1
|
Filippou C, Themistocleous SC, Marangos G, Panayiotou Y, Fyrilla M, Kousparou CA, Pana ZD, Tsioutis C, Johnson EO, Yiallouris A. Microbial Therapy and Breast Cancer Management: Exploring Mechanisms, Clinical Efficacy, and Integration within the One Health Approach. Int J Mol Sci 2024; 25:1110. [PMID: 38256183 PMCID: PMC10816061 DOI: 10.3390/ijms25021110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
This comprehensive review elucidates the profound relationship between the human microbiome and breast cancer management. Recent findings highlight the significance of microbial alterations in tissue, such as the gut and the breast, and their role in influencing the breast cancer risk, development, progression, and treatment outcomes. We delve into how the gut microbiome can modulate systemic inflammatory responses and estrogen levels, thereby impacting cancer initiation and therapeutic drug efficacy. Furthermore, we explore the unique microbial diversity within breast tissue, indicating potential imbalances brought about by cancer and highlighting specific microbes as promising therapeutic targets. Emphasizing a holistic One Health approach, this review underscores the importance of integrating insights from human, animal, and environmental health to gain a deeper understanding of the complex microbe-cancer interplay. As the field advances, the strategic manipulation of the microbiome and its metabolites presents innovative prospects for the enhancement of cancer diagnostics and therapeutics. However, rigorous clinical trials remain essential to confirm the potential of microbiota-based interventions in breast cancer management.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Andreas Yiallouris
- School of Medicine, European University Cyprus, 6 Diogenis Str., 2404 Engomi, P.O. Box 22006, Nicosia 1516, Cyprus
| |
Collapse
|
2
|
Dicks LMT, Vermeulen W. Do Bacteria Provide an Alternative to Cancer Treatment and What Role Does Lactic Acid Bacteria Play? Microorganisms 2022; 10:microorganisms10091733. [PMID: 36144335 PMCID: PMC9501580 DOI: 10.3390/microorganisms10091733] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/17/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer is one of the leading causes of mortality and morbidity worldwide. According to 2022 statistics from the World Health Organization (WHO), close to 10 million deaths have been reported in 2020 and it is estimated that the number of cancer cases world-wide could increase to 21.6 million by 2030. Breast, lung, thyroid, pancreatic, liver, prostate, bladder, kidney, pelvis, colon, and rectum cancers are the most prevalent. Each year, approximately 400,000 children develop cancer. Treatment between countries vary, but usually includes either surgery, radiotherapy, or chemotherapy. Modern treatments such as hormone-, immuno- and antibody-based therapies are becoming increasingly popular. Several recent reports have been published on toxins, antibiotics, bacteriocins, non-ribosomal peptides, polyketides, phenylpropanoids, phenylflavonoids, purine nucleosides, short chain fatty acids (SCFAs) and enzymes with anticancer properties. Most of these molecules target cancer cells in a selective manner, either directly or indirectly through specific pathways. This review discusses the role of bacteria, including lactic acid bacteria, and their metabolites in the treatment of cancer.
Collapse
|
3
|
Kang Y, Zhai X, Lu S, Vuletic I, Wang L, Zhou K, Peng Z, Ren Q, Xie Z. A Hybrid Imaging Platform(CT/PET/FMI) for Evaluating Tumor Necrosis and Apoptosis in Real-Time. Front Oncol 2022; 12:772392. [PMID: 35814447 PMCID: PMC9257022 DOI: 10.3389/fonc.2022.772392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
Multimodality imaging is an advanced imaging tool for monitoring tumor behavior and therapy in vivo. In this study, we have developed a novel hybrid tri-modality system that includes two molecular imaging methods: positron emission computed tomography (PET) and fluorescence molecular imaging (FMI) and the anatomic imaging modality X-ray computed tomography (CT). The following paper describes the system development. Also, its imaging performance was tested in vitro (phantom) and in vivo, in Balb/c nude mice bearing a head and neck tumor xenograft treated with novel gene therapy [a new approach to the delivery of recombinant bacterial gene (IL-24-expressing strain)]. Using the tri-modality imaging system, we simultaneously monitored the therapeutic effect, including the apoptotic and necrotic induction within the tumor in vivo. The apoptotic induction was examined in real-time using an 18F-ML-10 tracer; the cell death was detected using ICG. A CT was used to evaluate the anatomical situation. An increased tumor inhibition (including tumor growth and tumor cell apoptosis) was observed in the treatment group compared to the control groups, which further confirmed the therapeutic effect of a new IL-24-expressing strain gene therapy on the tumor in vivo. By being able to offer concurrent morphological and functional information, our system is able to characterize malignant tissues more accurately. Therefore, this new tri-modality system (PET/CT/FMI) is an effective imaging tool for simultaneously investigating and monitoring tumor progression and therapy outcomes in vivo.
Collapse
Affiliation(s)
- Yulin Kang
- Institute of Environmental Information, Chinese Research Academy of Environmental Sciences, Beijing, China
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
- *Correspondence: Qiushi Ren, ; Zhaoheng Xie, ; Yulin Kang,
| | - Xiaohui Zhai
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| | - Sifen Lu
- Precision Medicine Key Laboratory of Sichuan Province and Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ivan Vuletic
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| | - Lin Wang
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| | - Kun Zhou
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| | - Zhiqiang Peng
- State Key Laboratory of Proteomics, National Centre for Protein Sciences, Beijing Institute of Lifeomics, Bejing, China
| | - Qiushi Ren
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
- *Correspondence: Qiushi Ren, ; Zhaoheng Xie, ; Yulin Kang,
| | - Zhaoheng Xie
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
- *Correspondence: Qiushi Ren, ; Zhaoheng Xie, ; Yulin Kang,
| |
Collapse
|
4
|
Taniguchi S. In Situ Delivery and Production System ( iDPS) of Anti-Cancer Molecules with Gene-Engineered Bifidobacterium. J Pers Med 2021; 11:jpm11060566. [PMID: 34204302 PMCID: PMC8233750 DOI: 10.3390/jpm11060566] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/09/2021] [Accepted: 06/15/2021] [Indexed: 12/20/2022] Open
Abstract
To selectively and continuously produce anti-cancer molecules specifically in malignant tumors, we have established an in situ delivery and production system (iDPS) with Bifidobacterium as a micro-factory of various anti-cancer agents. By focusing on the characteristic hypoxia in cancer tissue for a tumor-specific target, we employed a gene-engineered obligate anaerobic and non-pathogenic bacterium, Bifidobacterium, as a tool for systemic drug administration. This review presents and discusses the anti-tumor effects and safety of the iDPS production of numerous anti-cancer molecules and addresses the problems to be improved by directing attention mainly to the hallmark vasculature and so-called enhanced permeability and retention effect of tumors.
Collapse
Affiliation(s)
- Shun'ichiro Taniguchi
- Department of Hematology and Medical Oncology, Shinshu University School of Medicine, Matsumoto City 390-8621, Japan
| |
Collapse
|
5
|
A Resource for Cloning and Expression Vectors Designed for Bifidobacteria: Overview of Available Tools and Biotechnological Applications. Methods Mol Biol 2021. [PMID: 33649956 DOI: 10.1007/978-1-0716-1274-3_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2023]
Abstract
Bifidobacteria represent an important group of (mostly) commensal microorganisms, which have enjoyed increasing scientific and industrial attention due to their purported health-promoting attributes. For the latter reason, several species have been granted "generally recognized as safe" (GRAS) and "qualified presumption of safety" (QPS) status by the Food and Drugs Administration (FDA) and European Food Safety Authority (EFSA) organizations. Increasing scientific evidence supports their potential as oral delivery vectors to produce bioactive and therapeutic molecules at intestinal level. In order to achieve an efficient utilization of bifidobacterial strains as health-promoting (food) ingredients, it is necessary to provide evidence on the molecular mechanisms behind their purported beneficial and probiotic traits, and precise mechanisms of interaction with their human (or other mammalian) host. In this context, developing appropriate molecular tools to generate and investigate recombinant strains is necessary. While bifidobacteria have long remained recalcitrant to genetic manipulation, a wide array of Bifidobacterium-specific replicating vectors and genetic modification procedures have been described in literature. The current chapter intends to provide an updated overview on the vectors used to genetically modify and manipulate bifidobacteria, including their general characteristics, reviewing examples of their use to successfully generate recombinant bifidobacterial strains for specific purposes, and providing a general workflow and cautions to design and conduct heterologous expression in bifidobacteria. Knowledge gaps and fields of research that may help to widen the molecular toolbox to improve the functional and technological potential of bifidobacteria are also discussed.
Collapse
|
6
|
Engineer probiotic bifidobacteria for food and biomedical applications - Current status and future prospective. Biotechnol Adv 2020; 45:107654. [DOI: 10.1016/j.biotechadv.2020.107654] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 09/14/2020] [Accepted: 11/01/2020] [Indexed: 12/15/2022]
|
7
|
Parida S, Sharma D. The Microbiome and Cancer: Creating Friendly Neighborhoods and Removing the Foes Within. Cancer Res 2020; 81:790-800. [PMID: 33148661 DOI: 10.1158/0008-5472.can-20-2629] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/01/2020] [Accepted: 10/28/2020] [Indexed: 11/16/2022]
Abstract
The human body is colonized by the microbial cells that are estimated to be as abundant as human cells, yet their genome is roughly 100 times the human genome, providing significantly more genetic diversity. The past decade has observed an explosion of interest in examining the existence of microbiota in the human body and understanding its role in various diseases including inflammatory bowel disease, neurologic diseases, cardiovascular disorders, and cancer. Many studies have demonstrated differential community composition between normal tissue and cancerous tissue, paving the way for investigations focused on deciphering the cause-and-effect relationships between specific microbes and initiation and progression of various cancers. Also, evolving are the strategies to alter tumor-associated dysbiosis and move it toward eubiosis with holistic approaches to change the entire neighborhood or to neutralize pathogenic strains. In this review, we discuss important pathogenic bacteria and the underlying mechanisms by which they affect cancer progression. We summarize key microbiota alterations observed in multiple tumor niches, their association with clinical stages, and their potential use in cancer diagnosis and management. Finally, we discuss microbiota-based therapeutic approaches.
Collapse
Affiliation(s)
- Sheetal Parida
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Dipali Sharma
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
8
|
Engineering the gut microbiota to treat chronic diseases. Appl Microbiol Biotechnol 2020; 104:7657-7671. [PMID: 32696297 PMCID: PMC7484268 DOI: 10.1007/s00253-020-10771-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/18/2020] [Accepted: 07/02/2020] [Indexed: 12/21/2022]
Abstract
Gut microbes play vital roles in host health and disease. A number of commensal bacteria have been used as vectors for genetic engineering to create living therapeutics. This review highlights recent advances in engineering gut bacteria for the treatment of chronic diseases such as metabolic diseases, cancer, inflammatory bowel diseases, and autoimmune disorders. KEY POINTS: • Bacterial homing to tumors has been exploited to deliver therapeutics in mice models. • Engineered bacteria show promise in mouse models of metabolic diseases. • Few engineered bacterial treatments have advanced to clinical studies.
Collapse
|
9
|
Ngo N, Choucair K, Creeden JF, Qaqish H, Bhavsar K, Murphy C, Lian K, Albrethsen MT, Stanbery L, Phinney RC, Brunicardi FC, Dworkin L, Nemunaitis J. Bifidobacterium spp: the promising Trojan Horse in the era of precision oncology. Future Oncol 2019; 15:3861-3876. [DOI: 10.2217/fon-2019-0374] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Selective delivery of therapeutic agents into solid tumors has been a major challenge impeding the achievement of long-term disease remission and cure. The need to develop alternative drug delivery routes to achieve higher drug concentration in tumor tissue, reduce unwanted off-target side effects and thus achieve greater therapeutic efficacy, has resulted in an explosive body of research. Bifidobacterium spp. are anaerobic, nonpathogenic, Gram-positive bacteria, commensal to the human gut that are a possible anticancer drug-delivery vehicle. In this review, we describe Bifidobacterium's microbiology, current clinical applications, overview of the preclinical work investigating Bifidobacterium's potential to deliver anticancer therapy, and review the different strategies used up to date. Finally, we discuss both current challenges and future prospects.
Collapse
Affiliation(s)
- Nealie Ngo
- Department of Medicine, University of Toledo College of Medicine & Life Sciences, Toledo, OH 43614, USA
| | - Khalil Choucair
- Department of Medicine, University of Toledo College of Medicine & Life Sciences, Toledo, OH 43614, USA
| | - Justin F Creeden
- Department of Medicine, University of Toledo College of Medicine & Life Sciences, Toledo, OH 43614, USA
| | - Hanan Qaqish
- Department of Medicine, University of Toledo College of Medicine & Life Sciences, Toledo, OH 43614, USA
| | - Krupa Bhavsar
- Department of Medicine, University of Toledo College of Medicine & Life Sciences, Toledo, OH 43614, USA
| | - Chantal Murphy
- Department of Medicine, University of Toledo College of Medicine & Life Sciences, Toledo, OH 43614, USA
| | - Kendra Lian
- Department of Medicine, University of Toledo College of Medicine & Life Sciences, Toledo, OH 43614, USA
| | - Mary T Albrethsen
- Department of Medicine, University of Toledo College of Medicine & Life Sciences, Toledo, OH 43614, USA
| | - Laura Stanbery
- Department of Medicine, University of Toledo College of Medicine & Life Sciences, Toledo, OH 43614, USA
| | | | - F Charles Brunicardi
- Department of Surgery, University of Toledo College of Medicine & Life Sciences, Toledo, OH 43614, USA
| | - Lance Dworkin
- Department of Medicine, University of Toledo College of Medicine & Life Sciences, Toledo, OH 43614, USA
| | - John Nemunaitis
- Department of Medicine, University of Toledo College of Medicine & Life Sciences, Toledo, OH 43614, USA
- ProMedica Health System, Toledo, OH 43606, USA
| |
Collapse
|
10
|
Wei H, Chen L, Lian G, Yang J, Li F, Zou Y, Lu F, Yin Y. Antitumor mechanisms of bifidobacteria. Oncol Lett 2018; 16:3-8. [PMID: 29963126 DOI: 10.3892/ol.2018.8692] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 01/05/2018] [Indexed: 12/27/2022] Open
Abstract
Cancer remains one of the most common causes of mortality globally. Chemotherapy, one of the major treatment strategies for cancer, primarily functions by targeting the cancer cells and affecting them physiologically, but also affects normal cells, which is a major concern at present. Therefore, adverse effects of chemotherapy drugs, including myelosuppression and liver and kidney damage, are of concern. Now, microbial products have attracted attention in cancer treatment research. Notably, carcinogenesis is considered to be associated with microbial dysbiosis, particularly the positive antitumor effects of bifidobacteria. Although there remains a substantial amount to be understood about the regulation of bifidobacteria, bifidobacteria remain an attractive and novel source of cancer therapeutics. The present review focuses on introducing the latest information on the antitumor effects of bifidobacteria and to propose future strategies for using bifidobacteria in the development of cancer therapeutics.
Collapse
Affiliation(s)
- Hongyun Wei
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Linlin Chen
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Guanghui Lian
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Junwen Yang
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Fujun Li
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yiyou Zou
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Fanggen Lu
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Yani Yin
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
11
|
Lehouritis P, Hogan G, Tangney M. Designer bacteria as intratumoural enzyme biofactories. Adv Drug Deliv Rev 2017; 118:8-23. [PMID: 28916496 DOI: 10.1016/j.addr.2017.09.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 08/18/2017] [Accepted: 09/07/2017] [Indexed: 02/07/2023]
Abstract
Bacterial-directed enzyme prodrug therapy (BDEPT) is an emerging form of treatment for cancer. It is a biphasic variant of gene therapy in which a bacterium, armed with an enzyme that can convert an inert prodrug into a cytotoxic compound, induces tumour cell death following tumour-specific prodrug activation. BDEPT combines the innate ability of bacteria to selectively proliferate in tumours, with the capacity of prodrugs to undergo contained, compartmentalised conversion into active metabolites in vivo. Although BDEPT has undergone clinical testing, it has received limited clinical exposure, and has yet to achieve regulatory approval. In this article, we review BDEPT from the system designer's perspective, and provide detailed commentary on how the designer should strategize its development de novo. We report on contemporary advancements in this field which aim to enhance BDEPT in terms of safety and efficacy. Finally, we discuss clinical and regulatory barriers facing BDEPT, and propose promising approaches through which these hurdles may best be tackled.
Collapse
|
12
|
Bifidobacterium breve as a delivery vector of IL-24 gene therapy for head and neck squamous cell carcinoma in vivo. Gene Ther 2017; 24:699-705. [DOI: 10.1038/gt.2017.74] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 06/05/2017] [Accepted: 07/27/2017] [Indexed: 12/17/2022]
|
13
|
Osswald A, Sun Z, Grimm V, Ampem G, Riegel K, Westendorf AM, Sommergruber W, Otte K, Dürre P, Riedel CU. Three-dimensional tumor spheroids for in vitro analysis of bacteria as gene delivery vectors in tumor therapy. Microb Cell Fact 2015; 14:199. [PMID: 26655167 PMCID: PMC4676896 DOI: 10.1186/s12934-015-0383-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 11/11/2015] [Indexed: 12/31/2022] Open
Abstract
Background Several studies in animal models demonstrated that obligate and facultative anaerobic bacteria of the genera Bifidobacterium, Salmonella, or Clostridium specifically colonize solid tumors. Consequently, these and other bacteria are discussed as live vectors to deliver therapeutic genes to inhibit tumor growth. Therapeutic approaches for cancer treatment using anaerobic bacteria have been investigated in different mouse models. In the present study, solid three-dimensional (3D) multicellular tumor spheroids (MCTS) of the colorectal adenocarcinoma cell line HT-29 were generated and tested for their potential to study prodrug-converting enzyme therapies using bacterial vectors in vitro. Results HT-29 MCTS resembled solid tumors displaying all relevant features with an outer zone of proliferating cells and hypoxic and apoptotic regions in the core. Upon incubation with HT-29 MCTS, Bifidobacterium bifidum S17 and Salmonella typhimurium YB1 selectively localized, survived and replicated in hypoxic areas inside MCTS. Furthermore, spores of the obligate anaerobe Clostridium sporogenes germinated in these hypoxic areas. To further evaluate the potential of MCTS to investigate therapeutic approaches using bacteria as gene delivery vectors, recombinant bifidobacteria expressing prodrug-converting enzymes were used. Expression of a secreted cytosine deaminase in combination with 5-fluorocytosine had no effect on growth of MCTS due to an intrinsic resistance of HT-29 cells to 5-fluorouracil, i.e. the converted drug. However, a combination of the prodrug CB1954 and a strain expressing a secreted chromate reductase effectively inhibited MCTS growth. Conclusions Collectively, the presented results indicate that MCTS are a suitable and reliable model to investigate live bacteria as gene delivery vectors for cancer therapy in vitro. Electronic supplementary material The online version of this article (doi:10.1186/s12934-015-0383-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Annika Osswald
- Institute of Microbiology and Biotechnology, University of Ulm, 89069, Ulm, Germany. .,Department of Lead Discovery, Boehringer Ingelheim RCV GmbH & Co KG, 1121, Vienna, Austria.
| | - Zhongke Sun
- Institute of Microbiology and Biotechnology, University of Ulm, 89069, Ulm, Germany. .,College of Life Sciences and Agriculture, Zhoukou Normal University, Chuanhui District, Zhoukou, 466001, People's Republic of China.
| | - Verena Grimm
- Institute of Microbiology and Biotechnology, University of Ulm, 89069, Ulm, Germany.
| | - Grace Ampem
- Institute of Microbiology and Biotechnology, University of Ulm, 89069, Ulm, Germany.
| | - Karin Riegel
- Institute of Microbiology and Biotechnology, University of Ulm, 89069, Ulm, Germany.
| | - Astrid M Westendorf
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany.
| | - Wolfgang Sommergruber
- Department of Lead Discovery, Boehringer Ingelheim RCV GmbH & Co KG, 1121, Vienna, Austria.
| | - Kerstin Otte
- Institute of Applied Biotechnology, University of Applied Sciences Biberach, 88400, Biberach, Germany.
| | - Peter Dürre
- Institute of Microbiology and Biotechnology, University of Ulm, 89069, Ulm, Germany.
| | - Christian U Riedel
- Institute of Microbiology and Biotechnology, University of Ulm, 89069, Ulm, Germany.
| |
Collapse
|
14
|
Jones CH, Hakansson AP, Pfeifer BA. Biomaterials at the interface of nano- and micro-scale vector-cellular interactions in genetic vaccine design. J Mater Chem B 2014; 46:8053-8068. [PMID: 29887986 PMCID: PMC5990286 DOI: 10.1039/c4tb01058b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The development of safe and effective vaccines for the prevention of elusive infectious diseases remains a public health priority. Immunization, characterized by adaptive immune responses to specific antigens, can be raised by an array of delivery vectors. However, current commercial vaccination strategies are predicated on the retooling of archaic technology. This review will discuss current and emerging strategies designed to elicit immune responses in the context of genetic vaccination. Selected strategies at the biomaterial-biological interface will be emphasized to illustrate the potential of coupling both fields towards a common goal.
Collapse
Affiliation(s)
- Charles H Jones
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260-4200, USA
| | - Anders P Hakansson
- Department of Microbiology and Immunology, University at Buffalo, The State University of New York, Buffalo, NY 14260-4200, USA
- The Witebsky Center for Microbial Pathogenesis and Immunology, University at Buffalo, The State University of New York, Buffalo, NY 14260-4200, USA
| | - Blaine A Pfeifer
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260-4200, USA
| |
Collapse
|
15
|
Guglielmetti S, Mayo B, Álvarez-Martín P. Mobilome and genetic modification of bifidobacteria. Benef Microbes 2013; 4:143-66. [PMID: 23271067 DOI: 10.3920/bm2012.0031] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Until recently, proper development of molecular studies in Bifidobacterium species has been hampered by growth difficulties, because of their exigent nutritive requirements, oxygen sensitivity and lack of efficient genetic tools. These studies, however, are critical to uncover the cross-talk between bifidobacteria and their hosts' cells and to prove unequivocally the supposed beneficial effects provided through the endogenous bifidobacterial populations or after ingestion as probiotics. The genome sequencing projects of different bifidobacterial strains have provided a wealth of genetic data that will be of much help in deciphering the molecular basis of the physiological properties of bifidobacteria. To this end, the purposeful development of stable cloning and expression vectors based on robust replicons - either from temperate phages or resident plasmids - is still needed. This review addresses the current knowledge on the mobile genetic elements of bifidobacteria (prophages, plasmids and transposons) and summarises the different types of vectors already available, together with the transformation procedures for introducing DNA into the cells. It also covers recent molecular studies performed with such vectors and incipient results on the genetic modification of these organisms, establishing the basis that would allow the use of bifidobacteria for future biotechnological applications.
Collapse
Affiliation(s)
- S Guglielmetti
- Dipartimento di Scienze e Tecnologie Alimentari e Microbiologiche, Sezione di Microbiologia Industriale, Università degli studi di Milano, Via Celoria 2, 20133 Milan, Italy
| | | | | |
Collapse
|
16
|
Lehouritis P, Springer C, Tangney M. Bacterial-directed enzyme prodrug therapy. J Control Release 2013; 170:120-31. [DOI: 10.1016/j.jconrel.2013.05.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Revised: 05/08/2013] [Accepted: 05/09/2013] [Indexed: 01/21/2023]
|
17
|
Carbohydrate stress-related response in Bifidobacterium pseudolongum subsp. globosum. ANN MICROBIOL 2012. [DOI: 10.1007/s13213-012-0432-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
18
|
Cronin M, Stanton RM, Francis KP, Tangney M. Bacterial vectors for imaging and cancer gene therapy: a review. Cancer Gene Ther 2012; 19:731-40. [PMID: 22996740 DOI: 10.1038/cgt.2012.59] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The significant burden of resistance to conventional anticancer treatments in patients with advanced disease has prompted the need to explore alternative therapeutic strategies. The challenge for oncology researchers is to identify a therapy which is selective for tumors with limited toxicity to normal tissue. Engineered bacteria have the unique potential to overcome traditional therapies' limitations by specifically targeting tumors. It has been shown that bacteria are naturally capable of homing to tumors when systemically administered resulting in high levels of replication locally, either external to (non-invasive species) or within tumor cells (pathogens). Pre-clinical and clinical investigations involving bacterial vectors require relevant means of monitoring vector trafficking and levels over time, and development of bacterial-specific real-time imaging modalities are key for successful development of clinical bacterial gene delivery. This review discusses the currently available imaging technologies and the progress to date exploiting these for monitoring of bacterial gene delivery in vivo.
Collapse
Affiliation(s)
- M Cronin
- Cork Cancer Research Centre, BioSciences Institute, University College Cork, Cork, Ireland
| | | | | | | |
Collapse
|
19
|
Accessing the inaccessible: molecular tools for bifidobacteria. Appl Environ Microbiol 2012; 78:5035-42. [PMID: 22582076 DOI: 10.1128/aem.00551-12] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bifidobacteria are an important group of the human intestinal microbiota that have been shown to exert a number of beneficial probiotic effects on the health status of their host. Due to these effects, bifidobacteria have attracted strong interest in health care and food industries for probiotic applications and several species are listed as so-called "generally recognized as safe" (GRAS) microorganisms. Moreover, recent studies have pointed out their potential as an alternative or supplementary strategy in tumor therapy or as live vaccines. In order to study the mechanisms by which these organisms exert their beneficial effects and to generate recombinant strains that can be used as drug delivery vectors or live vaccines, appropriate molecular tools are indispensable. This review provides an overview of the currently available methods and tools to generate recombinant strains of bifidobacteria. The currently used protocols for transformation of bifidobacteria, as well as replicons, selection markers, and determinants of expression, will be summarized. We will further discuss promoters, terminators, and localization signals that have been used for successful generation of expression vectors.
Collapse
|
20
|
Fukiya S, Hirayama Y, Sakanaka M, Kano Y, Yokota A. Technological advances in bifidobacterial molecular genetics: application to functional genomics and medical treatments. BIOSCIENCE OF MICROBIOTA FOOD AND HEALTH 2012; 31:15-25. [PMID: 24936345 PMCID: PMC4034290 DOI: 10.12938/bmfh.31.15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 01/17/2012] [Indexed: 11/29/2022]
Abstract
Bifidobacteria are well known as beneficial intestinal bacteria that exert
health-promoting effects in humans. In addition to physiological and immunological
investigations, molecular genetic technologies have been developed and have recently
started to be applied to clarify the molecular bases of
host-Bifidobacterium interactions. These technologies include
transformation technologies and Escherichia coli-Bifidobacterium shuttle
vectors that enable heterologous gene expression. In this context, a plasmid artificial
modification method that protects the introduced plasmid from the restriction system in
host bifidobacteria has recently been developed to increase transformation efficiency. On
the other hand, targeted gene inactivation systems, which are vital for functional
genomics, seemed far from being practically applicable in bifidobacteria. However,
remarkable progress in this technology has recently been achieved, enabling functional
genomics in bifidobacteria. Integrated use of these molecular genetic technologies with
omics-based analyses will surely boost characterization of the molecular basis underlying
beneficial effects of bifidobacteria. Applications of recombinant bifidobacteria to
medical treatments have also progressed.
Collapse
Affiliation(s)
- Satoru Fukiya
- Laboratory of Microbial Physiology, Research Faculty of Agriculture, Hokkaido University, Kita 9 Nishi 9, Kita-ku, Sapporo, Hokkaido 060-8589, Japan
| | - Yosuke Hirayama
- Laboratory of Microbial Physiology, Research Faculty of Agriculture, Hokkaido University, Kita 9 Nishi 9, Kita-ku, Sapporo, Hokkaido 060-8589, Japan
| | - Mikiyasu Sakanaka
- Laboratory of Microbial Physiology, Research Faculty of Agriculture, Hokkaido University, Kita 9 Nishi 9, Kita-ku, Sapporo, Hokkaido 060-8589, Japan
| | - Yasunobu Kano
- Department of Molecular Genetics, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | - Atsushi Yokota
- Laboratory of Microbial Physiology, Research Faculty of Agriculture, Hokkaido University, Kita 9 Nishi 9, Kita-ku, Sapporo, Hokkaido 060-8589, Japan
| |
Collapse
|
21
|
Determination of the ribosome-binding sequence and spacer length between binding site and initiation codon for efficient protein expression in Bifidobacterium longum 105-A. J Biosci Bioeng 2012; 113:442-4. [PMID: 22218059 DOI: 10.1016/j.jbiosc.2011.11.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 11/10/2011] [Accepted: 11/15/2011] [Indexed: 11/22/2022]
Abstract
The frequency of the ribosome-binding site (RBS) and spacer length between binding site and initiation codon were analyzed using informatics, and compared the activities of various synthetic RBSs and spacers in Bifidobacterium longum 105-A. As the result, AAGGAG and a 5 nt spacer length produced the most efficient protein expression.
Collapse
|
22
|
Cronin M, Ventura M, Fitzgerald GF, van Sinderen D. Progress in genomics, metabolism and biotechnology of bifidobacteria. Int J Food Microbiol 2011; 149:4-18. [PMID: 21320731 DOI: 10.1016/j.ijfoodmicro.2011.01.019] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 01/06/2011] [Accepted: 01/10/2011] [Indexed: 12/16/2022]
Abstract
Members of the genus Bifidobacterium were first described over a century ago and were quickly associated with a healthy intestinal tract due to their numerical dominance in breast-fed babies as compared to bottle-fed infants. Health benefits elicited by bifidobacteria to its host, as supported by clinical trials, have led to their wide application as probiotic components of health-promoting foods, especially in fermented dairy products. However, the relative paucity of genetic tools available for bifidobacteria has impeded development of a comprehensive molecular understanding of this genus. In this review we present a summary of current knowledge on bifidobacterial metabolism, classification, physiology and genetics and outline the currently available methods for genetically accessing and manipulating the genus.
Collapse
Affiliation(s)
- Michelle Cronin
- Cork Cancer Research Centre, Mercy University Hospital and Leslie C. Quick Jnr. Laboratory, University College Cork, Cork, Ireland
| | | | | | | |
Collapse
|
23
|
Abstract
Since the discovery in 1899 of bifidobacteria as numerically dominant microbes in the feces of breast-fed infants, there have been numerous studies addressing their role in modulating gut microflora as well as their other potential health benefits. Because of this, they are frequently incorporated into foods as probiotic cultures. An understanding of their full interactions with intestinal microbes and the host is needed to scientifically validate any health benefits they may afford. Recently, the genome sequences of nine strains representing four species of Bifidobacterium became available. A comparative genome analysis of these genomes reveals a likely efficient capacity to adapt to their habitats, with B. longum subsp. infantis exhibiting more genomic potential to utilize human milk oligosaccharides, consistent with its habitat in the infant gut. Conversely, B. longum subsp. longum exhibits a higher genomic potential for utilization of plant-derived complex carbohydrates and polyols, consistent with its habitat in an adult gut. An intriguing observation is the loss of much of this genome potential when strains are adapted to pure culture environments, as highlighted by the genomes of B. animalis subsp. lactis strains, which exhibit the least potential for a gut habitat and are believed to have evolved from the B. animalis species during adaptation to dairy fermentation environments.
Collapse
Affiliation(s)
- Ju-Hoon Lee
- Department of Food Science and Nutrition, Microbial and Plant Genomics Institute, University of Minnesota, 1500 Gortner Ave., St. Paul, Minnesota 55108
| | - Daniel J. O'Sullivan
- Department of Food Science and Nutrition, Microbial and Plant Genomics Institute, University of Minnesota, 1500 Gortner Ave., St. Paul, Minnesota 55108
| |
Collapse
|
24
|
Leschner S, Weiss S. Salmonella—allies in the fight against cancer. J Mol Med (Berl) 2010; 88:763-73. [DOI: 10.1007/s00109-010-0636-z] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Revised: 05/06/2010] [Accepted: 05/14/2010] [Indexed: 01/30/2023]
|
25
|
Tang W, He Y, Zhou S, Ma Y, Liu G. A novel Bifidobacterium infantis-mediated TK/GCV suicide gene therapy system exhibits antitumor activity in a rat model of bladder cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2009; 28:155. [PMID: 20015348 PMCID: PMC2803447 DOI: 10.1186/1756-9966-28-155] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Accepted: 12/16/2009] [Indexed: 11/10/2022]
Abstract
Bladder cancer is the ninth most common malignancy in the world. Successful clinical management remains a challenge. In order To search for novel targeted and efficacious treatment, we sought to investigate anti-tumor activity of BI-TK suicide gene therapy system in a rat model of bladder tumors. We first constructed and tested an anaerobic Bifidobacterium infantis-mediated thymidine kinase (BI-TK) suicide gene therapy system. To test the in vivo efficacy of this system, we established a rat model of bladder tumors, which was induced by N-methyl-nitrosourea perfusion. Bifidobacterium infantis containing the HSV-TK (i.e., BI-TK) were constructed by transformation of recombinant plasmid pGEX - TK. The engineered BI-TK was injected into tumor-bearing rats via tail vein, followed by intraperitoneal injection of ganciclovir (GCV). Using the rat model of bladder tumors, we found that bladder tumor burdens were significantly lower in the rats treated with BI-TK/GCV group than that treated with normal saline control group (p <0.05). While various degrees of apoptosis of the tumor cells were detected in all groups using in situ TUNEL assay, apoptosis was mostly notable in the BI-TK/GCV treatment group. Immunohistochemical staining further demonstrated that the BI-TK/GCV treatment group had the highest level of caspase3 protein expression than that of the empty plasmid group and normal saline group (p < 0.05). Thus, our results demonstrate that the Bifidobacterium infantis-mediated TK/GCV suicide gene therapy system can effectively inhibit rat bladder tumor growth, possibly through increasing caspase 3 expression and inducing apoptosis.
Collapse
Affiliation(s)
- Wei Tang
- Department of Urology, First Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| | | | | | | | | |
Collapse
|
26
|
Effect of LTA isolated from bifidobacteria on D-galactose-induced aging. Exp Gerontol 2009; 44:760-5. [PMID: 19735715 DOI: 10.1016/j.exger.2009.08.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Revised: 08/21/2009] [Accepted: 08/31/2009] [Indexed: 11/21/2022]
Abstract
BACKGROUND Bifidobacteria are a natural part of the bacterial flora in the human body and have a symbiotic bacteria-host relationship with human beings. Aging is associated with reduced number of beneficial colonic bifidobacteria and impaired immunity. Lipoteichoic acid is a major constituent of the cell wall of bifidobacteria which is important for bacterial survival, growth, and function. The possible anti-aging effects of lipoteichoic acid isolated from bifidobacteria is presently unknown. OBJECTIVE The aim of the present study was to investigate possible anti-aging effects of lipoteichoic acid isolated from bifidobacteria on senescent mice artificially induced by chronic injection of d-galactose and explore potential anti-aging's mechanisms. METHODS Mice were artificially induced senescence by consecutive injection of d-galactose (100mg/kg) once daily for 7weeks and lipoteichoic acid from bifidobacterium bifidum, was simultaneously administered to them once a week by intraperitoneal infusion. Mice were sacrificed, blood and other samples were collected at the indicated time. Anti-oxidation activity in brain, histology of tissue, gene expression, lymphocyte's DNA damage and cytokine production of lymphocytes in vitro and in vivo were measured. RESULTS Lipoteichoic acid could significantly improve general appearance of the aging model mice, improve anti-oxidation activity in brain, increase IL-2 level and decrease TNF-alpha level in vitro and in vivo, respectively. Besides, LTA remarkably inhibited DNA damage in the both splenic lymphocytes and circulating lymphocytes. Moreover, LTA could decrease p16 expression while increase c-fos expression in the d-galactose treated mice. CONCLUSION Taken together, the results indicated, for the first time, that LTA could suppress the aging process via the following several mechanisms, including enhancement of anti-oxidation activity in brain, improvement of immune function and alteration of gene expression.
Collapse
|
27
|
Cao S, Cripps A, Wei MQ. New strategies for cancer gene therapy: progress and opportunities. Clin Exp Pharmacol Physiol 2009; 37:108-14. [PMID: 19671071 DOI: 10.1111/j.1440-1681.2009.05268.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
1. To date, cancer persists as one of the most devastating diseases worldwide. Problems such as metastasis and tumour resistance to chemotherapy and radiotherapy have seriously limited the therapeutic effects of existing clinical treatments. 2. To address these problems, cancer gene therapy has been developing over the past two decades, specifically designed to deliver therapeutic genes to treat cancers using vector systems. So far, a number of genes and delivery vehicles have been evaluated and significant progress has been made with several gene therapy modalities in clinical trials. However, the lack of an ideal gene delivery system remains a major obstacle for the successful translation of regimen to the clinic. 3. Recent understanding of hypoxic and necrotic regions within solid tumours and rapid development of recombinant DNA technology have reignited the idea of using anaerobic bacteria as novel gene delivery systems. These bacterial vectors have unique advantages over other delivery systems and are likely to become the vector of choice for cancer gene therapy in the near future. 4. Meanwhile, complicated tumour pathophysiology and associated metastasis make it hard to rely on a single therapeutic modality for complete tumour eradication. Therefore, the combination of cancer gene therapy with other conventional treatments has become paramount. 5. The present review introduces important cancer gene therapy strategies and major vector systems that have been studied so far with an emphasis on bacteria-mediated cancer gene therapy. In addition, exemplary combined therapies are briefly reviewed.
Collapse
Affiliation(s)
- Siyu Cao
- Griffith Institute for Health and Medical Research, School of Medical Science, Griffith University, Gold Coast Campus, Southport, Queensland, Australia
| | | | | |
Collapse
|
28
|
|
29
|
Mouni F, Aissi E, Hernandez J, Gorocica P, Bouquelet S, Zenteno E, Lascurain R, Garfias Y. Effect of Bifidobacterium bifidum DSM 20082 cytoplasmic fraction on human immune cells. Immunol Invest 2009; 38:104-15. [PMID: 19172489 DOI: 10.1080/08820130802608303] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The objective of the present study was to determine the effect of the soluble cytoplasmic fraction from Bifidobacterium bifidum DSM 20082 (Bb) lysate on peripheral blood T cells. In peripheral blood mononuclear cells of healthy subjects, cytotoxic activity, proliferation, apoptosis, and up-regulation of CD8 or CD4 molecules in T cells were examined. When peripheral blood mononuclear cells were stimulated with Bb lysate, the main effect was observed in CD8+ cells as a significant increase of CD8 molecules in a dose-dependent manner, and this behavior was observed at 24, 48, and 72 h after stimulation; in contrast, stimulation with Bb lysate showed no effect on the up-regulation of CD4 molecules in T helper cells. Further Bb lysate did not induce proliferation activity in either CD8+ or CD4+ cells. Bb lysate induced activation of CD8+ cytotoxic activity against autologous monocytes. Around 80% of the cells stimulated with Bb lysate were positive to peanut agglutinin (PNA), suggesting that the stimulated CD8+ cells corresponded to activated/effector cellular populations. When apoptosis was determined, there were no differences between stimulated and non-stimulated cells. Our results indicate that Bb lysate is able to increase cytotoxic activity of peripheral CD8+ cells, without affecting lymphocyte survival.
Collapse
Affiliation(s)
- Fadoua Mouni
- Universite de Sciences et Technologies de Lille, France
| | | | | | | | | | | | | | | |
Collapse
|