 03/17/2008] [Indexed: 11/23/2022]  Open
34
Current awareness on yeast. Yeast 2008. [DOI: 10.1002/yea.1456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]  Open
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA