1
|
Sun H, Huang D, Pang Y, Chen J, Kang C, Zhao M, Yang B. Key roles of two-component systems in intestinal signal sensing and virulence regulation in enterohemorrhagic Escherichia coli. FEMS Microbiol Rev 2024; 48:fuae028. [PMID: 39537200 PMCID: PMC11644481 DOI: 10.1093/femsre/fuae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/10/2024] [Accepted: 11/12/2024] [Indexed: 11/16/2024] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) is a foodborne pathogen that infects humans by colonizing the large intestine. Upon reaching the large intestine, EHEC mediates local signal recognition and the transcriptional regulation of virulence genes to promote adherence and colonization in a highly site-specific manner. Two-component systems (TCSs) represent an important strategy used by EHEC to couple external stimuli with the regulation of gene expression, thereby allowing EHEC to rapidly adapt to changing environmental conditions. An increasing number of studies published in recent years have shown that EHEC senses a variety of host- and microbiota-derived signals present in the human intestinal tract and coordinates the expression of virulence genes via multiple TCS-mediated signal transduction pathways to initiate the disease-causing process. Here, we summarize how EHEC detects a wide range of intestinal signals and precisely regulates virulence gene expression through multiple signal transduction pathways during the initial stages of infection, with a particular emphasis on the key roles of TCSs. This review provides valuable insights into the importance of TCSs in EHEC pathogenesis, which has relevant implications for the development of antibacterial therapies against EHEC infection.
Collapse
Affiliation(s)
- Hongmin Sun
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin 300457, China
| | - Di Huang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin 300457, China
| | - Yu Pang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin 300457, China
| | - Jingnan Chen
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin 300457, China
| | - Chenbo Kang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin 300457, China
| | - Mengjie Zhao
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin 300457, China
| | - Bin Yang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin 300457, China
| |
Collapse
|
2
|
Kenney LJ. Peeling the onion: additional layers of regulation in the acid stress response. J Bacteriol 2024; 206:e0006924. [PMID: 38488356 PMCID: PMC11025319 DOI: 10.1128/jb.00069-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024] Open
Abstract
Bacteria are capable of withstanding large changes in osmolality and cytoplasmic pH, unlike eukaryotes that tightly regulate their pH and cellular composition. Previous studies on the bacterial acid stress response described a rapid, brief acidification, followed by immediate recovery. More recent experiments with better pH probes have imaged single living cells, and we now appreciate that following acid stress, bacteria maintain an acidic cytoplasm for as long as the stress remains. This acidification enables pathogens to sense a host environment and turn on their virulence programs, for example, enabling survival and replication within acidic vacuoles. Single-cell analysis identified an intracellular pH threshold of ~6.5. Acid stress reduces the internal pH below this threshold, triggering the assembly of a type III secretion system in Salmonella and the secretion of virulence factors in the host. These pathways are significant because preventing intracellular acidification of Salmonella renders it avirulent, suggesting that acid stress pathways represent a potential therapeutic target. Although we refer to the acid stress response as singular, it is actually a complex response that involves numerous two-component signaling systems, several amino acid decarboxylation systems, as well as cellular buffering systems and electron transport chain components, among others. In a recent paper in the Journal of Bacteriology, M. G. Gorelik, H. Yakhnin, A. Pannuri, A. C. Walker, C. Pourciau, D. Czyz, T. Romeo, and P. Babitzke (J Bacteriol 206:e00354-23, 2024, https://doi.org/10.1128/jb.00354-23) describe a new connection linking the carbon storage regulator CsrA to the acid stress response, highlighting new additional layers of complexity.
Collapse
Affiliation(s)
- Linda J. Kenney
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch Galveston, Galveston, Texas, USA
| |
Collapse
|
3
|
Barretto LAF, Van PKT, Fowler CC. Conserved patterns of sequence diversification provide insight into the evolution of two-component systems in Enterobacteriaceae. Microb Genom 2024; 10:001215. [PMID: 38502064 PMCID: PMC11004495 DOI: 10.1099/mgen.0.001215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/29/2024] [Indexed: 03/20/2024] Open
Abstract
Two-component regulatory systems (TCSs) are a major mechanism used by bacteria to sense and respond to their environments. Many of the same TCSs are used by biologically diverse organisms with different regulatory needs, suggesting that the functions of TCS must evolve. To explore this topic, we analysed the amino acid sequence divergence patterns of a large set of broadly conserved TCS across different branches of Enterobacteriaceae, a family of Gram-negative bacteria that includes biomedically important genera such as Salmonella, Escherichia, Klebsiella and others. Our analysis revealed trends in how TCS sequences change across different proteins or functional domains of the TCS, and across different lineages. Based on these trends, we identified individual TCS that exhibit atypical evolutionary patterns. We observed that the relative extent to which the sequence of a given TCS varies across different lineages is generally well conserved, unveiling a hierarchy of TCS sequence conservation with EnvZ/OmpR as the most conserved TCS. We provide evidence that, for the most divergent of the TCS analysed, PmrA/PmrB, different alleles were horizontally acquired by different branches of this family, and that different PmrA/PmrB sequence variants have highly divergent signal-sensing domains. Collectively, this study sheds light on how TCS evolve, and serves as a compendium for how the sequences of the TCS in this family have diverged over the course of evolution.
Collapse
Affiliation(s)
- Luke A. F. Barretto
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G2E9, Canada
| | - Patryc-Khang T. Van
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G2E9, Canada
| | - Casey C. Fowler
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G2E9, Canada
| |
Collapse
|
4
|
Zhang R, Wang Y. EvgS/EvgA, the unorthodox two-component system regulating bacterial multiple resistance. Appl Environ Microbiol 2023; 89:e0157723. [PMID: 38019025 PMCID: PMC10734491 DOI: 10.1128/aem.01577-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023] Open
Abstract
IMPORTANCE EvgS/EvgA, one of the five unorthodox two-component systems in Escherichia coli, plays an essential role in adjusting bacterial behaviors to adapt to the changing environment. Multiple resistance regulated by EvgS/EvgA endows bacteria to survive in adverse conditions such as acidic pH, multidrug, and heat. In this minireview, we summarize the specific structures and regulation mechanisms of EvgS/EvgA and its multiple resistance. By discussing several unresolved issues and proposing our speculations, this review will be helpful and enlightening for future directions about EvgS/EvgA.
Collapse
Affiliation(s)
- Ruizhen Zhang
- MoE Key Laboratory of Evolution and Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Yan Wang
- MoE Key Laboratory of Evolution and Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
5
|
The role of PhoP/PhoQ system in regulating stress adaptation response in Escherichia coli O157:H7. Food Microbiol 2023; 112:104244. [PMID: 36906298 DOI: 10.1016/j.fm.2023.104244] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/19/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023]
Abstract
The development of acid tolerance response (ATR) as a result of low pH in Escherichia coli O157:H7 (E. coli O157:H7) contaminating beef during processing is considered a major food safety concern. Thus, in order to explore the formation and molecular mechanisms of the tolerance response of E. coli O157:H7 in a simulated beef processing environment, the resistance of a wild-type (WT) strain and its corresponding ΔphoP mutant to acid, heat, and osmotic pressure was evaluated. Strains were pre-adapted under different conditions of pH (5.4 and 7.0), temperature (37 °C and 10 °C), and culture medium (meat extract and Luria-Bertani broth media). In addition, the expression of genes related to stress response and virulence was also investigated among WT and ΔphoP strains under the tested conditions. Pre-acid adaptation increased the resistance of E. coli O157:H7 to acid and heat treatment while resistance to osmotic pressure decreased. Moreover, acid adaptation in meat extract medium simulating slaughter environment increased ATR, whereas pre-adaptation at 10 °C reduced the ATR. Furthermore, it was shown that mildly acidic conditions (pH = 5.4) and the PhoP/PhoQ two-component system (TCS) acted synergistically to enhance acid and heat tolerance in E. coli O157:H7. Additionally, the expression of genes related to arginine and lysine metabolism, heat shock, and invasiveness was up-regulated, which revealed that the mechanism of acid resistance and cross-protection under mildly acidic conditions was mediated by the PhoP/PhoQ TCS. Both acid adaptation and phoP gene knockout reduced the relative expression of stx1 and stx2 genes which were considered as critical pathogenic factors. Collectively, the current findings indicated that ATR could occur in E. coli O157:H7 during beef processing. Thus, there is an increased food safety risk due to the persistence of tolerance response in the following processing conditions. The present study provides a more comprehensive basis for the effective application of hurdle technology in beef processing.
Collapse
|
6
|
Xu J, Guo L, Zhao N, Meng X, Zhang J, Wang T, Wei X, Fan M. Response mechanisms to acid stress of acid-resistant bacteria and biotechnological applications in the food industry. Crit Rev Biotechnol 2023; 43:258-274. [PMID: 35114869 DOI: 10.1080/07388551.2021.2025335] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Acid-resistant bacteria are more and more widely used in industrial production due to their unique acid-resistant properties. In order to survive in various acidic environments, acid-resistant bacteria have developed diverse protective mechanisms such as sensing acid stress and signal transduction, maintaining intracellular pH homeostasis by controlling the flow of H+, protecting and repairing biological macromolecules, metabolic modification, and cross-protection. Acid-resistant bacteria have broad biotechnological application prospects in the food field. The production of fermented foods with high acidity and acidophilic enzymes are the main applications of this kind of bacteria in the food industry. Their acid resistance modules can also be used to construct acid-resistant recombinant engineering strains for special purposes. However, they can also cause negative effects on foods, such as spoilage and toxicity. Herein, the aim of this paper is to summarize the research progress of molecular mechanisms against acid stress of acid-resistant bacteria. Moreover, their effects on the food industry were also discussed. It is useful to lay a foundation for broadening our understanding of the physiological metabolism of acid-resistant bacteria and better serving the food industry.
Collapse
Affiliation(s)
- Junnan Xu
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Li Guo
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Ning Zhao
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Xuemei Meng
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Jie Zhang
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Tieru Wang
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Xinyuan Wei
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Mingtao Fan
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| |
Collapse
|
7
|
Van Riet S, Tadesse W, Mortier J, Schlegel S, Simoens K, Bernaerts K, Dal Co A, Aertsen A. Heterogeneity and Evolutionary Tunability of Escherichia coli Resistance against Extreme Acid Stress. Microbiol Spectr 2022; 10:e0375722. [PMID: 36453903 PMCID: PMC9769608 DOI: 10.1128/spectrum.03757-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/27/2022] [Indexed: 12/05/2022] Open
Abstract
Since acidic environments often serve as an important line of defense against bacterial pathogens, it is important to fully understand how the latter manage to mount and evolve acid resistance mechanisms. Escherichia coli, a species harboring many pathovars, is typically equipped with the acid fitness island (AFI), a genomic region encoding the GadE master regulator together with several GadE-controlled functions to counter acid stress. This study reveals that gadE and consequently AFI functions are heterogeneously expressed even in the absence of any prior acid stress, thereby preemptively creating acid-resistant subpopulations within a clonal E. coli population. Directed evolution efforts selecting for modulated gadE expression confirm that a gain-of-function mutation in the EvgS sensor kinase can constitutively upregulate gadE expression and concomitant acid resistance. However, we reveal that such upregulation of EvgS also causes cross-resistance to heat stress because of SafA-mediated cross-activation of the PhoPQ regulon. Surprisingly, loss of function of the serC gene (encoding phosphoserine/phosphohydroxythreonine aminotransferase) can also significantly upregulate gadE expression, acid resistance, and heat cross-resistance, although via a currently cryptic mechanism. As such, our data reveal a noisy expression of gadE in E. coli that is functional for the survival of sudden acid stress and that can readily be genetically tuned. IMPORTANCE Acidic environments constitute one of the most important stresses for enteric bacteria and can be encountered in both natural (e.g., host gastrointestinal tract) and manmade (e.g., food processing) environments. The enteric species Escherichia coli harbors many pathovars and is well known for its ability to cope with acid stress. In this study, we uncover that E. coli's acid fitness island (AFI), a genomic region that encodes important functions to deal with acid stress, is by default expressed in a heterogeneous manner. In fact, using microfluidics-based single-cell approaches, we further demonstrate that this heterogeneity preemptively creates a clonal subpopulation that is much better equipped to survive a sudden acid shock. In addition, we reveal that environments with recurring acid stress can readily select for mutants displaying a higher fraction of AFI-expressing cells. These new insights are important to properly understand and anticipate the survival characteristics of E. coli.
Collapse
Affiliation(s)
- Stefanie Van Riet
- Department of Molecular and Microbial Systems, KU Leuven, Leuven, Belgium
| | - Wubishet Tadesse
- Department of Molecular and Microbial Systems, KU Leuven, Leuven, Belgium
| | - Julien Mortier
- Department of Molecular and Microbial Systems, KU Leuven, Leuven, Belgium
| | - Susan Schlegel
- Department of Environmental Microbiology, Eawag, Dübendorf, Switzerland
- Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
| | - Kenneth Simoens
- Department of Chemical Engineering, KU Leuven, Leuven, Belgium
| | | | - Alma Dal Co
- Department of Environmental Microbiology, Eawag, Dübendorf, Switzerland
- Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
| | - Abram Aertsen
- Department of Molecular and Microbial Systems, KU Leuven, Leuven, Belgium
| |
Collapse
|
8
|
Schwarz J, Schumacher K, Brameyer S, Jung K. Bacterial battle against acidity. FEMS Microbiol Rev 2022; 46:6652135. [PMID: 35906711 DOI: 10.1093/femsre/fuac037] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/11/2022] [Accepted: 07/27/2022] [Indexed: 01/09/2023] Open
Abstract
The Earth is home to environments characterized by low pH, including the gastrointestinal tract of vertebrates and large areas of acidic soil. Most bacteria are neutralophiles, but can survive fluctuations in pH. Herein, we review how Escherichia, Salmonella, Helicobacter, Brucella, and other acid-resistant Gram-negative bacteria adapt to acidic environments. We discuss the constitutive and inducible defense mechanisms that promote survival, including proton-consuming or ammonia-producing processes, cellular remodeling affecting membranes and chaperones, and chemotaxis. We provide insights into how Gram-negative bacteria sense environmental acidity using membrane-integrated and cytosolic pH sensors. Finally, we address in more detail the powerful proton-consuming decarboxylase systems by examining the phylogeny of their regulatory components and their collective functionality in a population.
Collapse
Affiliation(s)
- Julia Schwarz
- Faculty of Biology, Microbiology, Ludwig-Maximilians-University München, Großhaderner Str. 2-4, 82152 Martinsried, Germany
| | - Kilian Schumacher
- Faculty of Biology, Microbiology, Ludwig-Maximilians-University München, Großhaderner Str. 2-4, 82152 Martinsried, Germany
| | - Sophie Brameyer
- Faculty of Biology, Microbiology, Ludwig-Maximilians-University München, Großhaderner Str. 2-4, 82152 Martinsried, Germany
| | - Kirsten Jung
- Faculty of Biology, Microbiology, Ludwig-Maximilians-University München, Großhaderner Str. 2-4, 82152 Martinsried, Germany
| |
Collapse
|
9
|
Roles of Two-Component Signal Transduction Systems in Shigella Virulence. Biomolecules 2022; 12:biom12091321. [PMID: 36139160 PMCID: PMC9496106 DOI: 10.3390/biom12091321] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
Two-component signal transduction systems (TCSs) are widespread types of protein machinery, typically consisting of a histidine kinase membrane sensor and a cytoplasmic transcriptional regulator that can sense and respond to environmental signals. TCSs are responsible for modulating genes involved in a multitude of bacterial functions, including cell division, motility, differentiation, biofilm formation, antibiotic resistance, and virulence. Pathogenic bacteria exploit the capabilities of TCSs to reprogram gene expression according to the different niches they encounter during host infection. This review focuses on the role of TCSs in regulating the virulence phenotype of Shigella, an intracellular pathogen responsible for severe human enteric syndrome. The pathogenicity of Shigella is the result of the complex action of a wide number of virulence determinants located on the chromosome and on a large virulence plasmid. In particular, we will discuss how five TCSs, EnvZ/OmpR, CpxA/CpxR, ArcB/ArcA, PhoQ/PhoP, and EvgS/EvgA, contribute to linking environmental stimuli to the expression of genes related to virulence and fitness within the host. Considering the relevance of TCSs in the expression of virulence in pathogenic bacteria, the identification of drugs that inhibit TCS function may represent a promising approach to combat bacterial infections.
Collapse
|
10
|
Division of labor and collective functionality in Escherichia coli under acid stress. Commun Biol 2022; 5:327. [PMID: 35393532 PMCID: PMC8989999 DOI: 10.1038/s42003-022-03281-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/03/2022] [Indexed: 11/09/2022] Open
Abstract
The acid stress response is an important factor influencing the transmission of intestinal microbes such as the enterobacterium Escherichia coli. E. coli activates three inducible acid resistance systems - the glutamate decarboxylase, arginine decarboxylase, and lysine decarboxylase systems to counteract acid stress. Each system relies on the activity of a proton-consuming reaction catalyzed by a specific amino acid decarboxylase and a corresponding antiporter. Activation of these three systems is tightly regulated by a sophisticated interplay of membrane-integrated and soluble regulators. Using a fluorescent triple reporter strain, we quantitatively illuminated the cellular individuality during activation of each of the three acid resistance (AR) systems under consecutively increasing acid stress. Our studies highlight the advantages of E. coli in possessing three AR systems that enable division of labor in the population, which ensures survival over a wide range of low pH values.
Collapse
|
11
|
Bhowmik P, Rajagopal S, Hmar RV, Singh P, Saxena P, Amar P, Thomas T, Ravishankar R, Nagaraj S, Katagihallimath N, Sarangapani RK, Ramachandran V, Datta S. Validated In Silico Model for Biofilm Formation in Escherichia coli. ACS Synth Biol 2022; 11:713-731. [PMID: 35025506 DOI: 10.1021/acssynbio.1c00445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Using Escherichia coli as the representative biofilm former, we report here the development of an in silico model built by simulating events that transform a free-living bacterial entity into self-encased multicellular biofilms. Published literature on ∼300 genes associated with pathways involved in biofilm formation was curated, static maps were created, and suitably interconnected with their respective metabolites using ordinary differential equations. Precise interplay of genetic networks that regulate the transitory switching of bacterial growth pattern in response to environmental changes and the resultant multicomponent synthesis of the extracellular matrix were appropriately represented. Subsequently, the in silico model was analyzed by simulating time-dependent changes in the concentration of components by using the R and python environment. The model was validated by simulating and verifying the impact of key gene knockouts (KOs) and systematic knockdowns on biofilm formation, thus ensuring the outcomes were comparable with the reported literature. Similarly, specific gene KOs in laboratory and pathogenic E. coli were constructed and assessed. MiaA, YdeO, and YgiV were found to be crucial in biofilm development. Furthermore, qRT-PCR confirmed the elevation of expression in biofilm-forming clinical isolates. Findings reported in this study offer opportunities for identifying biofilm inhibitors with applications in multiple industries. The application of this model can be extended to the health care sector specifically to develop novel adjunct therapies that prevent biofilms in medical implants and reduce emergence of biofilm-associated resistant polymicrobial-chronic infections. The in silico framework reported here is open source and accessible for further enhancements.
Collapse
Affiliation(s)
- Purnendu Bhowmik
- Bugworks Research India Pvt. Ltd., Centre for Cellular and Molecular Platforms, National Centre for Biological Sciences, GKVK, Bellary Road, Bengaluru, Karnataka 560065, India
- The University of Trans-Disciplinary Health Sciences and Technology (TDU), Bengaluru, Karnataka 560064, India
| | - Sreenath Rajagopal
- Bugworks Research India Pvt. Ltd., Centre for Cellular and Molecular Platforms, National Centre for Biological Sciences, GKVK, Bellary Road, Bengaluru, Karnataka 560065, India
| | - Rothangamawi Victoria Hmar
- Bugworks Research India Pvt. Ltd., Centre for Cellular and Molecular Platforms, National Centre for Biological Sciences, GKVK, Bellary Road, Bengaluru, Karnataka 560065, India
| | - Purnima Singh
- Bugworks Research India Pvt. Ltd., Centre for Cellular and Molecular Platforms, National Centre for Biological Sciences, GKVK, Bellary Road, Bengaluru, Karnataka 560065, India
| | - Pragya Saxena
- Bugworks Research India Pvt. Ltd., Centre for Cellular and Molecular Platforms, National Centre for Biological Sciences, GKVK, Bellary Road, Bengaluru, Karnataka 560065, India
| | - Prakruthi Amar
- Bugworks Research India Pvt. Ltd., Centre for Cellular and Molecular Platforms, National Centre for Biological Sciences, GKVK, Bellary Road, Bengaluru, Karnataka 560065, India
| | - Teby Thomas
- St. John’s Research Institute, Bengaluru, Karnataka 560034, India
| | - Rajani Ravishankar
- Bugworks Research India Pvt. Ltd., Centre for Cellular and Molecular Platforms, National Centre for Biological Sciences, GKVK, Bellary Road, Bengaluru, Karnataka 560065, India
| | - Savitha Nagaraj
- St. John’s Medical College, Bengaluru, Karnataka 560034, India
| | - Nainesh Katagihallimath
- Bugworks Research India Pvt. Ltd., Centre for Cellular and Molecular Platforms, National Centre for Biological Sciences, GKVK, Bellary Road, Bengaluru, Karnataka 560065, India
- The University of Trans-Disciplinary Health Sciences and Technology (TDU), Bengaluru, Karnataka 560064, India
| | - Ramanujan Kadambi Sarangapani
- Bugworks Research India Pvt. Ltd., Centre for Cellular and Molecular Platforms, National Centre for Biological Sciences, GKVK, Bellary Road, Bengaluru, Karnataka 560065, India
| | - Vasanthi Ramachandran
- Bugworks Research India Pvt. Ltd., Centre for Cellular and Molecular Platforms, National Centre for Biological Sciences, GKVK, Bellary Road, Bengaluru, Karnataka 560065, India
- The University of Trans-Disciplinary Health Sciences and Technology (TDU), Bengaluru, Karnataka 560064, India
| | - Santanu Datta
- Bugworks Research India Pvt. Ltd., Centre for Cellular and Molecular Platforms, National Centre for Biological Sciences, GKVK, Bellary Road, Bengaluru, Karnataka 560065, India
| |
Collapse
|
12
|
Sharma VK, Akavaram S, Bayles DO. Genomewide transcriptional response of Escherichia coli O157:H7 to norepinephrine. BMC Genomics 2022; 23:107. [PMID: 35135480 PMCID: PMC8822769 DOI: 10.1186/s12864-021-08167-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/10/2021] [Indexed: 01/18/2023] Open
Abstract
Background Chemical signaling between a mammalian host and intestinal microbes is health and maintenance of ‘healthy’ intestinal microbiota. Escherichia coli O157:H7 can hijack host- and microbiota-produced chemical signals for survival in a harsh and nutritionally competitive gastrointestinal environment and for intestinal colonization. Norepinephrine (NE) produced by sympathetic neurons of the enteric nervous system has been shown in vitro to induce expression of genes controlling E. coli O157:H7 swimming motility, acid resistance, and adherence to epithelial cells. A previous study used a microarray approach to identify differentially expressed genes in E. coli O157:H7 strain EDL933 in response to NE. To elucidate a comprehensive transcriptional response to NE, we performed RNA-Seq on rRNA-depleted RNA of E. coli O157:H7 strain NADC 6564, an isolate of a foodborne E. coli O157:H7 strain 86–24. The reads generated by RNA-Seq were mapped to NADC 6564 genome using HiSat2. The mapped reads were quantified by htseq-count against the genome of strain NADC 6564. The differentially expressed genes were identified by analyzing quantified reads by DESeq2. Results Of the 585 differentially expressed genes (≥ 2.0-fold; p < 0.05), many encoded pathways promoting ability of E. coli O157:H7 strain NADC 6564 to colonize intestines of carrier animals and to produce disease in an incidental human host through increased adherence to epithelial cells and production of Shiga toxins. In addition, NE exposure also induced the expression of genes encoding pathways conferring prolonged survival at extreme acidity, controlling influx/efflux of specific nutrients/metabolites, and modulating tolerance to various stressors. A correlation was also observed between the EvgS/EvgA signal transduction system and the ability of bacterial cells to survive exposure to high acidity for several hours. Many genes involved in nitrogen, sulfur, and amino acid uptake were upregulated while genes linked to iron (Fe3+) acquisition and transport were downregulated. Conclusion The availability of physiological levels of NE in gastrointestinal tract could serve as an important cue for E. coli O157:H7 to engineer its virulence, stress, and metabolic pathways for colonization in reservoir animals, such as cattle, causing illness in humans, and surviving outside of a host. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08167-z.
Collapse
Affiliation(s)
- Vijay K Sharma
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, ARS-USDA, Ames, IA, 50010, USA.
| | - Suryatej Akavaram
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, ARS-USDA, Ames, IA, 50010, USA.,Current address: 4302 TX-332, Freeport, TX, 77541, USA
| | - Darrell O Bayles
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, ARS-USDA, Ames, IA, 50010, USA
| |
Collapse
|
13
|
The hdeD Gene Represses the Expression of Flagella Biosynthesis via LrhA in Escherichia coli K-12. J Bacteriol 2021; 204:e0042021. [PMID: 34694904 DOI: 10.1128/jb.00420-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli survives under acid stress conditions by the glutamic acid-dependent acid resistance (GAD) system, which enzymatically decreases intracellular protons. We found a linkage between GAD and flagellar systems in E. coli. The hdeD gene, one of the GAD cluster genes, encodes an uncharacterized membrane protein. A reporter assay showed that the hdeD promoter was induced in a GadE-dependent manner when grown in the M9 glycerol medium. Transcriptome analysis revealed that most of the transcripts were from genes involved in flagella synthesis, and cell motility increased not only in the hdeD-deficient mutant but also in the gadE-deficient mutant. Defects in both the hdeD and gadE increased the intracellular level of FliA, an alternative sigma factor for flagella synthesis, activated by the master regulator FlhDC. The promoter activity of the lrhA gene, which encodes repressor for the flhDC operon, was found to decrease in both the hdeD- and gadE-deficient mutants. Transmission electron microscopy showed that the number of flagellar filaments on the hdeD-, gadE-, and lrhA-deficient cells increased, and all three mutants showed higher motility than the parent strain. Thus, HdeD in the GAD system activates the lrhA promoter, resulting in a decrease in flagellar filaments in E. coli cells. We speculated that the synthesis of HdeD, stimulated in E. coli exposed to acid stress, could control the flagella biosynthesis by sensing slight changes in pH at the cytoplasmic membrane. This could help in saving energy through termination of flagella biosynthesis and improve bacterial survival efficiency within the animal digestive system. IMPORTANCE E. coli cells encounter various environments from the mouth down to the intestines within the host animals. The pH of gastric juice is lower than 2.0, and the bacterial must quickly respond and adapt to the following environmental changes before reaching the intestines. The quick response plays a role in cellular survival in the population, whereas adaptation may contribute to species survival. The GAD and flagella systems are important for response to low pH in E. coli. Here, we identified the novel inner membrane regulator HdeD, encoding in the GAD cluster, to repress the synthesis of flagella. These insights provide a deeper understanding of how the bacteria enter the animal digestive system, survive, and form colonies in the intestines.
Collapse
|
14
|
Pasqua M, Bonaccorsi di Patti MC, Fanelli G, Utsumi R, Eguchi Y, Trirocco R, Prosseda G, Grossi M, Colonna B. Host - Bacterial Pathogen Communication: The Wily Role of the Multidrug Efflux Pumps of the MFS Family. Front Mol Biosci 2021; 8:723274. [PMID: 34381818 PMCID: PMC8350985 DOI: 10.3389/fmolb.2021.723274] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/13/2021] [Indexed: 12/23/2022] Open
Abstract
Bacterial pathogens are able to survive within diverse habitats. The dynamic adaptation to the surroundings depends on their ability to sense environmental variations and to respond in an appropriate manner. This involves, among others, the activation of various cell-to-cell communication strategies. The capability of the bacterial cells to rapidly and co-ordinately set up an interplay with the host cells and/or with other bacteria facilitates their survival in the new niche. Efflux pumps are ubiquitous transmembrane transporters, able to extrude a large set of different molecules. They are strongly implicated in antibiotic resistance since they are able to efficiently expel most of the clinically relevant antibiotics from the bacterial cytoplasm. Besides antibiotic resistance, multidrug efflux pumps take part in several important processes of bacterial cell physiology, including cell to cell communication, and contribute to increase the virulence potential of several bacterial pathogens. Here, we focus on the structural and functional role of multidrug efflux pumps belonging to the Major Facilitator Superfamily (MFS), the largest family of transporters, highlighting their involvement in the colonization of host cells, in virulence and in biofilm formation. We will offer an overview on how MFS multidrug transporters contribute to bacterial survival, adaptation and pathogenicity through the export of diverse molecules. This will be done by presenting the functions of several relevant MFS multidrug efflux pumps in human life-threatening bacterial pathogens as Staphylococcus aureus, Listeria monocytogenes, Klebsiella pneumoniae, Shigella/E. coli, Acinetobacter baumannii.
Collapse
Affiliation(s)
- Martina Pasqua
- Department of Biology and Biotechnology "C. Darwin", Istituto Pasteur Italia, Sapienza Università di Roma, Rome, Italy
| | | | - Giulia Fanelli
- Department of Biology and Biotechnology "C. Darwin", Istituto Pasteur Italia, Sapienza Università di Roma, Rome, Italy
| | - Ryutaro Utsumi
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Osaka, Japan
| | - Yoko Eguchi
- Department of Science and Technology on Food Safety, Kindai University, Kinokawa, Japan
| | - Rita Trirocco
- Department of Biology and Biotechnology "C. Darwin", Istituto Pasteur Italia, Sapienza Università di Roma, Rome, Italy
| | - Gianni Prosseda
- Department of Biology and Biotechnology "C. Darwin", Istituto Pasteur Italia, Sapienza Università di Roma, Rome, Italy
| | - Milena Grossi
- Department of Biology and Biotechnology "C. Darwin", Istituto Pasteur Italia, Sapienza Università di Roma, Rome, Italy
| | - Bianca Colonna
- Department of Biology and Biotechnology "C. Darwin", Istituto Pasteur Italia, Sapienza Università di Roma, Rome, Italy
| |
Collapse
|
15
|
Wan F, Xu L, Ruan Z, Luo Q. Genomic and Transcriptomic Analysis of Colistin-Susceptible and Colistin-Resistant Isolates Identify Two-Component System EvgS/EvgA Associated with Colistin Resistance in Escherichia coli. Infect Drug Resist 2021; 14:2437-2447. [PMID: 34234474 PMCID: PMC8254184 DOI: 10.2147/idr.s316963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/15/2021] [Indexed: 12/02/2022] Open
Abstract
Purpose Colistin is one of the last-resort antimicrobial agents that combat the increasing threat of multi-drug resistant (MDR) gram-negative bacteria. Based on the known mechanism of colistin resistance which contributes to chromosomal mutations involved in the synthesis and modification of lipopolysaccharide (LPS), we explored the regulatory genes mediate colistin resistance, by whole genome sequencing and transcriptome analysis. Materials and Methods In this study, a colistin-resistant (Colr) strain Escherichia coli ATCC 25922-R was generated from colistin-sensible (Cols) strain E. coli ATCC 25922 by colistin induction. We compared the genome and transcriptome sequencing result from Cols and Colr strain. MALDI-TOF mass spectrometry was used to detect LPS. Results Genomic analysis and complementation experiment demonstrated the PmrB amino acid substitution in ATCC 25922-R (L14R) conferred the colistin resistance phenotype. Results of RNA sequencing (RNA-Seq) and comparative transcriptome analysis indicated that the two-component system EvgS/EvgA is highly involved in the global regulation of colistin resistance. Conclusion This study demonstrated that PmrB L14R amino acid substitution resulted in colistin resistance, and two-component system EvgS/EvgA might participate in colistin resistance in E. coli.
Collapse
Affiliation(s)
- Fen Wan
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, People's Republic of China
| | - Linna Xu
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, People's Republic of China
| | - Zhi Ruan
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, People's Republic of China
| | - Qixia Luo
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of Medical School, College of medicine, Zhejiang University, Hangzhou, 310003, People's Republic of China
| |
Collapse
|
16
|
Inada S, Okajima T, Utsumi R, Eguchi Y. Acid-Sensing Histidine Kinase With a Redox Switch. Front Microbiol 2021; 12:652546. [PMID: 34093469 PMCID: PMC8174306 DOI: 10.3389/fmicb.2021.652546] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/19/2021] [Indexed: 12/22/2022] Open
Abstract
The EvgS/EvgA two-component signal transduction system in Escherichia coli is activated under mildly acidic pH conditions. Upon activation, this system induces the expression of a number of genes that confer acid resistance. The EvgS histidine kinase sensor has a large periplasmic domain that is required for perceiving acidic signals. In addition, we have previously proposed that the cytoplasmic linker region of EvgS is also involved in the activation of this sensor. The cytoplasmic linker region resembles a Per-ARNT-Sim (PAS) domain, which is known to act as a molecular sensor that is responsive to chemical and physical stimuli and regulates the activity of diverse effector domains. Our EvgS/EvgA reporter assays revealed that under EvgS-activating mildly acidic pH conditions, EvgS was activated only during aerobic growth conditions, and not during anaerobic growth. Studies using EvgS mutants revealed that C671A and C683A mutations in the cytoplasmic PAS domain activated EvgS even under anaerobic conditions. Furthermore, among the electron carriers of the electron transport chain, ubiquinone was required for EvgS activation. The present study proposes a model of EvgS activation by oxidation and suggests that the cytoplasmic PAS domain serves as an intermediate redox switch for this sensor.
Collapse
Affiliation(s)
- Shinya Inada
- Graduate School of Biology-Oriented Science and Technology, Kindai University, Kinokawa, Japan
| | - Toshihide Okajima
- The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Japan
| | - Ryutaro Utsumi
- The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Japan
| | - Yoko Eguchi
- Graduate School of Biology-Oriented Science and Technology, Kindai University, Kinokawa, Japan
| |
Collapse
|
17
|
Absence of osmoregulated periplasmic glucan confers antimicrobial resistance and increases virulence in Escherichia coli. J Bacteriol 2021; 203:e0051520. [PMID: 33846116 DOI: 10.1128/jb.00515-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clarifying the molecular mechanisms by which bacteria acquire virulence traits is important toward understanding the bacterial virulence system. In the present study, we utilized a bacterial evolution method in a silkworm-infection model and revealed that deletion of the opgGH operon encoding synthases for osmoregulated periplasmic glucan (OPG) increased the virulence of non-pathogenic laboratory strain of Escherichia coli against silkworms. The opgGH knockout mutant exhibited resistance to the host antimicrobial peptides and antibiotics. Compared with the parent strain, the opgGH knockout mutant produced greater amounts of colanic acid, which is involved in E. coli resistance to antibiotics. RNA sequence analysis revealed that the opgGH knockout altered the expression of various genes, including the evgS/evgA two-component system that functions in antibiotic resistance. In both a colanic acid-negative background and evgS-null background, the opgGH knockout increased E. coli resistance to antibiotics and increased the silkworm killing activity of E. coli In the null background of the envZ/ompR two-component system, which genetically interacts with opgGH, the opgGH knockout increased the antibiotic resistance and the virulence in silkworms. These findings suggest that the absence of OPG confers antimicrobial resistance and virulence of E. coli in a colanic acid-, evgS/evgA-, and envZ/ompR- independent manner.IMPORTANCEThe gene mutation types that increase bacterial virulence of Escherichia coli remain unclear, in part due to the limited number of methods available for isolating bacterial mutants with increased virulence. We utilized a bacterial evolution method in the silkworm infection model, in which silkworms were infected with mutagenized bacteria and highly virulent bacterial mutants were isolated from dead silkworms. We revealed that knockout of OPG synthases increases E. coli virulence against silkworms. The OPG-knockout mutants were resistant to host antimicrobial peptides as well as antibiotics. Our findings not only suggest a novel mechanism for virulence acquisition in E. coli, but also support the usefulness of utilizing the bacterial experimental evolution method in the silkworm infection model.
Collapse
|
18
|
Gain-of-Function Mutations in Acid Stress Response ( evgS) Protect Escherichia coli from Killing by Gallium Nitrate, an Antimicrobial Candidate. Antimicrob Agents Chemother 2021; 65:AAC.01595-20. [PMID: 33257448 DOI: 10.1128/aac.01595-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022] Open
Abstract
Widespread antimicrobial resistance encourages repurposing/refining of nonantimicrobial drugs for antimicrobial indications. Gallium nitrate (GaNt), an FDA-approved medication for cancer-related hypercalcemia, recently showed good activity against several clinically significant bacteria. However, the mechanism of GaNt antibacterial action is still poorly understood. In the present work, resistant and tolerant mutants of Escherichia coli were sought via multiple rounds of killing by GaNt. Multiround-enrichment yielded no resistant mutant; whole-genome sequencing of one representative GaNt-tolerant mutant uncovered mutations in three genes (evgS, arpA, and kdpD) potentially linked to protection from GaNt-mediated killing. Subsequent genetic analysis ruled out a role for arpA and kdpD, but two gain-of-function mutations in evgS conferred tolerance. The evgS mutation-mediated GaNt tolerance depended on EvgS-to-EvgA phosphotransfer; EvgA-mediated upregulation of GadE. YdeO, and SarfA also contributed to tolerance, the latter two likely through their regulation of GadE. GaNt-mediated killing of wild-type cells correlated with increased intracellular reactive oxygen species (ROS) accumulation that was abolished by the evgS-tolerant mutation. Moreover, GaNt-mediated killing was mitigated by dimethyl sulfoxide, and the evgS-tolerant mutation upregulated genes encoding enzymes involved in ROS detoxification and in the glyoxylate shunt of the tricarboxylic acid (TCA) cycle. Collectively, these findings indicate that GaNt kills bacteria through elevation of ROS; gain-of-function mutations in evgS confer tolerance by constitutively activating the EvgA-YdeO/GadE cascade of acid resistance pathways and by preventing GaNt-stimulated ROS accumulation by upregulating ROS detoxification and shifting TCA cycle carbon flux. The striking lethal activity of GaNt suggests that clinical use of the agent may not quickly lead to resistance.
Collapse
|
19
|
Carter MQ, Pham A, Huynh S, Parker CT, Miller A, He X, Hu B, Chain PSG. DNA adenine methylase, not the PstI restriction-modification system, regulates virulence gene expression in Shiga toxin-producing Escherichia coli. Food Microbiol 2020; 96:103722. [PMID: 33494894 DOI: 10.1016/j.fm.2020.103722] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 12/15/2020] [Accepted: 12/22/2020] [Indexed: 01/20/2023]
Abstract
We previously reported a distinct methylome between the two Shiga toxin-producing Escherichia coli (STEC) O145:H28 strains linked to the 2010 U.S. lettuce-associated outbreak (RM13514) and the 2007 Belgium ice cream-associated outbreak (RM13516), respectively. This difference was thought to be attributed to a prophage encoded type II restriction-modification system (PstI R-M) in RM13514. Here, we characterized this PstI R-M system in comparison to DNA adenine methylase (Dam), a highly conserved enzyme in γ proteobacteria, by functional genomics. Deficiency in Dam led to a differential expression of over 1000 genes in RM13514, whereas deficiency in PstI R-M only impacted a few genes transcriptionally. Dam regulated genes involved in diverse functions, whereas PstI R-M regulated genes mostly encoding transporters and adhesins. Dam regulated a large number of genes located on prophages, pathogenicity islands, and plasmids, including Shiga toxin genes, type III secretion system (TTSS) genes, and enterohemolysin genes. Production of Stx2 in dam mutant was significantly higher than in RM13514, supporting a role of Dam in maintaining lysogeny of Stx2-prophage. However, following mitomycin C treatment, Stx2 in RM13514 was significantly higher than that of dam or PstI R-M deletion mutant, implying that both Dam and PstI R-M contributed to maximum Stx2 production.
Collapse
Affiliation(s)
- Michelle Qiu Carter
- U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Produce Safety and Microbiology Research Unit, Albany, CA, USA.
| | - Antares Pham
- U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Produce Safety and Microbiology Research Unit, Albany, CA, USA
| | - Steven Huynh
- U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Produce Safety and Microbiology Research Unit, Albany, CA, USA
| | - Craig T Parker
- U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Produce Safety and Microbiology Research Unit, Albany, CA, USA
| | - Avalon Miller
- U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Produce Safety and Microbiology Research Unit, Albany, CA, USA
| | - Xiaohua He
- U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Foodborne Toxin and Detection Research Unit, Albany, CA, USA
| | - Bin Hu
- Biosecurity and Public Health Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Patrick S G Chain
- Biosecurity and Public Health Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| |
Collapse
|
20
|
Arcari T, Feger ML, Guerreiro DN, Wu J, O’Byrne CP. Comparative Review of the Responses of Listeria monocytogenes and Escherichia coli to Low pH Stress. Genes (Basel) 2020; 11:genes11111330. [PMID: 33187233 PMCID: PMC7698193 DOI: 10.3390/genes11111330] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/03/2020] [Accepted: 11/09/2020] [Indexed: 02/07/2023] Open
Abstract
Acidity is one of the principal physicochemical factors that influence the behavior of microorganisms in any environment, and their response to it often determines their ability to grow and survive. Preventing the growth and survival of pathogenic bacteria or, conversely, promoting the growth of bacteria that are useful (in biotechnology and food production, for example), might be improved considerably by a deeper understanding of the protective responses that these microorganisms deploy in the face of acid stress. In this review, we survey the molecular mechanisms used by two unrelated bacterial species in their response to low pH stress. We chose to focus on two well-studied bacteria, Escherichia coli (phylum Proteobacteria) and Listeria monocytogenes (phylum Firmicutes), that have both evolved to be able to survive in the mammalian gastrointestinal tract. We review the mechanisms that these species use to maintain a functional intracellular pH as well as the protective mechanisms that they deploy to prevent acid damage to macromolecules in the cells. We discuss the mechanisms used to sense acid in the environment and the regulatory processes that are activated when acid is encountered. We also highlight the specific challenges presented by organic acids. Common themes emerge from this comparison as well as unique strategies that each species uses to cope with acid stress. We highlight some of the important research questions that still need to be addressed in this fascinating field.
Collapse
|
21
|
Serdyukov DS, Goryachkovskaya TN, Mescheryakova IA, Bannikova SV, Kuznetsov SA, Cherkasova OP, Popik VM, Peltek SE. Study on the effects of terahertz radiation on gene networks of Escherichia coli by means of fluorescent biosensors. BIOMEDICAL OPTICS EXPRESS 2020; 11:5258-5273. [PMID: 33014613 PMCID: PMC7510871 DOI: 10.1364/boe.400432] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 05/03/2023]
Abstract
Three novel fluorescent biosensors sensitive to terahertz (THz) radiation were developed via transformation of Escherichia coli (E. coli) cells with plasmids, in which a promotor of genes matA, safA, or chbB controls the expression of a fluorescent protein. The biosensors were exposed to THz radiation from two sources: a high-intensity pulsed short-wave free electron laser and a low-intensity continuous long-wave IMPATT-diode-based device. The threshold and dynamics of fluorescence were found to depend on radiation parameters and exposure time. Heat shock or chemical stress yielded the absence of fluorescence induction. The biosensors are evaluated to be suitable for studying influence of THz radiation on the activity of gene networks related with considered gene promoters.
Collapse
Affiliation(s)
- Danil S. Serdyukov
- Laboratory of Molecular Biotechnologies of Federal Research Center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Avenue, Novosibirsk 630090, Russia
- Kurchatov Genomics Center of Federal Research Center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Avenue, Novosibirsk 630090, Russia
- Institute of Laser Physics of the Siberian Branch of the Russian Academy of Sciences, 15B Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Tatiana N. Goryachkovskaya
- Laboratory of Molecular Biotechnologies of Federal Research Center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Avenue, Novosibirsk 630090, Russia
- Kurchatov Genomics Center of Federal Research Center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Irina A. Mescheryakova
- Laboratory of Molecular Biotechnologies of Federal Research Center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Avenue, Novosibirsk 630090, Russia
- Kurchatov Genomics Center of Federal Research Center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Svetlana V. Bannikova
- Laboratory of Molecular Biotechnologies of Federal Research Center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Avenue, Novosibirsk 630090, Russia
- Kurchatov Genomics Center of Federal Research Center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Sergei A. Kuznetsov
- Physics Department, Novosibirsk State University, 2 Pirogov Street, Novosibirsk 630090, Russia
- Technological Design Institute of Applied Microelectronics, Rzhanov Institute of Semiconductor Physics of the Siberian Branch of the Russian Academy of Sciences, 2/1 Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Olga P. Cherkasova
- Institute of Laser Physics of the Siberian Branch of the Russian Academy of Sciences, 15B Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Vasiliy M. Popik
- Budker Institute of Nuclear Physics of the Siberian Branch of the Russian Academy of Sciences, 11 Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Sergey E. Peltek
- Laboratory of Molecular Biotechnologies of Federal Research Center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Avenue, Novosibirsk 630090, Russia
- Kurchatov Genomics Center of Federal Research Center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Avenue, Novosibirsk 630090, Russia
| |
Collapse
|
22
|
Boon N, Kaur M, Aziz A, Bradnick M, Shibayama K, Eguchi Y, Lund PA. The Signaling Molecule Indole Inhibits Induction of the AR2 Acid Resistance System in Escherichia coli. Front Microbiol 2020; 11:474. [PMID: 32351457 PMCID: PMC7174508 DOI: 10.3389/fmicb.2020.00474] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/04/2020] [Indexed: 12/19/2022] Open
Abstract
Induction of the AR2 acid response system of Escherichia coli occurs at a moderately low pH (pH 5.5) and leads to high levels of resistance to pH levels below 2.5 in the presence of glutamate. Induction is mediated in part by the EvgAS two component system. Here, we show that the bacterial signaling molecule indole inhibits the induction of key promoters in the AR2 system and blocks the development of glutamate-dependent acid resistance. The addition of tryptophan, the precursor for indole biosynthesis, had the same effects, and this block was relieved in a tnaA mutant, which is unable to synthesize indole. Expression of a constitutively active EvgS protein was able to relieve the inhibition caused by indole, consistent with EvgS being inhibited directly or indirectly by indole. Indole had no effect on autophosphorylation of the isolated cytoplasmic domain of EvgS. This is consistent with a model where indole directly or indirectly affects the ability of EvgS to detect its inducing signal or to transduce this information across the cytoplasmic membrane. The inhibitory activity of indole on the AR2 system is not related to its ability to act as an ionophore, and, conversely, the ionophore CCCP had no effect on acid-induced AR2 promoter activity, showing that the proton motive force is unlikely to be a signal for induction of the AR2 system.
Collapse
Affiliation(s)
- Nathaniel Boon
- School of Biosciences and Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Manpreet Kaur
- School of Biosciences and Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Amina Aziz
- School of Biosciences and Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Morissa Bradnick
- School of Biosciences and Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Kenta Shibayama
- Department of Science and Technology on Food Safety, Faculty of Biology-Oriented Science and Technology, Kindai University, Wakayama, Japan
| | - Yoko Eguchi
- Department of Science and Technology on Food Safety, Faculty of Biology-Oriented Science and Technology, Kindai University, Wakayama, Japan
| | - Peter A Lund
- School of Biosciences and Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
23
|
A Novel Redox-Sensing Histidine Kinase That Controls Carbon Catabolite Repression in Azoarcus sp. CIB. mBio 2019; 10:mBio.00059-19. [PMID: 30967457 PMCID: PMC6456745 DOI: 10.1128/mbio.00059-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have identified and characterized the AccS multidomain sensor kinase that mediates the activation of the AccR master regulator involved in carbon catabolite repression (CCR) of the anaerobic catabolism of aromatic compounds in Azoarcus sp. CIB. A truncated AccS protein that contains only the soluble C-terminal autokinase module (AccS') accounts for the succinate-dependent CCR control. In vitro assays with purified AccS' revealed its autophosphorylation, phosphotransfer from AccS'∼P to the Asp60 residue of AccR, and the phosphatase activity toward its phosphorylated response regulator, indicating that the equilibrium between the kinase and phosphatase activities of AccS' may control the phosphorylation state of the AccR transcriptional regulator. Oxidized quinones, e.g., ubiquinone 0 and menadione, switched the AccS' autokinase activity off, and three conserved Cys residues, which are not essential for catalysis, are involved in such inhibition. Thiol oxidation by quinones caused a change in the oligomeric state of the AccS' dimer resulting in the formation of an inactive monomer. This thiol-based redox switch is tuned by the cellular energy state, which can change depending on the carbon source that the cells are using. This work expands the functional diversity of redox-sensitive sensor kinases, showing that they can control new bacterial processes such as CCR of the anaerobic catabolism of aromatic compounds. The AccSR two-component system is conserved in the genomes of some betaproteobacteria, where it might play a more general role in controlling the global metabolic state according to carbon availability.IMPORTANCE Two-component signal transduction systems comprise a sensor histidine kinase and its cognate response regulator, and some have evolved to sense and convert redox signals into regulatory outputs that allow bacteria to adapt to the altered redox environment. The work presented here expands knowledge of the functional diversity of redox-sensing kinases to control carbon catabolite repression (CCR), a phenomenon that allows the selective assimilation of a preferred compound among a mixture of several carbon sources. The newly characterized AccS sensor kinase is responsible for the phosphorylation and activation of the AccR master regulator involved in CCR of the anaerobic degradation of aromatic compounds in the betaproteobacterium Azoarcus sp. CIB. AccS seems to have a thiol-based redox switch that is modulated by the redox state of the quinone pool. The AccSR system is conserved in several betaproteobacteria, where it might play a more general role controlling their global metabolic state.
Collapse
|
24
|
Göpel Y, Görke B. Interaction of lipoprotein QseG with sensor kinase QseE in the periplasm controls the phosphorylation state of the two-component system QseE/QseF in Escherichia coli. PLoS Genet 2018; 14:e1007547. [PMID: 30040820 PMCID: PMC6075780 DOI: 10.1371/journal.pgen.1007547] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 08/03/2018] [Accepted: 07/08/2018] [Indexed: 01/26/2023] Open
Abstract
Histidine kinase QseE and response regulator QseF compose a two-component system in Enterobacteriaceae. In Escherichia coli K-12 QseF activates transcription of glmY and of rpoE from Sigma 54-dependent promoters by binding to upstream activating sequences. Small RNA GlmY and RpoE (Sigma 24) are important regulators of cell envelope homeostasis. In pathogenic Enterobacteriaceae QseE/QseF are required for virulence. In enterohemorrhagic E. coli QseE was reported to sense the host hormone epinephrine and to regulate virulence genes post-transcriptionally through employment of GlmY. The qseEGF operon contains a third gene, qseG, which encodes a lipoprotein attached to the inner leaflet of the outer membrane. Here, we show that QseG is essential and limiting for activity of QseE/QseF in E. coli K-12. Metabolic 32P-labelling followed by pull-down demonstrates that phosphorylation of the receiver domain of QseF in vivo requires QseE as well as QseG. Accordingly, QseG acts upstream and through QseE/QseF by stimulating activity of kinase QseE. 32P-labelling also reveals an additional phosphorylation in the QseF C-terminus of unknown origin, presumably at threonine/serine residue(s). Pulldown and two-hybrid assays demonstrate interaction of QseG with the periplasmic loop of QseE. A mutational screen identifies the Ser58Asn exchange in the periplasmic loop of QseE, which decreases interaction with QseG and concomitantly lowers QseE/QseF activity, indicating that QseG activates QseE by interaction. Finally, epinephrine is shown to have a moderate impact on QseE activity in E. coli K-12. Epinephrine slightly stimulates QseF phosphorylation and thereby glmY transcription, but exclusively during stationary growth and this requires both, QseE and QseG. Our data reveal a three-component signaling system, in which the phosphorylation state of QseE/QseF is governed by interaction with lipoprotein QseG in response to a signal likely derived from the cell envelope.
Collapse
Affiliation(s)
- Yvonne Göpel
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories (MFPL), University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Boris Görke
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories (MFPL), University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| |
Collapse
|
25
|
Shin J, Cho H, Kim S, Kim KS. Role of acid responsive genes in the susceptibility of Escherichia coli to ciclopirox. Biochem Biophys Res Commun 2018; 500:296-301. [PMID: 29654752 DOI: 10.1016/j.bbrc.2018.04.063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 04/10/2018] [Indexed: 10/17/2022]
Abstract
Antibiotic resistance poses a huge threat to the effective treatment of bacterial infections. To circumvent the limitations in developing new antibiotics, researchers are attempting to repurpose pre-developed drugs that are known to be safe. Ciclopirox, an off-patent antifungal agent, inhibits the growth of Gram-negative bacteria, and genes involved in galactose metabolism and lipopolysaccharide (LPS) biosynthesis are plausible antibacterial targets for ciclopirox, since their expression levels partially increase susceptibility at restrictive concentrations. In the present study, to identify new target genes involved in the susceptibility of Escherichia coli to ciclopirox, genome-wide mRNA profiling was performed following ciclopirox addition at sublethal concentrations, and glutamate-dependent acid resistance (GDAR) genes were differentially regulated. Additional susceptibility testing, growth analyses and viability assays of GDAR regulatory genes revealed that down-regulation of evgS or hns strongly enhanced susceptibility to ciclopirox. Further microscopy and phenotypic analyses revealed that down-regulation of these genes increased cell size and decreased motility. Our findings could help to maximise the efficacy of ciclopirox against hard-to-treat Gram-negative pathogens.
Collapse
Affiliation(s)
- Jonghoon Shin
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| | - Hyejin Cho
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| | - Suran Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| | - Kwang-Sun Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
26
|
Roggiani M, Yadavalli SS, Goulian M. Natural variation of a sensor kinase controlling a conserved stress response pathway in Escherichia coli. PLoS Genet 2017; 13:e1007101. [PMID: 29140975 PMCID: PMC5706723 DOI: 10.1371/journal.pgen.1007101] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 11/29/2017] [Accepted: 11/03/2017] [Indexed: 12/02/2022] Open
Abstract
Previous studies have shown that exponentially growing Escherichia coli can detect mild acidity (~pH 5.5) and, in response, synthesize enzymes that protect against severe acid shock. This adaptation is controlled by the EvgS/EvgA phosphorelay, a signal transduction system present in virtually every E. coli isolate whose genome has been sequenced. Here we show that, despite this high level of conservation, the EvgS/EvgA system displays a surprising natural variation in pH-sensing capacity, with some strains entirely non-responsive to low pH stimulus. In most cases that we have tested, however, activation of the EvgA regulon still confers acid resistance. From analyzing selected E. coli isolates, we find that the natural variation results from polymorphisms in the sensor kinase EvgS. We further show that this variation affects the pH response of a second kinase, PhoQ, which senses pH differently from the closely related PhoQ in Salmonella enterica. The within-species diversification described here suggests EvgS likely responds to additional input signals that may be correlated with acid stress. In addition, this work highlights the fact that even for highly conserved sensor kinases, the activities identified from a subset of isolates may not necessarily generalize to other members of the same bacterial species. Bacteria employ a class of proteins, sensor kinases, to sense environmental cues and initiate cellular responses through phosphorylation of partner response regulator proteins. Individual kinases are generally assumed to have the same sensory activity across members of a bacterial species. In this work, we report an unexpected counterexample in which the well-established capacity of the kinase EvgS to sense mild acidity is limited to a subset of Escherichia coli isolates. Despite this natural variation, EvgS activation still confers resistance to acid stress in strains that have lost EvgS pH-sensing activity. Thus, most E. coli share a conserved output of the Evg system but do not require identical sensory functions. This work highlights the potential for significant functional divergence of a sensor kinase within a species and also indicates that there are additional input signals for the highly conserved EvgS protein.
Collapse
Affiliation(s)
- Manuela Roggiani
- Department of Biology, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Srujana S. Yadavalli
- Department of Biology, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Mark Goulian
- Department of Biology, University of Pennsylvania, Philadelphia, PA, United States of America
- * E-mail:
| |
Collapse
|
27
|
Functional Analysis of Genes Comprising the Locus of Heat Resistance in Escherichia coli. Appl Environ Microbiol 2017; 83:AEM.01400-17. [PMID: 28802266 DOI: 10.1128/aem.01400-17] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 08/07/2017] [Indexed: 12/21/2022] Open
Abstract
The locus of heat resistance (LHR) is a 15- to 19-kb genomic island conferring exceptional heat resistance to organisms in the family Enterobacteriaceae, including pathogenic strains of Salmonella enterica and Escherichia coli The complement of LHR-comprising genes that is necessary for heat resistance and the stress-induced or growth-phase-induced expression of LHR-comprising genes are unknown. This study determined the contribution of the seven LHR-comprising genes yfdX1GI, yfdX2, hdeDGI, orf11, trxGI, kefB, and psiEGI by comparing the heat resistances of E. coli strains harboring plasmid-encoded derivatives of the different LHRs in these genes. (Genes carry a subscript "GI" [genomic island] if an ortholog of the same gene is present in genomes of E. coli) LHR-encoded heat shock proteins sHSP20, ClpKGI, and sHSPGI are not sufficient for the heat resistance phenotype; YfdX1, YfdX2, and HdeD are necessary to complement the LHR heat shock proteins and to impart a high level of resistance. Deletion of trxGI, kefB, and psiEGI from plasmid-encoded copies of the LHR did not significantly affect heat resistance. The effect of the growth phase and the NaCl concentration on expression from the putative LHR promoter p2 was determined by quantitative reverse transcription-PCR and by a plasmid-encoded p2:GFP promoter fusion. The expression levels of exponential- and stationary-phase E. coli cells were not significantly different, but the addition of 1% NaCl significantly increased LHR expression. Remarkably, LHR expression in E. coli was dependent on a chromosomal copy of evgA In conclusion, this study improved our understanding of the genes required for exceptional heat resistance in E. coli and factors that increase their expression in food.IMPORTANCE The locus of heat resistance (LHR) is a genomic island conferring exceptional heat resistance to several foodborne pathogens. The exceptional level of heat resistance provided by the LHR questions the control of pathogens by current food processing and preparation techniques. The function of LHR-comprising genes and their regulation, however, remain largely unknown. This study defines a core complement of LHR-encoded proteins that are necessary for heat resistance and demonstrates that regulation of the LHR in E. coli requires a chromosomal copy of the gene encoding EvgA. This study provides insight into the function of a transmissible genomic island that allows otherwise heat-sensitive enteric bacteria, including pathogens, to lead a thermoduric lifestyle and thus contributes to the detection and control of heat-resistant enteric bacteria in food.
Collapse
|
28
|
Structural and Functional Analysis of the Escherichia coli Acid-Sensing Histidine Kinase EvgS. J Bacteriol 2017; 199:JB.00310-17. [PMID: 28674068 PMCID: PMC5573083 DOI: 10.1128/jb.00310-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 06/19/2017] [Indexed: 01/31/2023] Open
Abstract
The EvgS/EvgA two-component system of Escherichia coli is activated in response to low pH and alkali metals and regulates many genes, including those for the glutamate-dependent acid resistance system and a number of efflux pumps. EvgS, the sensor kinase, is one of five unconventional histidine kinases (HKs) in E. coli and has a large periplasmic domain and a cytoplasmic PAS domain in addition to phospho-acceptor, HK and dimerization, internal receiver, and phosphotransfer domains. Mutations that constitutively activate the protein at pH 7 map to the PAS domain. Here, we built a homology model of the periplasmic region of EvgS, based on the structure of the equivalent region of the BvgS homologue, to guide mutagenesis of potential key residues in this region. We show that histidine 226 is required for induction and that it is structurally colocated with a proline residue (P522) at the top of the predicted transmembrane helix that is expected to play a key role in passing information to the cytoplasmic domains. We also show that the constitutive mutations in the PAS domain can be further activated by low external pH. Expression of the cytoplasmic part of the protein alone also gives constitutive activation, which is lost if the constitutive PAS mutations are present. These findings are consistent with a model in which EvgS senses both external and internal pH and is activated by a shift from a tight inactive to a weak active dimer, and we present an analysis of the purified cytoplasmic portion of EvgS that supports this. IMPORTANCE One of the ways bacteria sense their environment is through two-component systems, which have one membrane-bound protein to do the sensing and another inside the cell to turn genes on or off in response to what the membrane-bound protein has detected. The membrane-bound protein must thus be able to detect the stress and signal this detection event to the protein inside the cell. To understand this process, we studied a protein that helps E. coli to survive exposure to low pH, which it must do before taking up residence in the gastrointestinal tract. We describe a predicted structure for the main sensing part of the protein and identify some key residues within it that are involved in the sensing and signaling processes. We propose a mechanism for how the protein may become activated and present some evidence to support our proposal.
Collapse
|
29
|
Mörk-Mörkenstein M, Heermann R, Göpel Y, Jung K, Görke B. Non-canonical activation of histidine kinase KdpD by phosphotransferase protein PtsN through interaction with the transmitter domain. Mol Microbiol 2017; 106:54-73. [PMID: 28714556 DOI: 10.1111/mmi.13751] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2017] [Indexed: 02/02/2023]
Abstract
The two-component system KdpD/KdpE governs K+ homeostasis by controlling synthesis of the high affinity K+ transporter KdpFABC. When sensing low environmental K+ concentrations, the dimeric kinase KdpD autophosphorylates in trans and transfers the phosphoryl-group to the response regulator KdpE, which subsequently activates kdpFABC transcription. In Escherichia coli, KdpD can also be activated by interaction with the non-phosphorylated form of the accessory protein PtsN. PtsN stimulates KdpD kinase activity thereby increasing phospho-KdpE levels. Here, we analyzed the interplay between KdpD/KdpE and PtsN. PtsN binds specifically to the catalytic DHp domain of KdpD, which is also contacted by KdpE. Accordingly, PtsN and KdpE compete for binding, providing a paradox. Low levels of non-phosphorylated PtsN stimulate, whereas high amounts reduce kdpFABC expression by blocking access of KdpE to KdpD. Ligand fishing experiments provided insight as they revealed ternary complex formation of PtsN/KdpD2 /KdpE in vivo demonstrating that PtsN and KdpE bind different protomers in the KdpD dimer. PtsN may bind one protomer to stimulate phosphorylation of the second KdpD protomer, which then phosphorylates bound KdpE. Phosphorylation of PtsN prevents its incorporation in ternary complexes. Interaction with the conserved DHp domain enables PtsN to regulate additional kinases such as PhoR.
Collapse
Affiliation(s)
- Markus Mörk-Mörkenstein
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories (MFPL), University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Ralf Heermann
- Munich Center for Integrated Protein Science (CiPSM) at the Department of Microbiology, Ludwig-Maximilians-Universität München, Martinsried/München, Germany
| | - Yvonne Göpel
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories (MFPL), University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Kirsten Jung
- Munich Center for Integrated Protein Science (CiPSM) at the Department of Microbiology, Ludwig-Maximilians-Universität München, Martinsried/München, Germany
| | - Boris Görke
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories (MFPL), University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| |
Collapse
|
30
|
Utsumi R. Bacterial signal transduction networks via connectors and development of the inhibitors as alternative antibiotics. Biosci Biotechnol Biochem 2017; 81:1663-1669. [PMID: 28743208 DOI: 10.1080/09168451.2017.1350565] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Bacterial cells possess a signal transduction system that differs from those described in higher organisms, including human cells. These so-called two-component signal transduction systems (TCSs) consist of a sensor (histidine kinase, HK) and a response regulator, and are involved in cellular functions, such as virulence, drug resistance, biofilm formation, cell wall synthesis, cell division. They are conserved in bacteria across all species. Although TCSs are often studied and characterized individually, they are assumed to interact with each other and form signal transduction networks within the cell. In this review, I focus on the formation of TCS networks via connectors. I also explore the possibility of using TCS inhibitors, especially HK inhibitors, as alternative antimicrobial agents.
Collapse
Affiliation(s)
- Ryutaro Utsumi
- a Department of Bioscience, Graduate School of Agriculture , Kindai University , Nara , Japan
| |
Collapse
|
31
|
Zhang J, Caiyin Q, Feng W, Zhao X, Qiao B, Zhao G, Qiao J. Enhance nisin yield via improving acid-tolerant capability of Lactococcus lactis F44. Sci Rep 2016; 6:27973. [PMID: 27306587 PMCID: PMC4910042 DOI: 10.1038/srep27973] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 05/27/2016] [Indexed: 11/09/2022] Open
Abstract
Traditionally, nisin was produced industrially by using Lactococcus lactis in the neutral fermentation process. However, nisin showed higher activity in the acidic environment. How to balance the pH value for bacterial normal growth and nisin activity might be the key problem. In this study, 17 acid-tolerant genes and 6 lactic acid synthetic genes were introduced in L. lactis F44, respectively. Comparing to the 2810 IU/mL nisin yield of the original strain F44, the nisin titer of the engineered strains over-expressing hdeAB, ldh and murG, increased to 3850, 3979 and 4377 IU/mL, respectively. These engineered strains showed more stable intracellular pH value during the fermentation process. Improvement of lactate production could partly provide the extra energy for the expression of acid tolerance genes during growth. Co-overexpression of hdeAB, murG, and ldh(Z) in strain F44 resulted in the nisin titer of 4913 IU/mL. The engineered strain (ABGL) could grow on plates with pH 4.2, comparing to the surviving pH 4.6 of strain F44. The fed-batch fermentation showed nisin titer of the co-expression L. lactis strain could reach 5563 IU/mL with lower pH condition and longer cultivation time. This work provides a novel strategy of constructing robust strains for use in industry process.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.,Key Laboratory of Systems Bioengineering, Ministry of Education Tianjin, 300072, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Qinggele Caiyin
- Key Laboratory of Systems Bioengineering, Ministry of Education Tianjin, 300072, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Wenjing Feng
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.,Key Laboratory of Systems Bioengineering, Ministry of Education Tianjin, 300072, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Xiuli Zhao
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.,Key Laboratory of Systems Bioengineering, Ministry of Education Tianjin, 300072, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Bin Qiao
- Key Laboratory of Systems Bioengineering, Ministry of Education Tianjin, 300072, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Guangrong Zhao
- Key Laboratory of Systems Bioengineering, Ministry of Education Tianjin, 300072, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Jianjun Qiao
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.,Key Laboratory of Systems Bioengineering, Ministry of Education Tianjin, 300072, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| |
Collapse
|
32
|
Yoshida M, Ishihama A, Yamamoto K. Cross talk in promoter recognition between six NarL-family response regulators of Escherichia coli two-component system. Genes Cells 2015; 20:601-12. [PMID: 26010043 DOI: 10.1111/gtc.12251] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 04/21/2015] [Indexed: 12/01/2022]
Abstract
Bacterial two-component system (TCS) is composed of the sensor kinase (SK) and the response regulator (RR). After monitoring an environmental signal or condition, SK activates RR through phosphorylation, ultimately leading to the signal-dependent regulation of genome transcription. In Escherichia coli, a total of more than 30 SK-RR pairs exist, each forming a cognate signal transduction system. Cross talk of the signal transduction takes place at three stages: signal recognition by SK (stage 1); RR phosphorylation by SK (stage 2); and target recognition by RR (stage 3). Previously, we analyzed the stage 2 cross talk between the whole set of E. coli SK-RR pairs and found that the cross talk takes place for certain combinations. As an initial attempt to identify the stage 3 cross talk at the step of target promoter recognition by RR, we analyzed in this study the cross-recognition of target promoters by six NarL-family RRs, EvgA, NarL, NarP, RcsB, UhpA, and UvrY. Results of both in vivo and in vitro studies indicated that the stage 3 cross talk takes place for limited combinations, in particular, including a multifactor-regulated ydeP promoter.
Collapse
Affiliation(s)
- Myu Yoshida
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo, 185-8584, Japan
| | - Akira Ishihama
- Research Institute of Micro-Nano Technology, Hosei University, Koganei, Tokyo, 184-0003, Japan
| | - Kaneyoshi Yamamoto
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo, 185-8584, Japan.,Research Institute of Micro-Nano Technology, Hosei University, Koganei, Tokyo, 184-0003, Japan
| |
Collapse
|
33
|
De Biase D, Lund PA. The Escherichia coli Acid Stress Response and Its Significance for Pathogenesis. ADVANCES IN APPLIED MICROBIOLOGY 2015; 92:49-88. [PMID: 26003933 DOI: 10.1016/bs.aambs.2015.03.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Escherichia coli has a remarkable ability to survive low pH and possesses a number of different genetic systems that enable it to do this. These may be expressed constitutively, typically in stationary phase, or induced by growth under a variety of conditions. The activities of these systems have been implicated in the ability of E. coli to pass the acidic barrier of the stomach and to become established in the gastrointestinal tract, something causing serious infections. However, much of the work characterizing these systems has been done on standard laboratory strains of E. coli and under conditions which do not closely resemble those found in the human gut. Here we review what is known about acid resistance in E. coli as a model laboratory organism and in the context of its lifestyle as an inhabitant-sometimes an unwelcome one-of the human gut.
Collapse
|
34
|
Yamanaka Y, Oshima T, Ishihama A, Yamamoto K. Characterization of the YdeO regulon in Escherichia coli. PLoS One 2014; 9:e111962. [PMID: 25375160 PMCID: PMC4222967 DOI: 10.1371/journal.pone.0111962] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Accepted: 10/09/2014] [Indexed: 11/23/2022] Open
Abstract
Enterobacteria are able to survive under stressful conditions within animals, such as acidic conditions in the stomach, bile salts during transfer to the intestine and anaerobic conditions within the intestine. The glutamate-dependent (GAD) system plays a major role in acid resistance in Escherichia coli, and expression of the GAD system is controlled by the regulatory cascade consisting of EvgAS > YdeO > GadE. To understand the YdeO regulon in vivo, we used ChIP-chip to interrogate the E. coli genome for candidate YdeO binding sites. All of the seven operons identified by ChIP-chip as being potentially regulated by YdeO were confirmed as being under the direct control of YdeO using RT-qPCR, EMSA, DNaseI-footprinting and reporter assays. Within this YdeO regulon, we identified four stress-response transcription factors, DctR, NhaR, GadE, and GadW and enzymes for anaerobic respiration. Both GadE and GadW are involved in regulation of the GAD system and NhaR is an activator for the sodium/proton antiporter gene. In conjunction with co-transcribed Slp, DctR is involved in protection against metabolic endoproducts under acidic conditions. Taken all together, we suggest that YdeO is a key regulator of E. coli survival in both acidic and anaerobic conditions.
Collapse
Affiliation(s)
- Yuki Yamanaka
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo, Japan
| | - Taku Oshima
- Graduate School of Information Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - Akira Ishihama
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo, Japan
- Micro-Nano Technology Research Center, Hosei University, Koganei, Tokyo, Japan
| | - Kaneyoshi Yamamoto
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo, Japan
- Micro-Nano Technology Research Center, Hosei University, Koganei, Tokyo, Japan
| |
Collapse
|
35
|
Johnson MD, Bell J, Clarke K, Chandler R, Pathak P, Xia Y, Marshall RL, Weinstock GM, Loman NJ, Winn PJ, Lund PA. Characterization of mutations in the PAS domain of the EvgS sensor kinase selected by laboratory evolution for acid resistance in Escherichia coli. Mol Microbiol 2014; 93:911-27. [PMID: 24995530 PMCID: PMC4283999 DOI: 10.1111/mmi.12704] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2014] [Indexed: 01/25/2023]
Abstract
Laboratory-based evolution and whole-genome sequencing can link genotype and phenotype. We used evolution of acid resistance in exponential phase Escherichia coli to study resistance to a lethal stress. Iterative selection at pH 2.5 generated five populations that were resistant to low pH in early exponential phase. Genome sequencing revealed multiple mutations, but the only gene mutated in all strains was evgS, part of a two-component system that has already been implicated in acid resistance. All these mutations were in the cytoplasmic PAS domain of EvgS, and were shown to be solely responsible for the resistant phenotype, causing strong upregulation at neutral pH of genes normally induced by low pH. Resistance to pH 2.5 in these strains did not require the transporter GadC, or the sigma factor RpoS. We found that EvgS-dependent constitutive acid resistance to pH 2.5 was retained in the absence of the regulators GadE or YdeO, but was lost if the oxidoreductase YdeP was also absent. A deletion in the periplasmic domain of EvgS abolished the response to low pH, but not the activity of the constitutive mutants. On the basis of these results we propose a model for how EvgS may become activated by low pH.
Collapse
Affiliation(s)
- Matthew D Johnson
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK; Drug Delivery, Disposition & Dynamics, Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Parkville, 3062, Vic., Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Lund P, Tramonti A, De Biase D. Coping with low pH: molecular strategies in neutralophilic bacteria. FEMS Microbiol Rev 2014; 38:1091-125. [PMID: 24898062 DOI: 10.1111/1574-6976.12076] [Citation(s) in RCA: 282] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 02/26/2014] [Accepted: 03/14/2014] [Indexed: 12/31/2022] Open
Abstract
As part of their life cycle, neutralophilic bacteria are often exposed to varying environmental stresses, among which fluctuations in pH are the most frequent. In particular, acid environments can be encountered in many situations from fermented food to the gastric compartment of the animal host. Herein, we review the current knowledge of the molecular mechanisms adopted by a range of Gram-positive and Gram-negative bacteria, mostly those affecting human health, for coping with acid stress. Because organic and inorganic acids have deleterious effects on the activity of the biological macromolecules to the point of significantly reducing growth and even threatening their viability, it is not unexpected that neutralophilic bacteria have evolved a number of different protective mechanisms, which provide them with an advantage in otherwise life-threatening conditions. The overall logic of these is to protect the cell from the deleterious effects of a harmful level of protons. Among the most favoured mechanisms are the pumping out of protons, production of ammonia and proton-consuming decarboxylation reactions, as well as modifications of the lipid content in the membrane. Several examples are provided to describe mechanisms adopted to sense the external acidic pH. Particular attention is paid to Escherichia coli extreme acid resistance mechanisms, the activity of which ensure survival and may be directly linked to virulence.
Collapse
Affiliation(s)
- Peter Lund
- School of Biosciences, University of Birmingham, Birmingham, UK
| | | | | |
Collapse
|
37
|
Silva-Jiménez H, Ortega Á, García-Fontana C, Ramos JL, Krell T. Multiple signals modulate the activity of the complex sensor kinase TodS. Microb Biotechnol 2014; 8:103-15. [PMID: 24986263 PMCID: PMC4321377 DOI: 10.1111/1751-7915.12142] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 05/22/2014] [Accepted: 06/07/2014] [Indexed: 11/28/2022] Open
Abstract
The reason for the existence of complex sensor kinases is little understood but thought to lie in the capacity to respond to multiple signals. The complex, seven-domain sensor kinase TodS controls in concert with the TodT response regulator the expression of the toluene dioxygenase pathway in Pseudomonas putida F1 and DOT-T1E. We have previously shown that some aromatic hydrocarbons stimulate TodS activity whereas others behave as antagonists. We show here that TodS responds in addition to the oxidative agent menadione. Menadione but no other oxidative agent tested inhibited TodS activity in vitro and reduced PtodX expression in vivo. The menadione signal is incorporated by a cysteine-dependent mechanism. The mutation of the sole conserved cysteine of TodS (C320) rendered the protein insensitive to menadione. We evaluated the mutual opposing effects of toluene and menadione on TodS autophosphorylation. In the presence of toluene, menadione reduced TodS activity whereas toluene did not stimulate activity in the presence of menadione. It was shown by others that menadione increases expression of glucose metabolism genes. The opposing effects of menadione on glucose and toluene metabolism may be partially responsible for the interwoven regulation of both catabolic pathways. This work provides mechanistic detail on how complex sensor kinases integrate different types of signal molecules.
Collapse
Affiliation(s)
- Hortencia Silva-Jiménez
- Department of Environmental Protection, Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, C/ Prof. Albareda 1, Granada, 18008, Spain
| | | | | | | | | |
Collapse
|
38
|
Alkali metals in addition to acidic pH activate the EvgS histidine kinase sensor in Escherichia coli. J Bacteriol 2014; 196:3140-9. [PMID: 24957621 DOI: 10.1128/jb.01742-14] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Two-component signal transduction systems (TCSs) in bacteria perceive environmental stress and transmit the information via phosphorelay to adjust multiple cellular functions for adaptation. The EvgS/EvgA system is a TCS that confers acid resistance to Escherichia coli cells. Activation of the EvgS sensor initiates a cascade of transcription factors, EvgA, YdeO, and GadE, which induce the expression of a large group of acid resistance genes. We searched for signals activating EvgS and found that a high concentration of alkali metals (Na(+), K(+)) in addition to low pH was essential for the activation. EvgS is a histidine kinase, with a large periplasmic sensor region consisting of two tandem PBPb (bacterial periplasmic solute-binding protein) domains at its N terminus. The periplasmic sensor region of EvgS was necessary for EvgS activation, and Leu152, located within the first PBPb domain, was involved in the activation. Furthermore, chimeras of EvgS and PhoQ histidine kinases suggested that alkali metals were perceived at the periplasmic sensor region, whereas the cytoplasmic linker domain, connecting the transmembrane region and the histidine kinase domain, was required for low-pH perception.
Collapse
|
39
|
Schuurmans JM, van Hijum SAFT, Piet JR, Händel N, Smelt J, Brul S, ter Kuile BH. Effect of growth rate and selection pressure on rates of transfer of an antibiotic resistance plasmid between E. coli strains. Plasmid 2014; 72:1-8. [PMID: 24525238 DOI: 10.1016/j.plasmid.2014.01.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 01/29/2014] [Accepted: 01/30/2014] [Indexed: 10/25/2022]
Abstract
Antibiotic resistance increases costs for health care and causes therapy failure. An important mechanism for spreading resistance is transfer of plasmids containing resistance genes and subsequent selection. Yet the factors that influence the rate of transfer are poorly known. Rates of plasmid transfer were measured in co-cultures in chemostats of a donor and a acceptor strain under various selective pressures. To document whether specific mutations in either plasmid or acceptor genome are associated with the plasmid transfer, whole genome sequencing was performed. The DM0133 TetR tetracycline resistance plasmid was transferred between Escherichia coli K-12 strains during co-culture at frequencies that seemed higher at increased growth rate. Modeling of the take-over of the culture by the transformed strain suggests that in reality more transfer events occurred at low growth rates. At moderate selection pressure due to an antibiotic concentration that still allowed growth, a maximum transfer frequency was determined of once per 10(11) cell divisions. In the absence of tetracycline or in the presence of high concentrations the frequency of transfer was sometimes zero, but otherwise reduced by at least a factor of 5. Whole genome sequencing showed that the plasmid was transferred without mutations, but two functional mutations in the genome of the recipient strain accompanied this transfer. Exposure to concentrations of antibiotics that fall within the mutant selection window stimulated transfer of the resistance plasmid most.
Collapse
Affiliation(s)
- Jasper M Schuurmans
- Department of Molecular Biology & Microbial Food Safety, Swammerdam Institute of Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Sacha A F T van Hijum
- NIZO Food Research B.V., Kernhemseweg 2, 6718 ZB Ede, The Netherlands; Centre for Molecular and Biomolecular Informatics (CMBI), NCMLS, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Jurgen R Piet
- Department of Medical Microbiology, Center of Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, P.O. Box 22660, 1100 DD Amsterdam, The Netherlands
| | - Nadine Händel
- Department of Molecular Biology & Microbial Food Safety, Swammerdam Institute of Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Jan Smelt
- Department of Molecular Biology & Microbial Food Safety, Swammerdam Institute of Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Stanley Brul
- Department of Molecular Biology & Microbial Food Safety, Swammerdam Institute of Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Benno H ter Kuile
- Department of Molecular Biology & Microbial Food Safety, Swammerdam Institute of Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands; Office for Risk Assessment and Research, Netherlands Food and Consumer Product Safety Authority, Catharijnesingel 59, 3511 GG Utrecht, The Netherlands.
| |
Collapse
|
40
|
Evolutionary potential, cross-stress behavior and the genetic basis of acquired stress resistance in Escherichia coli. Mol Syst Biol 2013; 9:643. [PMID: 23385483 PMCID: PMC3588905 DOI: 10.1038/msb.2012.76] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 12/08/2012] [Indexed: 12/20/2022] Open
Abstract
Escherichia coli cells were evolved over 500 generations and profiled in four abiotic stressors to observe several cases of emerging cross-stress behavior whereby adaptation to one stressful environment provided fitness advantage when exposed to a second stressor. ![]()
Cross-stress dependencies were found to be ubiquitous, highly interconnected and can emerge within short timeframes. Several targets were implicated in adaptation and cross-stress protection, including genes related to iron transport and flagella. Adaptation in a first stress can lead to higher fitness to a second stress when compared with cells adapted only in the latter environment. Adaptation to any specific stress and the growth media was found to be generally independent.
Bacterial populations have a remarkable capacity to cope with extreme environmental fluctuations in their natural environments. In certain cases, adaptation to one stressful environment provides a fitness advantage when cells are exposed to a second stressor, a phenomenon that has been coined as cross-stress protection. A tantalizing question in bacterial physiology is how the cross-stress behavior emerges during evolutionary adaptation and what the genetic basis of acquired stress resistance is. To address these questions, we evolved Escherichia coli cells over 500 generations in five environments that include four abiotic stressors. Through growth profiling and competition assays, we identified several cases of positive and negative cross-stress behavior that span all strain–stress combinations. Resequencing the genomes of the evolved strains resulted in the identification of several mutations and gene amplifications, whose fitness effect was further assessed by mutation reversal and competition assays. Transcriptional profiling of all strains under a specific stress, NaCl-induced osmotic stress, and integration with resequencing data further elucidated the regulatory responses and genes that are involved in this phenomenon. Our results suggest that cross-stress dependencies are ubiquitous, highly interconnected, and can emerge within short timeframes. The high adaptive potential that we observed argues that bacterial populations occupy a genotypic space that enables a high phenotypic plasticity during adaptation in fluctuating environments.
Collapse
|
41
|
Luo SC, Lou YC, Rajasekaran M, Chang YW, Hsiao CD, Chen C. Structural basis of a physical blockage mechanism for the interaction of response regulator PmrA with connector protein PmrD from Klebsiella pneumoniae. J Biol Chem 2013; 288:25551-25561. [PMID: 23861396 PMCID: PMC3757216 DOI: 10.1074/jbc.m113.481978] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
In bacteria, the two-component system is the most prevalent for sensing and transducing environmental signals into the cell. The PmrA-PmrB two-component system, responsible for sensing external stimuli of high Fe(3+) and mild acidic conditions, can control the genes involved in lipopolysaccharide modification and polymyxin resistance in pathogens. In Klebsiella pneumoniae, the small basic connector protein PmrD protects phospho-PmrA and prolongs the expression of PmrA-activated genes. We previously determined the phospho-PmrA recognition mode of PmrD. However, how PmrA interacts with PmrD and prevents its dephosphorylation remains unknown. To address this question, we solved the x-ray crystal structure of the N-terminal receiver domain of BeF3(-)-activated PmrA (PmrA(N)) at 1.70 Å. With this structure, we applied the data-driven docking method based on NMR chemical shift perturbation to generate the complex model of PmrD-PmrA(N), which was further validated by site-directed spin labeling experiments. In the complex model, PmrD may act as a blockade to prevent phosphatase from contacting with the phosphorylation site on PmrA.
Collapse
Affiliation(s)
| | | | | | - Yi-Wei Chang
- Molecular Biology, Academia Sinica, Taipei 115, Taiwan and
| | | | - Chinpan Chen
- From the Institutes of Biomedical Sciences and ,Agricultural Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan, To whom correspondence should be addressed: Institute of Biomedical Sciences, Academia Sinica, 128 Academia Rd., Section 2, Taipei 115, Taiwan. Tel.: 886-2-2652-3035; Fax: 886-2-2788-7641; E-mail:
| |
Collapse
|
42
|
Deng Z, Shan Y, Pan Q, Gao X, Yan A. Anaerobic expression of the gadE-mdtEF multidrug efflux operon is primarily regulated by the two-component system ArcBA through antagonizing the H-NS mediated repression. Front Microbiol 2013; 4:194. [PMID: 23874328 PMCID: PMC3708157 DOI: 10.3389/fmicb.2013.00194] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 06/24/2013] [Indexed: 12/28/2022] Open
Abstract
The gadE-mdtEF operon encodes a central acid resistance regulator GadE and two multidrug efflux proteins MdtEF. Although transcriptional regulation of gadE in the context of acid resistance under the aerobic growth environment of Escherichia coli has been extensively studied, regulation of the operon under the physiologically relevant environment of anaerobic growth and its effect on the expression of the multidrug efflux proteins MdtEF in the operon has not been disclosed. Our previous study revealed that anaerobic induction of the operon was dependent on ArcA, the response regulator of the ArcBA two-component system, in the M9 glucose minimal medium. However, the detailed regulatory mechanism remains unknown. In this study, we showed that anaerobic activation of mdtEF was driven by the 798 bp unusually long gadE promoter. Deletion of evgA, ydeO, rpoS, and gadX which has been shown to activate the gadE expression during acid stresses under aerobic condition did not have a significant effect on the anaerobic activation of the operon. Rather, anaerobic activation of the operon was largely dependent on the global regulator ArcA and a GTPase MnmE. Under aerobic condition, transcription of gadE was repressed by the global DNA silencer H-NS in M9 minimal medium. Interestingly, under anaerobic condition, while ΔarcA almost completely abolished transcription of gadE-mdtEF, further deletion of hns in ΔarcA mutant restored the transcription of the full-length PgadE-lacZ, and P1- and P3-lacZ fusions, suggesting an antagonistic effect of ArcA on the H-NS mediated repression. Taken together, we conclude that the anaerobic activation of the gadE-mdtEF was primarily mediated by the two-component system ArcBA through antagonizing the H-NS mediated repression.
Collapse
Affiliation(s)
- Ziqing Deng
- School of Biological Sciences, The University of Hong Kong Hong Kong, China
| | | | | | | | | |
Collapse
|
43
|
Kim KS, Lee JY, Kwon SY, Yang HJ, Choi EK, Shin MH, Ahn KS, Um JY, Lee JH, Jang HJ. Comparative transcriptomic analysis of the multi-targeted effects of the herbal extracts against Escherichia coli O157:H7. BIOCHIP JOURNAL 2012. [DOI: 10.1007/s13206-012-6410-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
44
|
De Biase D, Pennacchietti E. Glutamate decarboxylase-dependent acid resistance in orally acquired bacteria: function, distribution and biomedical implications of the gadBC operon. Mol Microbiol 2012; 86:770-86. [PMID: 22995042 DOI: 10.1111/mmi.12020] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2012] [Indexed: 02/06/2023]
Abstract
For successful colonization of the mammalian host, orally acquired bacteria must overcome the extreme acidic stress (pH < 2.5) encountered during transit through the host stomach. The glutamate-dependent acid resistance (GDAR) system is by far the most potent acid resistance system in commensal and pathogenic Escherichia coli, Shigella flexneri, Listeria monocytogenes and Lactococcus lactis. GDAR requires the activity of glutamate decarboxylase (GadB), an intracellular PLP-dependent enzyme which performs a proton-consuming decarboxylation reaction, and of the cognate antiporter (GadC), which performs the glutamatein /γ-aminobutyrateout (GABA) electrogenic antiport. Herein we review recent findings on the structural determinants responsible for pH-dependent intracellular activation of E. coli GadB and GadC. A survey of genomes of bacteria (pathogenic and non-pathogenic), having in common the ability to colonize or to transit through the host gut, shows that the gadB and gadC genes frequently lie next or near each other. This gene arrangement is likely to be important to ensure timely co-regulation of the decarboxylase and the antiporter. Besides the involvement in acid resistance, GABA production and release were found to occur at very high levels in lactic acid bacteria originally isolated from traditionally fermented foods, supporting the evidence that GABA-enriched foods possess health-promoting properties.
Collapse
Affiliation(s)
- Daniela De Biase
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze e Biotecnologie Medico-Chirurgiche, Sapienza Università di Roma, 04100, Latina, Italy.
| | | |
Collapse
|
45
|
Eguchi Y, Ishii E, Yamane M, Utsumi R. The connector SafA interacts with the multi-sensing domain of PhoQ in Escherichia coli. Mol Microbiol 2012; 85:299-313. [DOI: 10.1111/j.1365-2958.2012.08114.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
46
|
Stauffer LT, Stauffer GV. Antagonistic Roles for GcvA and GcvB in hdeAB Expression in Escherichia coli. ISRN MICROBIOLOGY 2012; 2012:697308. [PMID: 23762759 PMCID: PMC3658693 DOI: 10.5402/2012/697308] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 03/14/2012] [Indexed: 11/23/2022]
Abstract
In E. coli, the periplasmic proteins HdeA and HdeB have chaperone-like functions, suppressing aggregation of periplasmic proteins under acidic conditions. A microarray analysis of RNA isolated from an E. coli wild type and a ΔgcvB strain grown to mid-log phase in Luria-Bertani broth indicated the hdeAB operon, encoding the HdeA and HdeB proteins, is regulated by the sRNA GcvB. We wanted to verify that GcvB and its coregulator Hfq play a role in regulation of the hdeAB operon. In this study, we show that GcvB positively regulates hdeA::lacZ and hdeB::lacZ translational fusions in cells grown in Luria-Bertani broth and in glucose minimal media + glycine. Activation also requires the Hfq protein. Although many sRNAs dependent on Hfq regulate by an antisense mechanism, GcvB regulates hdeAB either directly or indirectly at the level of transcription. GcvA, the activator of gcvB, negatively regulates hdeAB at the level of transcription. Although expression of gcvB is dependent on GcvA, activation of hdeAB by GcvB occurs independently of GcvA's ability to repress the operon. Cell survival and growth at low pH are consistent with GcvA negatively regulating and GcvB positively regulating the hdeAB operon.
Collapse
|
47
|
Jung K, Fried L, Behr S, Heermann R. Histidine kinases and response regulators in networks. Curr Opin Microbiol 2012; 15:118-24. [DOI: 10.1016/j.mib.2011.11.009] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 11/17/2011] [Indexed: 10/14/2022]
|
48
|
Effects on growth by changes of the balance between GreA, GreB, and DksA suggest mutual competition and functional redundancy in Escherichia coli. J Bacteriol 2011; 194:261-73. [PMID: 22056927 DOI: 10.1128/jb.06238-11] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It is well known that ppGpp and DksA interact with bacterial RNA polymerase (RNAP) to alter promoter activity. This study suggests that GreA plays a major role and GreB plays a minor role in the ppGpp-DksA regulatory network. We present evidence that DksA and GreA/GreB are redundant and/or share similar functions: (i) on minimal medium GreA overproduction suppresses the growth defects of a dksA mutant; (ii) GreA and DksA overexpression partially suppresses the auxotrophy of a ppGpp-deficient strain; (iii) microarrays show that many genes are regulated similarly by GreA and DksA. We also find instances where GreA and DksA seem to act in opposition: (i) complete suppression of auxotrophy occurs by overexpression of GreA or DksA only in the absence of the other protein; (ii) PgadA and PgadE promoter fusions, along with many other genes, are dramatically affected in vivo by GreA overproduction only when DksA is absent; (iii) GreA and DksA show opposite regulation of a subset of genes. Mutations in key acidic residues of GreA and DksA suggest that properties seen here probably are not explained by known biochemical activities of these proteins. Our results indicate that the general pattern of gene expression and, in turn, the ability of Escherichia coli to grow under a defined condition are the result of a complex interplay between GreA, GreB, and DksA that also involves mutual control of their gene expression, competition for RNA polymerase binding, and similar or opposite action on RNA polymerase activity.
Collapse
|
49
|
Wang D, Calla B, Vimolmangkang S, Wu X, Korban SS, Huber SC, Clough SJ, Zhao Y. The orphan gene ybjN conveys pleiotropic effects on multicellular behavior and survival of Escherichia coli. PLoS One 2011; 6:e25293. [PMID: 21980417 PMCID: PMC3181261 DOI: 10.1371/journal.pone.0025293] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 08/31/2011] [Indexed: 11/19/2022] Open
Abstract
YbjN, encoding an enterobacteria-specific protein, is a multicopy suppressor of temperature sensitivity in the ts9 mutant strain of Escherichia coli. In this study, we further explored the role(s) of ybjN. First, we demonstrated that the ybjN transcript was about 10-fold lower in the ts9 strain compared to that of E. coli strain BW25113 (BW). Introduction of multiple copies of ybjN in the ts9 strain resulted in over-expression of ybjN by about 10-fold as compared to that of BW. These results suggested that temperature sensitivity of the ts9 mutant of E. coli may be related to expression levels of ybjN. Characterization of E. coli ybjN mutant revealed that ybjN mutation resulted in pleiotropic phenotypes, including increased motility, fimbriation (auto-aggregation), exopolysaccharide production, and biofilm formation. In contrast, over-expression of ybjN (in terms of multiple copies) resulted in reduced motility, fimbriation, exopolysaccharide production, biofilm formation and acid resistance. In addition, our results indicate that a ybjN-homolog gene from Erwinia amylovora, a plant enterobacterial pathogen, is functionally conserved with that of E. coli, suggesting similar evolution of the YbjN family proteins in enterobacteria. A microarray study revealed that the expression level of ybjN was inversely correlated with the expression of flagellar, fimbrial and acid resistance genes. Over-expression of ybjN significantly down-regulated genes involved in citric acid cycle, glycolysis, the glyoxylate shunt, oxidative phosphorylation, amino acid and nucleotide metabolism. Furthermore, over-expression of ybjN up-regulated toxin-antitoxin modules, the SOS response pathway, cold shock and starvation induced transporter genes. Collectively, these results suggest that YbjN may play important roles in regulating bacterial multicellular behavior, metabolism, and survival under stress conditions in E. coli. These results also suggest that ybjN over-expression-related temperature rescue of the ts9 mutant may be due to down-regulation of metabolic activity and activation of stress response genes in the ts9 mutant.
Collapse
Affiliation(s)
- Dongping Wang
- Department of Crop Sciences, University of Illinois, Urbana, Illinois, United States of America
| | - Bernarda Calla
- Department of Crop Sciences, University of Illinois, Urbana, Illinois, United States of America
| | - Sornkanok Vimolmangkang
- Department of Natural Resources and Environmental Sciences, University of Illinois, Urbana, Illinois, United States of America
| | - Xia Wu
- Program in Physiological and Molecular Plant Biology, University of Illinois, Urbana, Illinois, United States of America
| | - Schuyler S. Korban
- Department of Natural Resources and Environmental Sciences, University of Illinois, Urbana, Illinois, United States of America
| | - Steven C. Huber
- Program in Physiological and Molecular Plant Biology, University of Illinois, Urbana, Illinois, United States of America
- Agricultural Research Service, United States Department of Agriculture (USDA), Urbana, Illinois, United States of America
| | - Steven J. Clough
- Department of Crop Sciences, University of Illinois, Urbana, Illinois, United States of America
- Agricultural Research Service, United States Department of Agriculture (USDA), Urbana, Illinois, United States of America
| | - Youfu Zhao
- Department of Crop Sciences, University of Illinois, Urbana, Illinois, United States of America
- Program in Physiological and Molecular Plant Biology, University of Illinois, Urbana, Illinois, United States of America
- * E-mail:
| |
Collapse
|
50
|
RcsB is required for inducible acid resistance in Escherichia coli and acts at gadE-dependent and -independent promoters. J Bacteriol 2011; 193:3653-6. [PMID: 21571995 DOI: 10.1128/jb.05040-11] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RcsB interacts with GadE to mediate acid resistance in stationary-phase Escherichia coli K-12. We show here that RcsB is also required for inducible acid resistance in exponential phase and that it acts on promoters that are not GadE regulated. It is also required for acid resistance in E. coli O157:H7.
Collapse
|