1
|
Yang Z, DeLoid GM, Baw J, Zarbl H, Demokritou P. Assessment of Ingested Micro- and Nanoplastic (MNP)-Mediated Genotoxicity in an In Vitro Model of the Small Intestinal Epithelium (SIE). NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:807. [PMID: 38727401 PMCID: PMC11085749 DOI: 10.3390/nano14090807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/25/2024] [Accepted: 05/02/2024] [Indexed: 05/12/2024]
Abstract
Micro- and nanoplastics (MNPs) have become ubiquitous contaminants of water and foods, resulting in high levels of human ingestion exposure. MNPs have been found in human blood and multiple tissues, suggesting that they are readily absorbed by the gastrointestinal tract (GIT) and widely distributed. Growing toxicological evidence suggests that ingested MNPs may pose a serious health threat. The potential genotoxicity of MNPs, however, remains largely unknown. In this study, genotoxicity of primary and environmentally relevant secondary MNPs was assessed in a triculture small intestinal epithelium (SIE) model using the CometChip assay. Aqueous suspensions of 25 and 1000 nm carboxylated polystyrene spheres (PS25C and PS1KC), and incinerated polyethylene (PEI PM0.1) were subjected to simulated GIT digestion to create physiologically relevant exposures (digestas), which were applied to the SIE model at final MNP concentrations of 1, 5, and 20 μg/mL for 24 or 48 h. PS25C and PS1KC induced DNA damage in a time- and concentration-dependent manner. To our knowledge, this is one of the first assessment of MNP genotoxicity in an integrated in vitro ingestion platform including simulated GIT digestion and a triculture SIE model. These findings suggest that ingestion of high concentrations of carboxylated PS MNPs could have serious genotoxic consequences in the SIE.
Collapse
Affiliation(s)
- Zhenning Yang
- Nanoscience and Advanced Materials Center, Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA; (Z.Y.); (G.M.D.)
- Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA;
| | - Glen M. DeLoid
- Nanoscience and Advanced Materials Center, Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA; (Z.Y.); (G.M.D.)
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA;
| | - Joshua Baw
- Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA;
| | - Helmut Zarbl
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA;
- School of Public Health, Rutgers University, Piscataway, NJ 08854, USA
| | - Philip Demokritou
- Nanoscience and Advanced Materials Center, Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA; (Z.Y.); (G.M.D.)
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA;
- School of Public Health, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
2
|
Lizonova D, Nagarkar A, Demokritou P, Kelesidis GA. Effective density of inhaled environmental and engineered nanoparticles and its impact on the lung deposition and dosimetry. Part Fibre Toxicol 2024; 21:7. [PMID: 38368385 PMCID: PMC10874077 DOI: 10.1186/s12989-024-00567-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 02/07/2024] [Indexed: 02/19/2024] Open
Abstract
BACKGROUND Airborne environmental and engineered nanoparticles (NPs) are inhaled and deposited in the respiratory system. The inhaled dose of such NPs and their deposition location in the lung determines their impact on health. When calculating NP deposition using particle inhalation models, a common approach is to use the bulk material density, ρb, rather than the effective density, ρeff. This neglects though the porous agglomerate structure of NPs and may result in a significant error of their lung-deposited dose and location. RESULTS Here, the deposition of various environmental NPs (aircraft and diesel black carbon, wood smoke) and engineered NPs (silica, zirconia) in the respiratory system of humans and mice is calculated using the Multiple-Path Particle Dosimetry model accounting for their realistic structure and effective density. This is done by measuring the NP ρeff which was found to be up to one order of magnitude smaller than ρb. Accounting for the realistic ρeff of NPs reduces their deposited mass in the pulmonary region of the respiratory system up to a factor of two in both human and mouse models. Neglecting the ρeff of NPs does not alter significantly the distribution of the deposited mass fractions in the human or mouse respiratory tract that are obtained by normalizing the mass deposited at the head, tracheobronchial and pulmonary regions by the total deposited mass. Finally, the total deposited mass fraction derived this way is in excellent agreement with those measured in human studies for diesel black carbon. CONCLUSIONS The doses of inhaled NPs are overestimated by inhalation particle deposition models when the ρb is used instead of the real-world effective density which can vary significantly due to the porous agglomerate structure of NPs. So the use of realistic ρeff, which can be measured as described here, is essential to determine the lung deposition and dosimetry of inhaled NPs and their impact on public health.
Collapse
Affiliation(s)
- Denisa Lizonova
- Nanoscience and Advanced Materials Center (NAMC), Environmental and Occupational Health Science Institute, School of Public Health, Rutgers, The State University of New Jersey, 170 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| | - Amogh Nagarkar
- Particle Technology Laboratory, Department of Mechanical and Process Engineering, Institute of Process Engineering, ETH Zürich, Sonneggstrasse 3, 8092, Zurich, Switzerland
| | - Philip Demokritou
- Nanoscience and Advanced Materials Center (NAMC), Environmental and Occupational Health Science Institute, School of Public Health, Rutgers, The State University of New Jersey, 170 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| | - Georgios A Kelesidis
- Nanoscience and Advanced Materials Center (NAMC), Environmental and Occupational Health Science Institute, School of Public Health, Rutgers, The State University of New Jersey, 170 Frelinghuysen Road, Piscataway, NJ, 08854, USA.
- Particle Technology Laboratory, Department of Mechanical and Process Engineering, Institute of Process Engineering, ETH Zürich, Sonneggstrasse 3, 8092, Zurich, Switzerland.
| |
Collapse
|
3
|
Petpiroon N, Netkueakul W, Sukrak K, Wang C, Liang Y, Wang M, Liu Y, Li Q, Kamran R, Naruse K, Aueviriyavit S, Takahashi K. Development of lung tissue models and their applications. Life Sci 2023; 334:122208. [PMID: 37884207 DOI: 10.1016/j.lfs.2023.122208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 10/04/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
The lungs are important organs that play a critical role in the development of specific diseases, as well as responding to the effects of drugs, chemicals, and environmental pollutants. Due to the ethical concerns around animal testing, alternative methods have been sought which are more time-effective, do not pose ethical issues for animals, do not involve species differences, and provide easy investigation of the pathobiology of lung diseases. Several national and international organizations are working to accelerate the development and implementation of structurally and functionally complex tissue models as alternatives to animal testing, particularly for the lung. Unfortunately, to date, there is no lung tissue model that has been accepted by regulatory agencies for use in inhalation toxicology. This review discusses the challenges involved in developing a relevant lung tissue model derived from human cells such as cell lines, primary cells, and pluripotent stem cells. It also introduces examples of two-dimensional (2D) air-liquid interface and monocultured and co-cultured three-dimensional (3D) culture techniques, particularly organoid culture and 3D bioprinting. Furthermore, it reviews development of the lung-on-a-chip model to mimic the microenvironment and physiological performance. The applications of lung tissue models in various studies, especially disease modeling, viral respiratory infection, and environmental toxicology will be also introduced. The development of a relevant lung tissue model is extremely important for standardizing and validation the in vitro models for inhalation toxicity and other studies in the future.
Collapse
Affiliation(s)
- Nalinrat Petpiroon
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Woranan Netkueakul
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Kanokwan Sukrak
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand; Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand; Thailand Network Center on Air Quality Management: TAQM, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chen Wang
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ward, Okayama 700-8558, Japan
| | - Yin Liang
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ward, Okayama 700-8558, Japan
| | - Mengxue Wang
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ward, Okayama 700-8558, Japan
| | - Yun Liu
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ward, Okayama 700-8558, Japan
| | - Qiang Li
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ward, Okayama 700-8558, Japan
| | - Rumaisa Kamran
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ward, Okayama 700-8558, Japan
| | - Keiji Naruse
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ward, Okayama 700-8558, Japan
| | - Sasitorn Aueviriyavit
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand.
| | - Ken Takahashi
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ward, Okayama 700-8558, Japan.
| |
Collapse
|
4
|
Yang Z, DeLoid GM, Zarbl H, Baw J, Demokritou P. Micro- and nanoplastics (MNPs) and their potential toxicological outcomes: State of science, knowledge gaps and research needs. NANOIMPACT 2023; 32:100481. [PMID: 37717636 PMCID: PMC10841092 DOI: 10.1016/j.impact.2023.100481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/11/2023] [Accepted: 09/12/2023] [Indexed: 09/19/2023]
Abstract
Plastic waste has been produced at a rapidly growing rate over the past several decades. The environmental impacts of plastic waste on marine and terrestrial ecosystems have been recognized for years. Recently, researchers found that micro- and nanoplastics (MNPs), micron (100 nm - 5 mm) and nanometer (1 - 100 nm) scale particles and fibers produced by degradation and fragmentation of plastic waste in the environment, have become an important emerging environmental and food chain contaminant with uncertain consequences for human health. This review provides a comprehensive summary of recent findings from studies of potential toxicity and adverse health impacts of MNPs in terrestrial mammals, including studies in both in vitro cellular and in vivo mammalian models. Also reviewed here are recently released biomonitoring studies that have characterized the bioaccumulation, biodistribution, and excretion of MNPs in humans. The majority MNPs in the environment to which humans are most likely to be exposed, are of irregular shapes, varied sizes, and mixed compositions, and are defined as secondary MNPs. However, the MNPs used in most toxicity studies to date were commercially available primary MNPs of polystyrene (PS), polyethylene (PE), polyvinyl chloride (PVC), polyethylene terephthalate (PET), and other polymers. The emerging in vitro and in vivo evidence reviewed here suggests that MNP toxicity and bioactivity are largely determined by MNP particle physico-chemical characteristics, including size, shape, polymer type, and surface properties. For human exposure, MNPs have been identified in human blood, urine, feces, and placenta, which pose potential health risks. The evidence to date suggests that the mechanisms underlying MNP toxicity at the cellular level are primarily driven by oxidative stress. Nonetheless, large knowledge gaps in our understanding of MNP toxicity and the potential health impacts of MNP exposures still exist and much further study is needed to bridge those gaps. This includes human population exposure studies to determine the environmentally relevant MNP polymers and exposure concentrations and durations for toxicity studies, as well as toxicity studies employing environmentally relevant MNPs, with surface chemistries and other physico-chemical properties consistent with MNP particles in the environment. It is especially important to obtain comprehensive toxicological data for these MNPs to understand the range and extent of potential adverse impacts of microplastic pollutants on humans and other organisms.
Collapse
Affiliation(s)
- Zhenning Yang
- Nanoscience and Advanced Materials Center, Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA; Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | - Glen M DeLoid
- Nanoscience and Advanced Materials Center, Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA; Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA
| | - Helmut Zarbl
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA; School of Public Health, Rutgers University, Piscataway, NJ 08854, USA
| | - Joshua Baw
- Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | - Philip Demokritou
- Nanoscience and Advanced Materials Center, Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA; Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA; School of Public Health, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
5
|
Valente A, Vieira L, Silva MJ, Ventura C. The Effect of Nanomaterials on DNA Methylation: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1880. [PMID: 37368308 DOI: 10.3390/nano13121880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 06/28/2023]
Abstract
DNA methylation is an epigenetic mechanism that involves the addition of a methyl group to a cytosine residue in CpG dinucleotides, which are particularly abundant in gene promoter regions. Several studies have highlighted the role that modifications of DNA methylation may have on the adverse health effects caused by exposure to environmental toxicants. One group of xenobiotics that is increasingly present in our daily lives are nanomaterials, whose unique physicochemical properties make them interesting for a large number of industrial and biomedical applications. Their widespread use has raised concerns about human exposure, and several toxicological studies have been performed, although the studies focusing on nanomaterials' effect on DNA methylation are still limited. The aim of this review is to investigate the possible impact of nanomaterials on DNA methylation. From the 70 studies found eligible for data analysis, the majority were in vitro, with about half using cell models related to the lungs. Among the in vivo studies, several animal models were used, but most were mice models. Only two studies were performed on human exposed populations. Global DNA methylation analyses was the most frequently applied approach. Although no trend towards hypo- or hyper-methylation could be observed, the importance of this epigenetic mechanism in the molecular response to nanomaterials is evident. Furthermore, methylation analysis of target genes and, particularly, the application of comprehensive DNA methylation analysis techniques, such as genome-wide sequencing, allowed identifying differentially methylated genes after nanomaterial exposure and affected molecular pathways, contributing to the understanding of their possible adverse health effects.
Collapse
Affiliation(s)
- Ana Valente
- Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, I.P. (INSA), Av. Padre Cruz, 1649-016 Lisbon, Portugal
- Department of Animal Biology, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisbon, Portugal
| | - Luís Vieira
- Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, I.P. (INSA), Av. Padre Cruz, 1649-016 Lisbon, Portugal
- Centre for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School, NOVA University of Lisbon, 1169-056 Lisbon, Portugal
| | - Maria João Silva
- Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, I.P. (INSA), Av. Padre Cruz, 1649-016 Lisbon, Portugal
- Centre for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School, NOVA University of Lisbon, 1169-056 Lisbon, Portugal
| | - Célia Ventura
- Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, I.P. (INSA), Av. Padre Cruz, 1649-016 Lisbon, Portugal
- Centre for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School, NOVA University of Lisbon, 1169-056 Lisbon, Portugal
| |
Collapse
|
6
|
Meyer TJ, Tekin N, Hense P, Ehret-Kasemo T, Lodes N, Stöth M, Ickrath P, Gehrke T, Hagen R, Dembski S, Peer M, Steinke MR, Scherzad A, Hackenberg S. Evaluation of the cytotoxic and genotoxic potential of printer toner particles in a 3D air-liquid interface, primary cell-based nasal tissue model. Toxicol Lett 2023; 379:1-10. [PMID: 36907250 DOI: 10.1016/j.toxlet.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023]
Abstract
Printer toner particles (TPs) are a common, potentially hazardous substance, with an unclear toxicological impact on the respiratory mucosa. Most of the airways surface is covered by a ciliated respiratory mucosa, therefore appropriate tissue models of the respiratory epithelium with a high in vivo correlation are necessary for in vitro evaluation of airborne pollutants toxicology and the impact on the functional integrity. The aim of this study is the evaluation of TPs toxicology in a human primary cell-based air-liquid-interface (ALI) model of respiratory mucosa. The TPs were analyzed and characterized by scanning electron microscopy, pyrolysis and X-ray fluorescence spectrometry. ALI models of 10 patients were created using the epithelial cells and fibroblasts derived from nasal mucosa samples. TPs were applied to the ALI models via a modified Vitrocell® cloud and submerged in the dosing 0.89 - 892.96 µg/ cm2. Particle exposure and intracellular distribution were evaluated by electron microscopy. The MTT assay and the comet assay were used to investigate cytotoxicity and genotoxicity, respectively. The used TPs showed an average particle size of 3 - 8 µm. Mainly carbon, hydrogen, silicon, nitrogen, tin, benzene and benzene derivates were detected as chemical ingredients. By histomorphology and electron microscopy we observed the development of a highly functional, pseudostratified epithelium with a continuous layer of cilia. Using electron microscopy, TPs could be detected on the cilia surface and also intracellularly. Cytotoxicity was detected from 9 µg/ cm2 and higher, but no genotoxicity after ALI and submerged exposure. The ALI with primary nasal cells represents a highly functional model of the respiratory epithelium in terms of histomorphology and mucociliary differentiation. The toxicological results indicate a weak TP-concentration-dependent cytotoxicity. AVAILABILITY OF DATA AND MATERIALS: The datasets used and analysed during the current study are available from the corresponding author on reasonable request.
Collapse
Affiliation(s)
- Till Jasper Meyer
- University Hospital Würzburg, Department of Oto-Rhino-Laryngology, Plastic, Aesthetic & Reconstructive Head and Neck Surgery, Josef-Schneider-Straße 11, 97080 Würzburg, Germany.
| | - Nursen Tekin
- University Hospital Würzburg, Department of Oto-Rhino-Laryngology, Plastic, Aesthetic & Reconstructive Head and Neck Surgery, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - Peter Hense
- Bochum University of Applied Sciences, Department Civil and Environmental Engineering, Am Hochschulcampus 1, 44801 Bochum, Germany
| | - Totta Ehret-Kasemo
- University Hospital Würzburg, Department of Oto-Rhino-Laryngology, Plastic, Aesthetic & Reconstructive Head and Neck Surgery, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - Nina Lodes
- University Hospital Würzburg, Chair of Tissue Engineering and Regenerative Medicine, Röntgenring 11, 97070 Würzburg, Germany
| | - Manuel Stöth
- University Hospital Würzburg, Department of Oto-Rhino-Laryngology, Plastic, Aesthetic & Reconstructive Head and Neck Surgery, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - Pascal Ickrath
- University Hospital Würzburg, Department of Oto-Rhino-Laryngology, Plastic, Aesthetic & Reconstructive Head and Neck Surgery, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - Thomas Gehrke
- University Hospital Würzburg, Department of Oto-Rhino-Laryngology, Plastic, Aesthetic & Reconstructive Head and Neck Surgery, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - Rudolf Hagen
- University Hospital Würzburg, Department of Oto-Rhino-Laryngology, Plastic, Aesthetic & Reconstructive Head and Neck Surgery, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - Sofia Dembski
- University Hospital Würzburg, Chair of Tissue Engineering and Regenerative Medicine, Röntgenring 11, 97070 Würzburg, Germany; Fraunhofer Institute for Silicate Research ISC, Neunerplatz 2, 97082 Würzburg, Germany
| | - Michael Peer
- Fraunhofer Institute for Environmental, Safety, and Energy Technology UMSICHT, Institute Branch Sulzbach-Rosenberg, An der Maxhütte 1, 92237 Sulzbach-Rosenberg, Germany
| | - Maria R Steinke
- University Hospital Würzburg, Chair of Tissue Engineering and Regenerative Medicine, Röntgenring 11, 97070 Würzburg, Germany; Fraunhofer Institute for Silicate Research ISC, Neunerplatz 2, 97082 Würzburg, Germany
| | - Agmal Scherzad
- University Hospital Würzburg, Department of Oto-Rhino-Laryngology, Plastic, Aesthetic & Reconstructive Head and Neck Surgery, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - Stephan Hackenberg
- RWTH Aachen University Hospital, Department of Otorhinolaryngology - Head and Neck Surgery, Pauwelsstraße 30, 52074 Aachen, Germany
| |
Collapse
|
7
|
Sun Q, Li T, Yu Y, Li Y, Sun Z, Duan J. The critical role of epigenetic mechanisms involved in nanotoxicology. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1789. [PMID: 35289073 DOI: 10.1002/wnan.1789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
Over the past decades, nanomaterials (NMs) have been widely applied in the cosmetic, food, engineering, and medical fields. Along with the prevalence of NMs, the toxicological characteristics exhibited by these materials on health and the environment have gradually attracted attentions. A growing number of evidences have indicated that epigenetics holds an essential role in the onset and development of various diseases. NMs could cause epigenetic alterations such as DNA methylation, noncoding RNA (ncRNA) expression, and histone modifications. NMs might alternate either global DNA methylation or the methylation of specific genes to affect the biological function. Abnormal upregulation or downregulation of ncRNAs might also be a potential mechanism for the toxic effects caused by NMs. In parallel, the phosphorylation, acetylation, and methylation of histones also take an important part in the process of NMs-induced toxicity. As the adverse effects of NMs continue to be explored, mechanisms such as chromosomal remodeling, genomic imprinting, and m6 A modification are also gradually coming into the limelight. Since the epigenetic alterations often occur in the early development of diseases, thus the relevant studies not only provide insight into the pathogenesis of diseases, but also screen for the prospective biomarkers for early diagnosis and prevention. This review summarizes the epigenetic alterations elicited by NMs, hoping to provide a clue for nanotoxicity studies and security evaluation of NMs. This article is categorized under: Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials.
Collapse
Affiliation(s)
- Qinglin Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Tianyu Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Yang Yu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Yang Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| |
Collapse
|
8
|
Bello D, Chanetsa L, Christophi CA, Singh D, Setyawati MI, Christiani DC, Chotirmall SH, Ng KW, Demokritou P. Biomarkers of oxidative stress in urine and plasma of operators at six Singapore printing centers and their association with several metrics of printer-emitted nanoparticle exposures. Nanotoxicology 2022; 16:913-934. [PMID: 36774544 DOI: 10.1080/17435390.2023.2175735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Inhalation of nanoparticles emitted from toner-based printing equipment (TPE), such as laser printers and photocopiers, also known as PEPs, has been associated with systemic inflammation, hypertension, cardiovascular disease, respiratory disorders, and genotoxicity. Global serum metabolomics analysis in 19 healthy TPE operators found 52 dysregulated biomolecules involved in upregulation of inflammation, immune, and antioxidant responses and downregulation of cellular energetics and cell proliferation. Here, we build on the metabolomics study by investigating the association of a panel of nine urinary OS biomarkers reflecting DNA/RNA damage (8OHdG, 8OHG, and 5OHMeU), protein/amino acid oxidation (o-tyrosine, 3-chlorotyrosine, and 3-nitrotyrosine), and lipid oxidation (8-isoprostane, 4-hydroxy nonenal, and malondialdehyde [MDA]), as well as plasma total MDA and total protein carbonyl (TPC), with several nanoparticle exposure metrics in the same 19 healthy TPE operators. Plasma total MDA, urinary 5OHMeU, 3-chlorotyrosine, and 3-nitrotyrosine were positively, whereas o-tyrosine inversely and statistically significantly associated with PEPs exposure in multivariate models, after adjusting for age and urinary creatinine. Urinary 8OHdG, 8OHG, 5OHMeU, and total MDA in urine and plasma had group mean values higher than expected in healthy controls without PEPs exposure and comparable to those of workers experiencing low to moderate levels of oxidative stress (OS). The highest exposure group had OS biomarker values, most notably 8OHdG, 8OHG, and total MDA, that compared to workers exposed to welding fumes and titanium dioxide. Particle number concentration was the most sensitive and robust exposure metric. A combination of nanoparticle number concentration and OS potential of fresh aerosols is recommended for larger scale future studies.
Collapse
Affiliation(s)
- Dhimiter Bello
- Department of Biomedical and Nutritional Sciences, Zuckerberg College of Health Sciences, University of Massachusetts Lowell, Lowell, MA, USA.,Center for Nanotechnology and Nanotoxicology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Lucia Chanetsa
- Department of Biomedical and Nutritional Sciences, Zuckerberg College of Health Sciences, University of Massachusetts Lowell, Lowell, MA, USA
| | - Costas A Christophi
- Cyprus International Institute for Environmental and Public Health, Cyprus University of Technology, Limassol, Cyprus
| | - Dilpreet Singh
- Center for Nanotechnology and Nanotoxicology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | - David C Christiani
- Center for Nanotechnology and Nanotoxicology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, USA.,Department of Medicine, Pulmonary and Critical Care Division, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.,Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore, Singapore
| | - Kee Woei Ng
- Center for Nanotechnology and Nanotoxicology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore.,Nanyang Environment and Water Research Institute (NEWRI), Nanyang Technological University, Singapore, Singapore
| | - Philip Demokritou
- Center for Nanotechnology and Nanotoxicology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
9
|
Critical Review on Toxicological Mechanisms Triggered by Inhalation of Alumina Nanoparticles on to the Lungs. Biomedicines 2022; 10:biomedicines10102664. [PMID: 36289927 PMCID: PMC9599368 DOI: 10.3390/biomedicines10102664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/17/2022] Open
Abstract
Alumina nanoparticles (Al2O3 NPs) can be released in occupational environments in different contexts such as industry, defense, and aerospace. Workers can be exposed by inhalation to these NPs, for instance, through welding fumes or aerosolized propellant combustion residues. Several clinical and epidemiological studies have reported that inhalation of Al2O3 NPs could trigger aluminosis, inflammation in the lung parenchyma, respiratory symptoms such as cough or shortness of breath, and probably long-term pulmonary fibrosis. The present review is a critical update of the current knowledge on underlying toxicological, molecular, and cellular mechanisms induced by exposure to Al2O3 NPs in the lungs. A major part of animal studies also points out inflammatory cells and secreted biomarkers in broncho-alveolar lavage fluid (BALF) and blood serum, while in vitro studies on lung cells indicate contradictory results regarding the toxicity of these NPs.
Collapse
|
10
|
Zhang Y, Bello A, Ryan DK, Demokritou P, Bello D. Elevated Urinary Biomarkers of Oxidative Damage in Photocopier Operators following Acute and Chronic Exposures. NANOMATERIALS 2022; 12:nano12040715. [PMID: 35215044 PMCID: PMC8878876 DOI: 10.3390/nano12040715] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/13/2022] [Accepted: 02/17/2022] [Indexed: 02/04/2023]
Abstract
Inhalation exposures to nanoparticles (NPs) from printers and photocopiers have been associated with upper airway and systemic inflammation, increased blood pressure, and cases of autoimmune and respiratory disorders. In this study we investigate oxidative stress induced by exposures to copier-emitted nanoparticles using a panel of urinary oxidative stress (OS) biomarkers representing DNA damage (8-hydroxydeoxyguanosine, 8-OHdG; 8-hydroxyguanosine, 8-OHG; 5-hydroxymethyl uracil 5-OHMeU), lipid peroxidation (8-isoprostane; 4-hydroxynonenal, HNE), and protein oxidation biomarkers (o-tyrosine, 3-chlorotyrosine, and 3-nitrotyrosine) under conditions of acute (single 6 h exposure, 9 volunteers, 110 urine samples) and chronic exposures (6 workers, 11 controls, 81 urine samples). Urinary biomarkers were quantified with liquid chromatography–tandem mass spectrometry after solid phase extraction sample cleanup. 8-OHdG, 8-OHG, 8-isoprostane, and HNE were significantly elevated in both the acute and chronic exposure study participants relative to the controls. In the acute exposure study, the geometric mean ratios post-/pre-exposure were 1.42, 1.10, 2.0, and 2.25, respectively. Urinary 8-OHG and HNE increased with time to at least 36 h post-exposure (post-/pre-exposure GM ratios increased to 3.94 and 2.33, respectively), suggesting slower generation and/or urinary excretion kinetics for these biomarkers. In chronically exposed operators, the GM ratios of urinary biomarkers relative to controls ranged from 1.52 to 2.94, depending on the biomarker. O-Tyrosine and 5-OHMeU biomarkers were not significantly different from the controls. 3-chlorotyrosine and 3-nitrotyrosine were not detected in the urine samples. We conclude that NPs from photocopiers induce systemic oxidative stress by damaging DNA, RNA, and lipids. Urinary levels of 8-OHdG, 8-OHG, HNE, and 8-isoprostane were orders of magnitude higher than in nanocomposite processing workers, comparable to nano titanium dioxide and fiberglass manufacturing workers, but much lower than in shipyard welding and carbon nanotube synthesis workers. Biomarkers 8-OHdG, 8-OHG, 8-isoprostane, and HNE appear to be more sensitive and robust urinary biomarkers for monitoring oxidative stress to NPs from photocopiers.
Collapse
Affiliation(s)
- Yipei Zhang
- Department of Chemistry, Kennedy College of Sciences, UMass Lowell, Lowell, MA 01854, USA; (Y.Z.); (D.K.R.)
| | - Anila Bello
- Department of Public Health, Zuckerberg College of Health Sciences, UMass Lowell, Lowell, MA 01854, USA;
| | - David K. Ryan
- Department of Chemistry, Kennedy College of Sciences, UMass Lowell, Lowell, MA 01854, USA; (Y.Z.); (D.K.R.)
| | - Philip Demokritou
- Department of Environmental Health, Harvard Center for Nanotechnology and Nanotoxicology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA;
| | - Dhimiter Bello
- Department of Environmental Health, Harvard Center for Nanotechnology and Nanotoxicology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA;
- Department of Biomedical and Nutritional Sciences, Zuckerberg College of Health Sciences, UMass Lowell, Lowell, MA 01854, USA
- Correspondence:
| |
Collapse
|
11
|
Bitounis D, Huang Q, Toprani SM, Setyawati MI, Oliveira N, Wu Z, Tay CY, Ng KW, Nagel ZD, Demokritou P. Printer center nanoparticles alter the DNA repair capacity of human bronchial airway epithelial cells. NANOIMPACT 2022; 25:100379. [PMID: 35559885 PMCID: PMC9661631 DOI: 10.1016/j.impact.2022.100379] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/08/2021] [Accepted: 01/05/2022] [Indexed: 05/26/2023]
Abstract
Nano-enabled, toner-based printing equipment emit nanoparticles during operation. The bioactivity of these nanoparticles as documented in a plethora of published toxicological studies raises concerns about their potential health effects. These include pro-inflammatory effects that can lead to adverse epigenetic alterations and cardiovascular disorders in rats. At the same time, their potential to alter DNA repair pathways at realistic doses remains unclear. In this study, size-fractionated, airborne particles from a printer center in Singapore were sampled and characterized. The PM0.1 size fraction (particles with an aerodynamic diameter less than 100 nm) of printer center particles (PCP) were then administered to human lung adenocarcinoma (Calu-3) or lymphoblastoid (TK6) cells. We evaluated plasma membrane integrity, mitochondrial activity, and intracellular reactive oxygen species (ROS) generation. Moreover, we quantified DNA damage and alterations in the cells' capacity to repair 6 distinct types of DNA lesions. Results show that PCP altered the ability of Calu-3 cells to repair 8oxoG:C lesions and perform nucleotide excision repair, in the absence of acute cytotoxicity or DNA damage. Alterations in DNA repair capacity have been correlated with the risk of various diseases, including cancer, therefore further genotoxicity studies are needed to assess the potential risks of PCP exposure, at both occupational settings and at the end-consumer level.
Collapse
Affiliation(s)
- Dimitrios Bitounis
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, 655 Huntington Ave, Boston, MA 02115, USA
| | - Qiansheng Huang
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, 655 Huntington Ave, Boston, MA 02115, USA; Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Sneh M Toprani
- John B. Little Center of Radiation Sciences, Department of Environmental Health, Harvard T H Chan School of Public Health, Boston, MA 02115, USA
| | - Magdiel I Setyawati
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Nathalia Oliveira
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, 655 Huntington Ave, Boston, MA 02115, USA
| | - Zhuoran Wu
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Chor Yong Tay
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; Environmental Chemistry and Materials Centre, Nanyang Environment and Water Research Institution, 1 Cleantech Loop, CleanTech One, Singapore 637141, Singapore; School of Biological Sciences, Nanyang Technological University, 637551, Singapore
| | - Kee Woei Ng
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, 655 Huntington Ave, Boston, MA 02115, USA; School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; Environmental Chemistry and Materials Centre, Nanyang Environment and Water Research Institution, 1 Cleantech Loop, CleanTech One, Singapore 637141, Singapore
| | - Zachary D Nagel
- John B. Little Center of Radiation Sciences, Department of Environmental Health, Harvard T H Chan School of Public Health, Boston, MA 02115, USA.
| | - Philip Demokritou
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, 655 Huntington Ave, Boston, MA 02115, USA.
| |
Collapse
|
12
|
Toprani SM, Bitounis D, Qiansheng H, Oliveira N, Ng KW, Tay CY, Nagel ZD, Demokritou P. High-Throughput Screening Platform for Nanoparticle-Mediated Alterations of DNA Repair Capacity. ACS NANO 2021; 15:4728-4746. [PMID: 33710878 PMCID: PMC8111687 DOI: 10.1021/acsnano.0c09254] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The potential genotoxic effects of engineered nanomaterials (ENMs) may occur through the induction of DNA damage or the disruption of DNA repair processes. Inefficient DNA repair may lead to the accumulation of DNA lesions and has been linked to various diseases, including cancer. Most studies so far have focused on understanding the nanogenotoxicity of ENM-induced damages to DNA, whereas the effects on DNA repair have been widely overlooked. The recently developed fluorescence multiplex-host-cell reactivation (FM-HCR) assay allows for the direct quantification of multiple DNA repair pathways in living cells and offers a great opportunity to address this methodological gap. Herein an FM-HCR-based method is developed to screen the impact of ENMs on six major DNA repair pathways using suspended or adherent cells. The sensitivity and efficiency of this DNA repair screening method were demonstrated in case studies using primary human small airway epithelial cells and TK6 cells exposed to various model ENMs (CuO, ZnO, and Ga2O3) at subcytotoxic doses. It was shown that ENMs may inhibit nucleotide-excision repair, base-excision repair, and the repair of oxidative damage by DNA glycosylases in TK6 cells, even in the absence of significant genomic DNA damage. It is of note that the DNA repair capacity was increased by some ENMs, whereas it was suppressed by others. Overall, this method can be part of a multitier, in vitro hazard assessment of ENMs as a functional, high-throughput platform that provides insights into the interplay of the properties of ENMs, the DNA repair efficiency, and the genomic stability.
Collapse
Affiliation(s)
- Sneh M Toprani
- John B Little Center of Radiation Sciences, Department of Environmental Health, Harvard T H Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Dimitrios Bitounis
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, 655 Huntington Ave Boston, MA 02115, USA
| | - Huang Qiansheng
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, 655 Huntington Ave Boston, MA 02115, USA
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Nathalia Oliveira
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, 655 Huntington Ave Boston, MA 02115, USA
| | - Kee Woei Ng
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, 655 Huntington Ave Boston, MA 02115, USA
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- Environmental Chemistry and Materials Centre, Nanyang Environment and Water Research Institution, 1 Cleantech Loop, CleanTech One, Singapore 637141, Singapore
| | - Chor Yong Tay
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore
| | - Zachary D Nagel
- John B Little Center of Radiation Sciences, Department of Environmental Health, Harvard T H Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Philip Demokritou
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, 655 Huntington Ave Boston, MA 02115, USA
| |
Collapse
|
13
|
Sarwate M, Vrbenska A, Cummings K, Tazelaar HD. Unusual pneumoconiosis in two patients with heavy print toner, and paper dust exposure. Am J Ind Med 2020; 63:821-827. [PMID: 32597538 PMCID: PMC7496873 DOI: 10.1002/ajim.23147] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/24/2020] [Accepted: 06/12/2020] [Indexed: 11/21/2022]
Abstract
Workers in a print shop are exposed to photocopier toner dust and paper dust over a prolonged period of time. However, there are only rare case reports of toner and paper dust induced lung damage in humans. We reviewed our consultation files for a period of 30 years from 1987 to 2018 to look for cases with a diagnosis of giant cell interstitial pneumonia (GIP), printer toner exposure and paper dust exposure resulting in lung disease. There were two cases which met our inclusion criteria. Slides, clinical histories and imaging were reviewed. Both the patients had worked in print shops, and had no history of exposure to hard metals. Patient 1 presented with shortness of breath and cough over several months, while patient 2 was asymptomatic at presentation. Both the patients underwent surgical lung biopsies. Histopathologic examination from both the cases showed a spectrum of pathology, including features of GIP, desquamative interstitial pneumonia, chronic bronchiolitis with lymphoid hyperplasia, and particulate matter consistent with toner. Energy dispersive spectroscopy was performed on one case, and it revealed no cobalt or tungsten particles. The unusual combination of findings is very suggestive that toner particles with or without paper dust exposure were responsible for the pathologic changes in the lungs of these patients. This possibility should be explored further with additional patients who work in print shops where they are exposed to paper dust and paper toner and have signs or symptoms of diffuse lung disease.
Collapse
Affiliation(s)
- Mrinal Sarwate
- Department of Laboratory Medicine and PathologyMayo ClinicScottsdale Arizona
| | - Adela Vrbenska
- Department of Pathology, National Institute for TBLung Diseases and Thoracic SurgeryVysne Tatry Slovakia
| | | | - Henry D. Tazelaar
- Department of Laboratory Medicine and PathologyMayo ClinicScottsdale Arizona
| |
Collapse
|
14
|
Wu Z, Shi P, Lim HK, Ma Y, Setyawati MI, Bitounis D, Demokritou P, Ng KW, Tay CY. Inflammation Increases Susceptibility of Human Small Airway Epithelial Cells to Pneumonic Nanotoxicity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2000963. [PMID: 32338442 PMCID: PMC8074924 DOI: 10.1002/smll.202000963] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/20/2020] [Accepted: 03/23/2020] [Indexed: 05/04/2023]
Abstract
Exposure to inhaled anthropogenic nanomaterials (NM) with dimension <100 nm has been implicated in numerous adverse respiratory outcomes. Although studies have identified key NM physiochemical determinants of pneumonic nanotoxicity, the complex interactive and cumulative effects of NM exposure, especially in individuals with preexisting inflammatory respiratory diseases, remain unclear. Herein, the susceptibility of primary human small airway epithelial cells (SAEC) exposed to a panel of reference NM, namely, CuO, ZnO, mild steel welding fume (MSWF), and nanofractions of copier center particles (Nano-CCP), is examined in normal and tumor necrosis factor alpha (TNF-α)-induced inflamed SAEC. Compared to normal SAEC, inflamed cells display an increased susceptibility to NM-induced cytotoxicity by 15-70% due to a higher basal level of intracellular reactive oxygen species (ROS). Among the NM screened, ZnO, CuO, and Nano-CCP are observed to trigger an overcompensatory response in normal SAEC, resulting in an increased tolerance against subsequent oxidative insults. However, the inflamed SAEC fails to adapt to the NM exposure due to an impaired nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated cytoprotective response. The findings reveal that susceptibility to pulmonary nanotoxicity is highly dependent on the interplay between NM properties and inflammation of the alveolar milieu.
Collapse
Affiliation(s)
- Zhuoran Wu
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Pujiang Shi
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Hong Kit Lim
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Yiyuan Ma
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Magdiel Inggrid Setyawati
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Dimitrios Bitounis
- Department of Environmental Health, School of Public Health, Harvard University, 665 Huntington Avenue, Boston, MA 02115, USA
| | - Philip Demokritou
- Department of Environmental Health, School of Public Health, Harvard University, 665 Huntington Avenue, Boston, MA 02115, USA
| | - Kee Woei Ng
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Department of Environmental Health, School of Public Health, Harvard University, 665 Huntington Avenue, Boston, MA 02115, USA
- Environmental Chemistry and Materials Centre, Nanyang Environment & Water Research Institute, 1 Cleantech Loop, CleanTech One, Singapore, 637141, Singapore
- Skin Research Institute of Singapore, 8A Biomedical Grove, Singapore, 138648, Singapore
| | - Chor Yong Tay
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Environmental Chemistry and Materials Centre, Nanyang Environment & Water Research Institute, 1 Cleantech Loop, CleanTech One, Singapore, 637141, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| |
Collapse
|
15
|
Carll AP, Salatini R, Pirela SV, Wang Y, Xie Z, Lorkiewicz P, Naeem N, Qian Y, Castranova V, Godleski JJ, Demokritou P. Inhalation of printer-emitted particles impairs cardiac conduction, hemodynamics, and autonomic regulation and induces arrhythmia and electrical remodeling in rats. Part Fibre Toxicol 2020; 17:7. [PMID: 31996220 PMCID: PMC6990551 DOI: 10.1186/s12989-019-0335-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/29/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Using engineered nanomaterial-based toners, laser printers generate aerosols with alarming levels of nanoparticles that bear high bioactivity and potential health risks. Yet, the cardiac impacts of printer-emitted particles (PEPs) are unknown. Inhalation of particulate matter (PM) promotes cardiovascular morbidity and mortality, and ultra-fine particulates (< 0.1 μm aerodynamic diameter) may bear toxicity unique from larger particles. Toxicological studies suggest that PM impairs left ventricular (LV) performance; however, such investigations have heretofore required animal restraint, anesthesia, or ex vivo preparations that can confound physiologic endpoints and/or prohibit LV mechanical assessments during exposure. To assess the acute and chronic effects of PEPs on cardiac physiology, male Sprague Dawley rats were exposed to PEPs (21 days, 5 h/day) while monitoring LV pressure (LVP) and electrocardiogram (ECG) via conscious telemetry, analyzing LVP and heart rate variability (HRV) in four-day increments from exposure days 1 to 21, as well as ECG and baroreflex sensitivity. At 2, 35, and 70 days after PEPs exposure ceased, rats received stress tests. RESULTS On day 21 of exposure, PEPs significantly (P < 0.05 vs. Air) increased LV end systolic pressure (LVESP, + 18 mmHg) and rate-pressure-product (+ 19%), and decreased HRV indicating sympathetic dominance (root means squared of successive differences [RMSSD], - 21%). Overall, PEPs decreased LV ejection time (- 9%), relaxation time (- 3%), tau (- 5%), RMSSD (- 21%), and P-wave duration (- 9%). PEPs increased QTc interval (+ 5%) and low:high frequency HRV (+ 24%; all P < 0.05 vs. Air), while tending to decrease baroreflex sensitivity and contractility index (- 15% and - 3%, P < 0.10 vs. Air). Relative to Air, at both 2 and 35 days after PEPs, ventricular arrhythmias increased, and at 70 days post-exposure LVESP increased. PEPs impaired ventricular repolarization at 2 and 35 days post-exposure, but only during stress tests. At 72 days post-exposure, PEPs increased urinary dopamine 5-fold and protein expression of ventricular repolarizing channels, Kv1.5, Kv4.2, and Kv7.1, by 50%. CONCLUSIONS Our findings suggest exposure to PEPs increases cardiovascular risk by augmenting sympathetic influence, impairing ventricular performance and repolarization, and inducing hypertension and arrhythmia. PEPs may present significant health risks through adverse cardiovascular effects, especially in occupational settings, among susceptible individuals, and with long-term exposure.
Collapse
Affiliation(s)
- Alex P. Carll
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY USA
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY USA
- Center for Nanotechnology and Nanotoxicology. Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, 665 Huntington Avenue, Room 1310, Boston, MA 02115 USA
| | - Renata Salatini
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY USA
- Department of Surgery, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Sandra V. Pirela
- Center for Nanotechnology and Nanotoxicology. Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, 665 Huntington Avenue, Room 1310, Boston, MA 02115 USA
| | - Yun Wang
- Center for Nanotechnology and Nanotoxicology. Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, 665 Huntington Avenue, Room 1310, Boston, MA 02115 USA
- Department of Occupational and Environmental Health Sciences,School of Public Health, Peking University, Beijing, People’s Republic of China
| | - Zhengzhi Xie
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY USA
| | - Pawel Lorkiewicz
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY USA
| | - Nazratan Naeem
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY USA
| | - Yong Qian
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV USA
| | - Vincent Castranova
- Department of Pharmaceutical Sciences/Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV USA
| | - John J. Godleski
- Center for Nanotechnology and Nanotoxicology. Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, 665 Huntington Avenue, Room 1310, Boston, MA 02115 USA
| | - Philip Demokritou
- Center for Nanotechnology and Nanotoxicology. Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, 665 Huntington Avenue, Room 1310, Boston, MA 02115 USA
| |
Collapse
|
16
|
Guo NL, Poh TY, Pirela S, Farcas MT, Chotirmall SH, Tham WK, Adav SS, Ye Q, Wei Y, Shen S, Christiani DC, Ng KW, Thomas T, Qian Y, Demokritou P. Integrated Transcriptomics, Metabolomics, and Lipidomics Profiling in Rat Lung, Blood, and Serum for Assessment of Laser Printer-Emitted Nanoparticle Inhalation Exposure-Induced Disease Risks. Int J Mol Sci 2019; 20:E6348. [PMID: 31888290 PMCID: PMC6940784 DOI: 10.3390/ijms20246348] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 12/13/2022] Open
Abstract
Laser printer-emitted nanoparticles (PEPs) generated from toners during printing represent one of the most common types of life cycle released particulate matter from nano-enabled products. Toxicological assessment of PEPs is therefore important for occupational and consumer health protection. Our group recently reported exposure to PEPs induces adverse cardiovascular responses including hypertension and arrythmia via monitoring left ventricular pressure and electrocardiogram in rats. This study employed genome-wide mRNA and miRNA profiling in rat lung and blood integrated with metabolomics and lipidomics profiling in rat serum to identify biomarkers for assessing PEPs-induced disease risks. Whole-body inhalation of PEPs perturbed transcriptional activities associated with cardiovascular dysfunction, metabolic syndrome, and neural disorders at every observed time point in both rat lung and blood during the 21 days of exposure. Furthermore, the systematic analysis revealed PEPs-induced transcriptomic changes linking to other disease risks in rats, including diabetes, congenital defects, auto-recessive disorders, physical deformation, and carcinogenesis. The results were also confirmed with global metabolomics profiling in rat serum. Among the validated metabolites and lipids, linoleic acid, arachidonic acid, docosahexanoic acid, and histidine showed significant variation in PEPs-exposed rat serum. Overall, the identified PEPs-induced dysregulated genes, molecular pathways and functions, and miRNA-mediated transcriptional activities provide important insights into the disease mechanisms. The discovered important mRNAs, miRNAs, lipids and metabolites may serve as candidate biomarkers for future occupational and medical surveillance studies. To the best of our knowledge, this is the first study systematically integrating in vivo, transcriptomics, metabolomics, and lipidomics to assess PEPs inhalation exposure-induced disease risks using a rat model.
Collapse
Affiliation(s)
- Nancy Lan Guo
- West Virginia University Cancer Institute/School of Public Health, West Virginia University, Morgantown, WV 26506, USA;
| | - Tuang Yeow Poh
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (T.Y.P.); (S.H.C.); (S.S.); (D.C.C.)
| | - Sandra Pirela
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, T. H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA; (S.P.); (K.W.N.); (P.D.)
| | - Mariana T. Farcas
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA; (M.T.F.); (Y.Q.)
| | - Sanjay H. Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (T.Y.P.); (S.H.C.); (S.S.); (D.C.C.)
| | - Wai Kin Tham
- Singapore Phenome Centre, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore; (W.K.T.); (S.S.A.)
| | - Sunil S. Adav
- Singapore Phenome Centre, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore; (W.K.T.); (S.S.A.)
| | - Qing Ye
- West Virginia University Cancer Institute/School of Public Health, West Virginia University, Morgantown, WV 26506, USA;
| | - Yongyue Wei
- Key Lab for Modern Toxicology, Department of Epidemiology and Biostatistics and Ministry of Education (MOE), School of Public Health, Nanjing Medical University, Nanjing 210029, China;
| | - Sipeng Shen
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (T.Y.P.); (S.H.C.); (S.S.); (D.C.C.)
| | - David C. Christiani
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (T.Y.P.); (S.H.C.); (S.S.); (D.C.C.)
| | - Kee Woei Ng
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, T. H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA; (S.P.); (K.W.N.); (P.D.)
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
- Environmental Chemistry and Materials Centre, Nanyang Environment & Water Research Institute, Singapore 637141, Singapore
| | - Treye Thomas
- Office of Hazard Identification and Reduction, U.S. Consumer Product Safety Commission, Rockville, MD 20814, USA;
| | - Yong Qian
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA; (M.T.F.); (Y.Q.)
| | - Philip Demokritou
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, T. H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA; (S.P.); (K.W.N.); (P.D.)
| |
Collapse
|
17
|
Tsuda A, Donaghey TC, Konduru NV, Pyrgiotakis G, Van Winkle LS, Zhang Z, Edwards P, Bustamante JM, Brain JD, Demokritou P. Age-Dependent Translocation of Gold Nanoparticles across the Air-Blood Barrier. ACS NANO 2019; 13:10095-10102. [PMID: 31397554 PMCID: PMC6929694 DOI: 10.1021/acsnano.9b03019] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Do immature lungs have air-blood barriers that are more permeable to inhaled nanoparticles than those of fully developed mature lungs? Data supporting this notion and explaining the underlying mechanisms do not exist as far as we know. Using a rat model of postnatal lung development, here the data exactly supporting this notion, that is, significantly more gold nanoparticles (NPs) cross from the air space of the lungs to the rest of the body in neonates than in adults, are presented. Moreover, in neonates the translocation of gold NPs is not size dependent, whereas in adult animals smaller NPs cross the air-blood lung barrier much more efficiently than larger NPs. This difference in air-blood permeability in neonate versus adult animals suggests that NP translocation in the immature lungs may follow different rules than in mature lungs. Supporting this notion, we propose that the paracellular transport route may play a more significant role in NP translocation in immature animals, as suggested by protein expression studies. Findings from this study are critical to design optimal ways of inhalation drug delivery using NP nanocarriers for this age group, as well as for better understanding of the potential adverse health effects of nanoparticle exposures in infants and young children.
Collapse
Affiliation(s)
- Akira Tsuda
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Thomas C. Donaghey
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Nagarjun V. Konduru
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Georgios Pyrgiotakis
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Laura S. Van Winkle
- Center for Health and the Environment, University of California, Davis, Davis, California 95616, United States
| | - Zhenyuan Zhang
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Patricia Edwards
- Center for Health and the Environment, University of California, Davis, Davis, California 95616, United States
| | - Jessica-Miranda Bustamante
- Center for Health and the Environment, University of California, Davis, Davis, California 95616, United States
| | - Joseph D. Brain
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Phillip Demokritou
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| |
Collapse
|
18
|
Shin N, Velmurugan K, Su C, Bauer AK, Tsai CSJ. Assessment of fine particles released during paper printing and shredding processes. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2019; 21:1342-1352. [PMID: 31049512 DOI: 10.1039/c9em00015a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this study, we investigated the airborne particles released during paper printing and paper shredding processes in an attempt to characterize and differentiate these particles. Particle characteristics were studied with real time instruments (RTIs) to measure concentrations and with samplers to collect particles for subsequent microscopy and cytotoxicity analysis. The particles released by paper shredding were evaluated for cytotoxicity by using in vitro human lung epithelial cell models. A substantial amount of particles were released during both the shredding and printing processes. We found that the printing process caused substantial release of particles with sizes of less than 300 nm in the form of metal granules and graphite. These released particles contained various elements including Al, Ca, Cu, Fe, Mg, N, K, P, S and Si. The particles released by the paper shredding processes were primarily nanoparticles and had a peak size between 27.4 nm and 36.5 nm. These paper particles contained elements including Al, Br Ca, Cl, Cr, Cu, Fe, Mg, N, Na, Ni P, S and Si, as determined by scanning electron microscope-energy dispersive X-ray spectroscopy (SEM-EDS) and single-particle inductively coupled plasma-mass spectroscopy (SP-ICP-MS) analysis. Although various metals were identified in the paper particles, these particles did not elicit cytotoxicity to simian virus-transformed bronchial epithelial cells (BEAS2B) and immortalized normal human bronchial epithelial cells (HBE1). However, future studies should investigate other cytotoxicity effects of these paper particles in various types of lung cells to identify potential health effects of the particles.
Collapse
Affiliation(s)
- Nara Shin
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, 1681 Campus Delivery, Fort Collins, CO 80528, USA
| | | | | | | | | |
Collapse
|
19
|
Zhang Y, Demokritou P, Ryan DK, Bello D. Comprehensive Assessment of Short-Lived ROS and H 2O 2 in Laser Printer Emissions: Assessing the Relative Contribution of Metal Oxides and Organic Constituents. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:7574-7583. [PMID: 31120250 DOI: 10.1021/acs.est.8b05677] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Inhalation exposure to nanoparticles from toner-based laser printer and photocopier emissions (LPEs) induces airway inflammation and systemic oxidative stress, cytotoxicity, and genotoxicity (such as DNA damage). Recent evidence from human and in vitro studies suggests a strong role for oxidative stress caused by free radicals, such as reactive oxygen species (ROS), in the toxicity of laser printer emissions. However, the amount of ROS generated from laser printer nanoparticle emissions and the relative contribution of various fractions (vapors, organics, metals, and metal oxides) have not been investigated to-date. In this study, we aim to quantify short-lived ROS and H2O2 laser printer emissions, as well as the relative contribution of various fractions of LPEs in ROS generation. An aerosol chamber with HEPA filtered air was used to generate LPE emissions from one representative printer. In separate experiments, size fractionated LPEs were collected on filters (particles) or impingers (particles and vapors). The nanoscale fraction of LPEs (PM0.1) was further separated into the organic fraction and inorganic (transition metals/metal oxides) following a sequence of extraction with solvents and centrifugation. The short-lived ROS and H2O2 generated from each fraction were quantified with an acellular Trolox-based liquid chromatography-electrospray-tandem mass spectrometry (LC-ESI-MS/MS) method recently developed in our lab. The particulate fraction of LPEs PM0.1 generated 2.68 times more total ROS (sum of short-lived ROS and H2O2) than the vapor fraction. In tested LPEs, transition metal oxides, which constituted 3% by mass, produced 69× and 202× times more short-lived ROS and H2O2, respectively, on a mass basis, than the organic fraction. Furthermore, fresh PM0.1 generated 282× and 32× times more short-lived ROS and H2O2, respectively, than aged and processed PM0.1. We conclude that transition metal oxides, albeit a minor constituent of the LPE PM0.1 emissions, are the species responsible for the majority of acellular ROS in this printer. A larger range of printers should be tested in the future. Because transition metal oxides in toners originate primarily from engineering nanomaterials (ENMs) in printer toner powder, reformulation of toner powders to contain less of these ROS active metals is recommended.
Collapse
Affiliation(s)
- Yipei Zhang
- Department of Chemistry, Kennedy College of Sciences , University of Massachusetts Lowell , Lowell , Massachusetts 01854 , United States
| | - Philip Demokritou
- Department of Environmental Health and Harvard Center for Nanotechnology and Nanotoxicology , Harvard T. H. Chan School of Public Health , Boston , Massachusetts 02115 , United States
| | - David K Ryan
- Department of Chemistry, Kennedy College of Sciences , University of Massachusetts Lowell , Lowell , Massachusetts 01854 , United States
| | - Dhimiter Bello
- Department of Environmental Health and Harvard Center for Nanotechnology and Nanotoxicology , Harvard T. H. Chan School of Public Health , Boston , Massachusetts 02115 , United States
- Department of Biomedical and Nutritional Sciences, Zuckerberg College of Health Sciences , University of Massachusetts Lowell , Lowell , Massachusetts 01854 , United States
| |
Collapse
|
20
|
Getzlaff M, Leifels M, Weber P, Kökcam-Demir Ü, Janiak C. Nanoparticles in toner material. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-0501-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
21
|
Detection and identification of engineered nanoparticles in exhaled breath condensate, blood serum, and urine of occupationally exposed subjects. MONATSHEFTE FUR CHEMIE 2019. [DOI: 10.1007/s00706-019-2379-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
22
|
Mascarenhas S, Mutnuri S, Ganguly A. Silica - A trace geogenic element with emerging nephrotoxic potential. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 645:297-317. [PMID: 30029111 DOI: 10.1016/j.scitotenv.2018.07.075] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 06/14/2018] [Accepted: 07/06/2018] [Indexed: 06/08/2023]
Abstract
Silica is a trace-geogenic compound with limited-bioavailability. It inflicts health-perils like pulmonary-silicosis and chronic kidney disease (CKD), when available via anthropogenic-disturbances. Amidst silica-imposed pathologies, pulmonary toxicological-mechanisms are well-described, ignoring the renal-pathophysiological mechanisms. Hence, the present-study aimed to elucidate cellular-cum-molecular toxicological-mechanisms underlying silica-induced renal-pathology in-vitro. Various toxicity-assessments were used to study effects of silica on the physiological-functions of HK-cells (human-kidney proximal-tubular cells - the toxin's prime target) on chronic (1-7 days) sub-toxic (80 mg/L) and toxic (100-120 mg/L) dosing. Results depicted that silica triggered dose-cum-time dependent cytotoxicity/cell-death (MTT-assay) that significantly increased on long-term dosing with ≥100 mg/L silica; establishing the nephrotoxic-potential of this dose. Contrarily, insignificant cell-death on sub-toxic (80 mg/L) dosing was attributed to rapid intracellular toxin-clearance at lower-doses preventing toxic-effects. The proximal-tubular (HK-cells) cytotoxicity was found to be primarily mediated by silica-triggered incessant oxidative-stress (elevated ROS).·This enhanced ROS inflicted severe inflammation and subsequent fibrosis, evident from increased pro-inflammatory-cum-fibrogenic cytokines generation (IL-1β, IL-2, IL-6, TNF-α and TGF-β). Simultaneously, ROS induced persistent DNA-damage (Comet-assay) that stimulated G2/M arrest for p53-mediated damage-repair, aided by checkpoint-promoter (Chk1) activation and mitotic-inducers (i.e. Cdc-25, Cdk1, cyclinB1) inhibition. However, DNA-injuries surpassed the cellular-repair, which provoked the p53-gene to induce mitochondrial-mediated apoptotic cell-death via activation of Bax, cytochrome-c and caspase-cascade (9/3). This persistent apoptotic cell-death and simultaneous incessant inflammation culminated in the development of tubular-atrophy and fibrosis, the major pathological-manifestations of CKD. These findings provided novel-insights into the pathological-mechanisms (cellular and molecular) of silica-induced CKD, inflicted on chronic toxic-dosing (≥100 mg/L).Thereby, encouraging the development of therapeutic-strategies (e.g. anti-oxidant treatment) for specific molecular-targets (e.g. ROS) to retard silica-induced CKD-progression, for reduction in the global-CKD burden.
Collapse
Affiliation(s)
- Starlaine Mascarenhas
- Department of Biological Sciences, BITS Pilani, K K Birla Goa Campus, NH 17 B, Zuarinagar, Goa 403 726, India.
| | - Srikanth Mutnuri
- Department of Biological Sciences, BITS Pilani, K K Birla Goa Campus, NH 17 B, Zuarinagar, Goa 403 726, India.
| | - Anasuya Ganguly
- Department of Biological Sciences, BITS Pilani, K K Birla Goa Campus, NH 17 B, Zuarinagar, Goa 403 726, India.
| |
Collapse
|
23
|
Poh TY, Ali NABM, Mac Aogáin M, Kathawala MH, Setyawati MI, Ng KW, Chotirmall SH. Inhaled nanomaterials and the respiratory microbiome: clinical, immunological and toxicological perspectives. Part Fibre Toxicol 2018; 15:46. [PMID: 30458822 PMCID: PMC6245551 DOI: 10.1186/s12989-018-0282-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/31/2018] [Indexed: 12/17/2022] Open
Abstract
Our development and usage of engineered nanomaterials has grown exponentially despite concerns about their unfavourable cardiorespiratory consequence, one that parallels ambient ultrafine particle exposure from vehicle emissions. Most research in the field has so far focused on airway inflammation in response to nanoparticle inhalation, however, little is known about nanoparticle-microbiome interaction in the human airway and the environment. Emerging evidence illustrates that the airway, even in its healthy state, is not sterile. The resident human airway microbiome is further altered in chronic inflammatory respiratory disease however little is known about the impact of nanoparticle inhalation on this airway microbiome. The composition of the airway microbiome, which is involved in the development and progression of respiratory disease is dynamic, adding further complexity to understanding microbiota-host interaction in the lung, particularly in the context of nanoparticle exposure. This article reviews the size-dependent properties of nanomaterials, their body deposition after inhalation and factors that influence their fate. We evaluate what is currently known about nanoparticle-microbiome interactions in the human airway and summarise the known clinical, immunological and toxicological consequences of this relationship. While associations between inhaled ambient ultrafine particles and host immune-inflammatory response are known, the airway and environmental microbiomes likely act as intermediaries and facilitate individual susceptibility to inhaled nanoparticles and toxicants. Characterising the precise interaction between the environment and airway microbiomes, inhaled nanoparticles and the host immune system is therefore critical and will provide insight into mechanisms promoting nanoparticle induced airway damage.
Collapse
Affiliation(s)
- Tuang Yeow Poh
- Translational Respiratory Research Laboratory, Lee Kong Chian School of Medicine, Nanyang Technological University, Level 12, Clinical Sciences Building, 11 Mandalay Road, Singapore, 308232, Singapore
| | - Nur A'tikah Binte Mohamed Ali
- Translational Respiratory Research Laboratory, Lee Kong Chian School of Medicine, Nanyang Technological University, Level 12, Clinical Sciences Building, 11 Mandalay Road, Singapore, 308232, Singapore
| | - Micheál Mac Aogáin
- Translational Respiratory Research Laboratory, Lee Kong Chian School of Medicine, Nanyang Technological University, Level 12, Clinical Sciences Building, 11 Mandalay Road, Singapore, 308232, Singapore
| | - Mustafa Hussain Kathawala
- School of Materials Science and Engineering, Nanyang Technological University, Block N4.1, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Magdiel Inggrid Setyawati
- School of Materials Science and Engineering, Nanyang Technological University, Block N4.1, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Kee Woei Ng
- School of Materials Science and Engineering, Nanyang Technological University, Block N4.1, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Sanjay Haresh Chotirmall
- Translational Respiratory Research Laboratory, Lee Kong Chian School of Medicine, Nanyang Technological University, Level 12, Clinical Sciences Building, 11 Mandalay Road, Singapore, 308232, Singapore.
| |
Collapse
|
24
|
Liu Q, Wang X, Xia T. Creative use of analytical techniques and high-throughput technology to facilitate safety assessment of engineered nanomaterials. Anal Bioanal Chem 2018; 410:6097-6111. [PMID: 30066194 DOI: 10.1007/s00216-018-1289-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 07/15/2018] [Accepted: 07/23/2018] [Indexed: 12/21/2022]
Abstract
With the rapid development and numerous applications of engineered nanomaterials (ENMs) in science and technology, their impact on environmental health and safety should be considered carefully. This requires an effective platform to investigate the potential adverse effects and hazardous biological outcomes of numerous nanomaterials and their formulations. We consider predictive toxicology a rational approach for this effort, which utilizes mechanism-based in vitro high-throughput screening (HTS) to make predictions on ENMs' adverse outcomes in vivo. Moreover, this approach is able to link the physicochemical properties of ENMs to toxicity that allows the development of structure-activity relationships (SARs). To build this predictive platform, extensive analytical and bioanalytical techniques and tools are required. In this review, we described the predictive toxicology approach and the accompanying analytical and bioanalytical techniques. In addition, we elaborated several successful examples as a result of using the predictive approach.
Collapse
Affiliation(s)
- Qi Liu
- Center of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, CA, 90095, USA.,California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
| | - Xiang Wang
- Center of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, CA, 90095, USA.,California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
| | - Tian Xia
- Center of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, CA, 90095, USA. .,California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA. .,Division of NanoMedicine, Department of Medicine, University of California, 570 Westwood Plaza, Los Angeles, CA, 90095, USA.
| |
Collapse
|
25
|
Serfozo N, Ondráček J, Glytsos T, Lazaridis M. Evaluation of nanoparticle emissions from a laser printer in an experimental chamber and estimation of the human particle dose. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:13103-13117. [PMID: 29488200 DOI: 10.1007/s11356-018-1448-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 01/31/2018] [Indexed: 06/08/2023]
Abstract
The aim of this study was to evaluate the nanoparticle emissions from a laser printer in a chamber in conjunction with emissions from printers in a print room (PR) and to characterize the processes that lead to increased nanoparticle concentrations, as well as to estimate the human particle dose of the printers' users. Measurements were conducted in a small stainless steel environmental chamber under controlled conditions, where the evolution of particle size distributions (PSDs) with time and printed pages was studied in detail. Printer was generating nanoparticles (vast majority ˂ 50 nm with mode on ~ 15 nm) primarily during cold startup. Previously, 1-week sampling was also done in a PR at the Technical University of Crete, where the tested laser printer is installed along with three other printers. Similarly, as it was observed in the chamber study, printers' startup on any given day was characterized by a sharp increase in particle number (PN) concentrations. Average measured PN concentrations during printing hours in PR (5.4 × 103 #/cm3) is similar to the one observed in chamber measurements (6.7 × 103 #/cm3). The ExDoM2 dosimetry model was further applied to calculate the deposition of particles in the human respiratory tract. More precisely, the increase in particle dose for an adult Caucasian male was 14.6- and 24.1-fold at printers' startup, and 1.2- and 5.2-fold during printing in the PR and experimental chamber, respectively, compared to the exposure dose at background concentrations (BCs).
Collapse
Affiliation(s)
- Norbert Serfozo
- School of Environmental Engineering, Technical University of Crete (TUC), Polytechneioupolis, 73100, Chania, Greece.
| | - Jakub Ondráček
- Institute of Chemical Process Fundamentals, v.v.i., Academy of Sciences of the Czech Republic, Rozvojová 135, 16502, Prague, Czech Republic
| | - Thodoros Glytsos
- School of Environmental Engineering, Technical University of Crete (TUC), Polytechneioupolis, 73100, Chania, Greece
| | - Mihalis Lazaridis
- School of Environmental Engineering, Technical University of Crete (TUC), Polytechneioupolis, 73100, Chania, Greece
| |
Collapse
|
26
|
|
27
|
Beltran-Huarac J, Zhang Z, Pyrgiotakis G, DeLoid G, Vaze N, Hussain SM, Demokritou P. Development of reference metal and metal oxide engineered nanomaterials for nanotoxicology research using high throughput and precision flame spray synthesis approaches. NANOIMPACT 2018; 10:26-37. [PMID: 30035243 PMCID: PMC6051426 DOI: 10.1016/j.impact.2017.11.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
There is a growing need to develop and characterize reference metal and metal oxide engineered nanomaterials (ENMs) of high purity and tunable intrinsic properties suitable for nanotoxicology research. Here a high throughput (volume) and precision flame spray pyrolysis (FSP) approach coupled with state-of-the-art characterization techniques are utilized to generate such reference ENMs. The lab-based and industrially relevant FSP system, termed as Versatile Engineered Nanomaterials Generation System (VENGES), synthesizes the metals and metal oxides, at high throughput manner with controlled properties, such as primary particle size, aggregate diameter, shape, crystallinity, stoichiometry and surface chemistry. A nanopanel of nine reference ENMs (silica, silver, silver supported on silica, alumina, ceria and iron oxide) was synthesized and characterized using combined electron microscopy, advanced spectroscopic techniques and physical analyses (e.g., BET, XRD, TEM, pycnometry, XPS, ICP-MS and FTIR). ENMs show a high degree of chemical purity and stoichiometry, and low content of carbon residuals, and are sterile and free of bacteria and endotoxins. Further, their colloidal properties and their implication in in-vitro dosimetry have been also investigated in both environmental and test biological media. The suitability of reference ENMs and protocols developed in this study brings forth new arenas to generate reliable and reproducible toxicological data in an effort to reduce conflicting and contradicting inter-laboratory data on relative toxic effects of ENMs.
Collapse
Affiliation(s)
- Juan Beltran-Huarac
- Center for Nanotechnology and Nanotoxicology, HSPH-NIEHS Nanosafety Center, Department of Environmental Health, Harvard T. H. Chan School of Public School, Harvard University, Boston, MA 02115, USA
| | - Zhenyuan Zhang
- Center for Nanotechnology and Nanotoxicology, HSPH-NIEHS Nanosafety Center, Department of Environmental Health, Harvard T. H. Chan School of Public School, Harvard University, Boston, MA 02115, USA
| | - Georgios Pyrgiotakis
- Center for Nanotechnology and Nanotoxicology, HSPH-NIEHS Nanosafety Center, Department of Environmental Health, Harvard T. H. Chan School of Public School, Harvard University, Boston, MA 02115, USA
| | - Glen DeLoid
- Center for Nanotechnology and Nanotoxicology, HSPH-NIEHS Nanosafety Center, Department of Environmental Health, Harvard T. H. Chan School of Public School, Harvard University, Boston, MA 02115, USA
| | - Nachiket Vaze
- Center for Nanotechnology and Nanotoxicology, HSPH-NIEHS Nanosafety Center, Department of Environmental Health, Harvard T. H. Chan School of Public School, Harvard University, Boston, MA 02115, USA
| | - Saber M. Hussain
- Molecular Bioeffects Branch, Airman Systems Directorate, Wright Patterson Air Force Base, Dayton, OH, USA
| | - Philip Demokritou
- Center for Nanotechnology and Nanotoxicology, HSPH-NIEHS Nanosafety Center, Department of Environmental Health, Harvard T. H. Chan School of Public School, Harvard University, Boston, MA 02115, USA
| |
Collapse
|
28
|
Zhao J, Zhang Y, Sisler JD, Shaffer J, Leonard SS, Morris AM, Qian Y, Bello D, Demokritou P. Assessment of reactive oxygen species generated by electronic cigarettes using acellular and cellular approaches. JOURNAL OF HAZARDOUS MATERIALS 2018; 344:549-557. [PMID: 29102637 PMCID: PMC5848214 DOI: 10.1016/j.jhazmat.2017.10.057] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 10/11/2017] [Accepted: 10/27/2017] [Indexed: 05/11/2023]
Abstract
Electronic cigarettes (e-cigs) have fast increased in popularity but the physico-chemical properties and toxicity of the generated emission remain unclear. Reactive oxygen species (ROS) are likely present in e-cig emission and can play an important role in e-cig toxicity. However, e-cig ROS generation is poorly documented. Here, we generated e-cig exposures using a recently developed versatile exposure platform and performed systematic ROS characterization on e-cig emissions using complementary acellular and cellular techniques: 1) a novel acellular Trolox-based mass spectrometry method for total ROS and hydrogen peroxide (H2O2) detection, 2) electron spin resonance (ESR) for hydroxyl radical detection in an acellular and cellular systems and 3) in vitro ROS detection in small airway epithelial cells (SAEC) using the dihydroethidium (DHE) assay. Findings confirm ROS generation in cellular and acellular systems and is highly dependent on the e-cig brand, flavor, puffing pattern and voltage. Trolox method detected a total of 1.2-8.9nmol H2O2eq./puff; H2O2 accounted for 12-68% of total ROS. SAEC cells exposed to e-cig emissions generated up to eight times more ROS compared to control. The dependency of e-cig emission profile on e-cig features and operational parameters should be taken into consideration in toxicological studies.
Collapse
Affiliation(s)
- Jiayuan Zhao
- Department of Environmental Health, Center for Nanotechnology and Nanotoxicology, Harvard School of Public Health, Boston, MA 02115, USA
| | - Yipei Zhang
- Department of Public Health, University of Massachusetts Lowell, MA 01854, USA
| | - Jennifer D Sisler
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health (NIOSH), Morgantown, WV 26505, USA
| | - Justine Shaffer
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health (NIOSH), Morgantown, WV 26505, USA
| | - Stephen S Leonard
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health (NIOSH), Morgantown, WV 26505, USA
| | - Anna M Morris
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health (NIOSH), Morgantown, WV 26505, USA
| | - Yong Qian
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health (NIOSH), Morgantown, WV 26505, USA
| | - Dhimiter Bello
- Department of Environmental Health, Center for Nanotechnology and Nanotoxicology, Harvard School of Public Health, Boston, MA 02115, USA; Department of Public Health, University of Massachusetts Lowell, MA 01854, USA.
| | - Philip Demokritou
- Department of Environmental Health, Center for Nanotechnology and Nanotoxicology, Harvard School of Public Health, Boston, MA 02115, USA.
| |
Collapse
|
29
|
Chalbot MCG, Pirela SV, Schifman L, Kasaraneni V, Oyanedel-Craver V, Bello D, Castranova V, Qian Y, Thomas T, Kavouras IG, Demokritou P. Synergistic effects of engineered nanoparticles and organics released from laser printers using nano-enabled toners: potential health implications from exposures to the emitted organic aerosol. ENVIRONMENTAL SCIENCE. NANO 2017; 4:2144-2156. [PMID: 30197786 PMCID: PMC6121699 DOI: 10.1039/c7en00573c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Recent studies have shown that engineered nanoparticles (ENPs) are incorporated into toner powder used in printing equipment and released during their use. Thus, understanding the functional and structural composition and potential synergistic effects of this complex aerosol and released gaseous co-pollutants is critical in assessing their potential toxicological implications and risks. In this study, toner powder and PEPs were thoroughly examined for functional and molecular composition of the organic fraction and the concentration profile of 16 Environmental Protection Agency (EPA)-priority polycyclic aromatic hydrocarbons (PAH) using state of the art analytical methods. Results show significant differences in abundance of non-exchangeable organic hydrogen of toner powder and PEPs, with a stronger aromatic spectral signature in PEPs. Changes in structural composition of PEPs are indicative of radical additions and free-radical polymerization favored by catalytic reactions, resulting in formation of functionalized organic species. Particularly, accumulation of aromatic carbons with strong styrene-like molecular signatures on PEPs is associated with formation of semivolatile heavier aromatic species (i.e., PAHs). Further, the transformation of low molecular weight PAHs in the toner powder to high molecular weight PAHs in PEPs was documented and quantified. This may be a result of synergistic effects from catalytic metal/metal oxide ENPs incorporated into the toner and the presence/release of semi-volatile organic species (SVOCs). The presence of known carcinogenic PAHs on PEPs raises public health concerns and warrants further toxicological assessment.
Collapse
Affiliation(s)
- Marie-Cecile G Chalbot
- Department of Environmental Health Sciences, University of Alabama at Birmingham, Birmingham, Alabama
| | - Sandra V Pirela
- Department of Environmental Health, Center for Nanotechnology and Nanotoxicology, T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Laura Schifman
- Department of Civil and Environmental Engineering, University of Rhode Island, Kingston, Rhode Island
| | - Varun Kasaraneni
- Department of Civil and Environmental Engineering, University of Rhode Island, Kingston, Rhode Island
| | - Vinka Oyanedel-Craver
- Department of Civil and Environmental Engineering, University of Rhode Island, Kingston, Rhode Island
| | - Dhimiter Bello
- Department of Environmental Health, Center for Nanotechnology and Nanotoxicology, T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Vincent Castranova
- Department of Pharmaceutical Sciences/School of Pharmacy, West Virginia University, Morgantown, West Virginia
| | - Yong Qian
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia
| | - Treye Thomas
- U.S. Consumer Product Safety Commission, Office of Hazard Identification and Reduction, Rockville, Maryland
| | - Ilias G Kavouras
- Department of Environmental Health Sciences, University of Alabama at Birmingham, Birmingham, Alabama
| | - Philip Demokritou
- Department of Environmental Health, Center for Nanotechnology and Nanotoxicology, T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| |
Collapse
|
30
|
Mangalampalli B, Dumala N, Grover P. Acute oral toxicity study of magnesium oxide nanoparticles and microparticles in female albino Wistar rats. Regul Toxicol Pharmacol 2017; 90:170-184. [PMID: 28899817 DOI: 10.1016/j.yrtph.2017.09.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 09/01/2017] [Accepted: 09/05/2017] [Indexed: 01/08/2023]
Abstract
Advancements in nanotechnology have led to the development of the nanomedicine, which involves nanodevices for diagnostic and therapeutic purposes. A key requirement for the successful use of the nanoparticles (NPs) in biomedical applications is their good dispensability, colloidal stability in biological media, internalization efficiency, and low toxicity. Therefore, toxicological profiling is necessary to understand the mechanism of NPs and microparticles (MPs). MgO NPs have attracted wide scientific interest due to ease of synthesis, chemical stability and unique properties. However, their toxic effects on humans should also be of concern with the increased applications of nano MgO. The present study was aimed to assess the toxicological potential of MgO NPs in comparison to their micron counterparts in female Wistar rats. Toxicity was evaluated using genotoxicity, histological, biochemical, antioxidant and biodistribution parameters post administration of MgO particles to rats through oral route. The results obtained from the investigation revealed that the acute exposure to the high doses of MgO NPs produced significant (p < 0.01) DNA damage and biochemical alterations. Antioxidant assays revealed prominent oxidative stress at the high dose level for both the particles. Toxicokinetic analysis showed significant levels of Mg accumulation in the liver and kidney tissues apart from urine and feces. Further, mechanistic investigational reports are warranted to document safe exposure levels and health implications post exposure to high levels of NPs.
Collapse
Affiliation(s)
- Bhanuramya Mangalampalli
- Toxicology Unit, Pharmacology and Toxicology Division, CSIR - Indian Institute of Chemical Technology, Hyderabad, Telangana 500007, India; Academy of Scientific and Innovative Research, CSIR - Indian Institute of Chemical Technology, Hyderabad, Telangana 500007, India
| | - Naresh Dumala
- Toxicology Unit, Pharmacology and Toxicology Division, CSIR - Indian Institute of Chemical Technology, Hyderabad, Telangana 500007, India; Academy of Scientific and Innovative Research, CSIR - Indian Institute of Chemical Technology, Hyderabad, Telangana 500007, India
| | - Paramjit Grover
- Toxicology Unit, Pharmacology and Toxicology Division, CSIR - Indian Institute of Chemical Technology, Hyderabad, Telangana 500007, India.
| |
Collapse
|
31
|
Mantecca P, Kasemets K, Deokar A, Perelshtein I, Gedanken A, Bahk YK, Kianfar B, Wang J. Airborne Nanoparticle Release and Toxicological Risk from Metal-Oxide-Coated Textiles: Toward a Multiscale Safe-by-Design Approach. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:9305-9317. [PMID: 28715175 DOI: 10.1021/acs.est.7b02390] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Nano metal oxides have been proposed as alternatives to silver (Ag) nanoparticles (NPs) for antibacterial coatings. Here, cotton and polyester-cotton fabrics were sonochemically coated with zinc oxide (ZnO) and copper oxide (CuO) NPs. By varying the reaction solvent (water or ethanol), NPs with different sizes and shapes were synthesized. The cytotoxic and pro-inflammatory effects of studied NPs were investigated in vitro in human alveolar epithelial A549 and macrophage-like THP1 cells. To understand the potential respiratory impact of the NPs, the coated textiles were subjected to the abrasion tests, and the released airborne particles were measured. A very small amount of the studied metal oxides NPs was released from abrasion of the textiles coated by the ethanol-based sonochemical process. The release from the water-based coating was comparably higher. Lung and immune cells viability decreased after 24 h of exposure only at the highest studied NPs concentration (100 μg/mL). Different from the ZnO NPs, both formulations of CuO NPs induced IL-8 release in the lung epithelial cells already at subtoxic concentrations (1-10 μg/mL) but not in immune cells. All of the studied NPs did not induce IL-6 release by the lung and immune cells. Calculations revealed that the exposures of the NPs to human lung due to the abrasion of the textiles were lower or comparable to the minimum doses in the cell viability tests (0.1 μg/mL), at which acute cytotoxicity was not observed. The results alleviate the concerns regarding the potential risk of these metal oxide NPs in their applications for the textile coating and provide insight for the safe-by-design approach.
Collapse
Affiliation(s)
- Paride Mantecca
- Department of Earth and Environmental Sciences, Research Center POLARIS, University of Milano-Bicocca , Milan 20126, Italy
| | - Kaja Kasemets
- Department of Earth and Environmental Sciences, Research Center POLARIS, University of Milano-Bicocca , Milan 20126, Italy
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics , Tallinn 12618, Estonia
| | - Archana Deokar
- Department of Chemistry and Nanomaterials, Bar-Ilan University Center for Advanced Materials and Nanotechnology , Ramat-Gan 5290002, Israel
| | - Ilana Perelshtein
- Department of Chemistry and Nanomaterials, Bar-Ilan University Center for Advanced Materials and Nanotechnology , Ramat-Gan 5290002, Israel
| | - Aharon Gedanken
- Department of Chemistry and Nanomaterials, Bar-Ilan University Center for Advanced Materials and Nanotechnology , Ramat-Gan 5290002, Israel
| | - Yeon Kyoung Bahk
- Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology , 8600 Dübendorf, Switzerland
- Institute of Environmental Engineering, ETH Zurich , Zurich 8092, Switzerland
| | - Baharh Kianfar
- Institute of Environmental Engineering, ETH Zurich , Zurich 8092, Switzerland
| | - Jing Wang
- Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology , 8600 Dübendorf, Switzerland
- Institute of Environmental Engineering, ETH Zurich , Zurich 8092, Switzerland
| |
Collapse
|
32
|
Pirela SV, Martin J, Bello D, Demokritou P. Nanoparticle exposures from nano-enabled toner-based printing equipment and human health: state of science and future research needs. Crit Rev Toxicol 2017; 47:678-704. [PMID: 28524743 DOI: 10.1080/10408444.2017.1318354] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Toner formulations used by laser printers (LP) and photocopiers (PC), collectively called "toner-based printing equipment" (TPE), are nano-enabled products (NEP) because they contain several engineered nanomaterials (ENM) that improve toner performance. It has been shown that during consumer use (printing), these ENM are released in the air, together with other semi-volatile organic nanoparticles, and newly formed gaseous co-pollutants such as volatile organic compounds (VOC). The aim of this review is to detail and analyze physico-chemical and morphological (PCM), as well as the toxicological properties of particulate matter (PM) emissions from TPE. The review covers evolution of science since the early 2000, when this printing technology first became a subject of public interest, as well as the lagging regulatory framework around it. Important studies that have significantly changed our understanding of these exposures are also highlighted. The review continues with a critical appraisal of the most up-to-date cellular, animal and human toxicological evidence on the potential adverse human health effects of PM emitted from TPE. We highlight several limitations of existing studies, including (i) use of high and often unrealistic doses in vitro or in vivo; (ii) unrealistically high-dose rates in intratracheal instillation studies; (iii) improper use of toners as surrogate for emitted nanoparticles; (iv) lack of or inadequate PCM characterization of exposures; and (v) lack of dosimetry considerations in in vitro studies. Presently, there is compelling evidence that the PM0.1 from TPE are biologically active and capable of inducing oxidative stress in vitro and in vivo, respiratory tract inflammation in vivo (in rats) and in humans, several endpoints of cellular injury in monocultures and co-cultures, including moderate epigenetic modifications in vitro. In humans, limited epidemiological studies report typically 2-3 times higher prevalence of chronic cough, wheezing, nasal blockage, excessive sputum production, breathing difficulties, and shortness of breath, in copier operators relative to controls. Such symptoms can be exacerbated during chronic exposures, and in individuals susceptible to inhaled pollutants. Thus respiratory, immunological, cardiovascular, and other disorders may be developed following such exposures; however, further toxicological and larger scale molecular epidemiological studies must be done to fully understand the mechanism of action of these TPE emitted nanoparticles. Major research gaps have also been identified. Among them, a methodical risk assessment based on "real world" exposures rather than on the toner particles alone needs to be performed to provide the much-needed data to establish regulatory guidelines protective of individuals exposed to TPE emissions at both the occupational and consumer level. Industry-wide molecular epidemiology as well as mechanistic animal and human studies are also urgently needed.
Collapse
Affiliation(s)
- Sandra Vanessa Pirela
- a Department of Environmental Health, Harvard T.H. Chan School of Public Health , Center for Nanotechnology and Nanotoxicology , Boston , MA , USA
| | - John Martin
- b Department of Public Health , UMass Lowell , Lowell , MA , USA
| | - Dhimiter Bello
- a Department of Environmental Health, Harvard T.H. Chan School of Public Health , Center for Nanotechnology and Nanotoxicology , Boston , MA , USA.,b Department of Public Health , UMass Lowell , Lowell , MA , USA
| | - Philip Demokritou
- a Department of Environmental Health, Harvard T.H. Chan School of Public Health , Center for Nanotechnology and Nanotoxicology , Boston , MA , USA
| |
Collapse
|
33
|
Singh D, Schifman LA, Watson-Wright C, Sotiriou GA, Oyanedel-Craver V, Wohlleben W, Demokritou P. Nanofiller Presence Enhances Polycyclic Aromatic Hydrocarbon (PAH) Profile on Nanoparticles Released during Thermal Decomposition of Nano-enabled Thermoplastics: Potential Environmental Health Implications. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:5222-5232. [PMID: 28397486 DOI: 10.1021/acs.est.6b06448] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Nano-enabled products are ultimately destined to reach end-of-life with an important fraction undergoing thermal degradation through waste incineration or accidental fires. Although previous studies have investigated the physicochemical properties of released lifecycle particulate matter (called LCPM) from thermal decomposition of nano-enabled thermoplastics, critical questions about the effect of nanofiller on the chemical composition of LCPM still persist. Here, we investigate the potential nanofiller effects on the profiles of 16 Environmental Protection Agency (EPA)-priority polycyclic aromatic hydrocarbons (PAHs) adsorbed on LCPM from thermal decomposition of nano-enabled thermoplastics. We found that nanofiller presence in thermoplastics significantly enhances not only the total PAH concentration in LCPM but most importantly also the high molecular weight (HMW, 4-6 ring) PAHs that are considerably more toxic than the low molecular weight (LMW, 2-3 ring) PAHs. This nano-specific effect was also confirmed during in vitro cellular toxicological evaluation of LCPM for the case of polyurethane thermoplastic enabled with carbon nanotubes (PU-CNT). LCPM from PU-CNT shows significantly higher cytotoxicity compared to PU which could be attributed to its higher HMW PAH concentration. These findings are crucial and make the case that nanofiller presence in thermoplastics can significantly affect the physicochemical and toxicological properties of LCPM released during thermal decomposition.
Collapse
Affiliation(s)
- Dilpreet Singh
- Center for Nanotechnology and Nanotoxicology, T. H. Chan School of Public Health, Harvard University , 665 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Laura Arabella Schifman
- Department of Civil and Environmental Engineering, University of Rhode Island , 1 Lippitt Road, Kingston, Rhode Island 02881, United States
- National Risk Management Research Laboratory, Office of Research and Development, United States Environmental Protection Agency, Cincinnati, Ohio 45268, United States
| | - Christa Watson-Wright
- Center for Nanotechnology and Nanotoxicology, T. H. Chan School of Public Health, Harvard University , 665 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Georgios A Sotiriou
- Center for Nanotechnology and Nanotoxicology, T. H. Chan School of Public Health, Harvard University , 665 Huntington Avenue, Boston, Massachusetts 02115, United States
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet , Stockholm 17177, Sweden
| | - Vinka Oyanedel-Craver
- Department of Civil and Environmental Engineering, University of Rhode Island , 1 Lippitt Road, Kingston, Rhode Island 02881, United States
| | | | - Philip Demokritou
- Center for Nanotechnology and Nanotoxicology, T. H. Chan School of Public Health, Harvard University , 665 Huntington Avenue, Boston, Massachusetts 02115, United States
| |
Collapse
|
34
|
DeLoid GM, Cohen JM, Pyrgiotakis G, Demokritou P. Preparation, characterization, and in vitro dosimetry of dispersed, engineered nanomaterials. Nat Protoc 2017; 12:355-371. [PMID: 28102836 DOI: 10.1038/nprot.2016.172] [Citation(s) in RCA: 180] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Evidence continues to grow of the importance of in vitro and in vivo dosimetry in the hazard assessment and ranking of engineered nanomaterials (ENMs). Accurate dose metrics are particularly important for in vitro cellular screening to assess the potential health risks or bioactivity of ENMs. To ensure meaningful and reproducible quantification of in vitro dose, with consistent measurement and reporting between laboratories, it is necessary to adopt standardized and integrated methodologies for (i) generation of stable ENM suspensions in cell culture media; (ii) colloidal characterization of suspended ENMs, particularly of properties that determine particle kinetics in an in vitro system (size distribution and formed agglomerate effective density); and (iii) robust numerical fate and transport modeling for accurate determination of the ENM dose delivered to cells over the course of the in vitro exposure. Here we present an integrated comprehensive protocol based on such a methodology for in vitro dosimetry, including detailed standardized procedures for each of these three critical aims. The entire protocol requires ∼6-12 h to complete.
Collapse
Affiliation(s)
- Glen M DeLoid
- Center for Nanotechnology and Nanotoxicology, HSPH-NIEHS Nanosafety Research Center, Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Joel M Cohen
- Center for Nanotechnology and Nanotoxicology, HSPH-NIEHS Nanosafety Research Center, Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Georgios Pyrgiotakis
- Center for Nanotechnology and Nanotoxicology, HSPH-NIEHS Nanosafety Research Center, Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Philip Demokritou
- Center for Nanotechnology and Nanotoxicology, HSPH-NIEHS Nanosafety Research Center, Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
35
|
Ma Y, Guo Y, Wu S, Lv Z, Zhang Q, Ke Y. Titanium dioxide nanoparticles induce size-dependent cytotoxicity and genomic DNA hypomethylation in human respiratory cells. RSC Adv 2017. [DOI: 10.1039/c6ra28272e] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Titanium dioxide nanoparticles induce size-dependent cytotoxicity and genomic DNA hypomethylation in human respiratory cells.
Collapse
Affiliation(s)
- Yue Ma
- Key Laboratory of Molecular Biology
- Key Laboratory of Genetics & Molecular Medicine of Shenzhen
- Shenzhen Center for Disease Control and Prevention
- Shenzhen 518055
- China
| | - Yinsheng Guo
- Key Laboratory of Molecular Biology
- Key Laboratory of Genetics & Molecular Medicine of Shenzhen
- Shenzhen Center for Disease Control and Prevention
- Shenzhen 518055
- China
| | - Shuang Wu
- Key Laboratory of Molecular Biology
- Key Laboratory of Genetics & Molecular Medicine of Shenzhen
- Shenzhen Center for Disease Control and Prevention
- Shenzhen 518055
- China
| | - Ziquan Lv
- Key Laboratory of Molecular Biology
- Key Laboratory of Genetics & Molecular Medicine of Shenzhen
- Shenzhen Center for Disease Control and Prevention
- Shenzhen 518055
- China
| | - Qian Zhang
- Key Laboratory of Molecular Biology
- Key Laboratory of Genetics & Molecular Medicine of Shenzhen
- Shenzhen Center for Disease Control and Prevention
- Shenzhen 518055
- China
| | - Yuebin Ke
- Key Laboratory of Molecular Biology
- Key Laboratory of Genetics & Molecular Medicine of Shenzhen
- Shenzhen Center for Disease Control and Prevention
- Shenzhen 518055
- China
| |
Collapse
|
36
|
Efeoglu E, Casey A, Byrne HJ. Determination of spectral markers of cytotoxicity and genotoxicity using in vitro Raman microspectroscopy: cellular responses to polyamidoamine dendrimer exposure. Analyst 2017; 142:3848-3856. [DOI: 10.1039/c7an00969k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Raman microspectroscopy as anin vitrolabel-free, high content screening technique to determine spectral markers of cytogenotoxicity.
Collapse
Affiliation(s)
- Esen Efeoglu
- School of Physics
- Dublin Institute of Technology
- Dublin 8
- Ireland
- FOCAS Research Institute
| | - Alan Casey
- School of Physics
- Dublin Institute of Technology
- Dublin 8
- Ireland
- FOCAS Research Institute
| | - Hugh J. Byrne
- FOCAS Research Institute
- Dublin Institute of Technology
- Dublin 8
- Ireland
| |
Collapse
|
37
|
Pelclova D, Zdimal V, Kacer P, Zikova N, Komarc M, Fenclova Z, Vlckova S, Schwarz J, Makeš O, Syslova K, Navratil T, Turci F, Corazzari I, Zakharov S, Bello D. Markers of lipid oxidative damage in the exhaled breath condensate of nano TiO 2 production workers. Nanotoxicology 2016; 11:52-63. [PMID: 27855548 DOI: 10.1080/17435390.2016.1262921] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Nanoscale titanium dioxide (nanoTiO2) is a commercially important nanomaterial. Animal studies have documented lung injury and inflammation, oxidative stress, cytotoxicity and genotoxicity. Yet, human health data are scarce and quantitative risk assessments and biomonitoring of exposure are lacking. NanoTiO2 is classified by IARC as a group 2B, possible human carcinogen. In our earlier studies we documented an increase in markers of inflammation, as well as DNA and protein oxidative damage, in exhaled breath condensate (EBC) of workers exposed nanoTiO2. This study focuses on biomarkers of lipid oxidation. Several established lipid oxidative markers (malondialdehyde, 4-hydroxy-trans-hexenal, 4-hydroxy-trans-nonenal, 8-isoProstaglandin F2α and aldehydes C6-C12) were studied in EBC and urine of 34 workers and 45 comparable controls. The median particle number concentration in the production line ranged from 1.98 × 104 to 2.32 × 104 particles/cm3 with ∼80% of the particles <100 nm in diameter. Mass concentration varied between 0.40 and 0.65 mg/m3. All 11 markers of lipid oxidation were elevated in production workers relative to the controls (p < 0.001). A significant dose-dependent association was found between exposure to TiO2 and markers of lipid oxidation in the EBC. These markers were not elevated in the urine samples. Lipid oxidation in the EBC of workers exposed to (nano)TiO2 complements our earlier findings on DNA and protein damage. These results are consistent with the oxidative stress hypothesis and suggest lung injury at the molecular level. Further studies should focus on clinical markers of potential disease progression. EBC has reemerged as a sensitive technique for noninvasive monitoring of workers exposed to engineered nanoparticles.
Collapse
Affiliation(s)
- Daniela Pelclova
- a Department of Occupational Medicine , First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague , Prague , Czech Republic
| | - Vladimir Zdimal
- b Institute of Chemical Process Fundamentals of the CAS , Prague , Czech Republic
| | - Petr Kacer
- c Institute of Chemical Technology Prague , Prague , Czech Republic
| | - Nadezda Zikova
- b Institute of Chemical Process Fundamentals of the CAS , Prague , Czech Republic
| | - Martin Komarc
- d Department of Methodology , Faculty of Physical Education and Sport, Charles University in Prague , Prague , Czech Republic.,e First Faculty of Medicine, Institute of Informatics, Charles University in Prague and General University Hospital in Prague , Prague , Czech Republic
| | - Zdenka Fenclova
- a Department of Occupational Medicine , First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague , Prague , Czech Republic
| | - Stepanka Vlckova
- a Department of Occupational Medicine , First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague , Prague , Czech Republic
| | - Jaroslav Schwarz
- b Institute of Chemical Process Fundamentals of the CAS , Prague , Czech Republic
| | - Otakar Makeš
- b Institute of Chemical Process Fundamentals of the CAS , Prague , Czech Republic
| | - Kamila Syslova
- c Institute of Chemical Technology Prague , Prague , Czech Republic
| | - Tomas Navratil
- f J. Heyrovský Institute of Physical Chemistry of the CAS , Prague , Czech Republic
| | - Francesco Turci
- g Department of Chemistry , "G. Scansetti" Interdepartmental Centre, and NIS Interdepartmental Centre, University of Torino , Torino , Italy
| | - Ingrid Corazzari
- g Department of Chemistry , "G. Scansetti" Interdepartmental Centre, and NIS Interdepartmental Centre, University of Torino , Torino , Italy
| | - Sergey Zakharov
- a Department of Occupational Medicine , First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague , Prague , Czech Republic
| | - Dhimiter Bello
- h UMass Lowell, Department of Public Health , College of Health Sciences , Lowell, MA , USA
| |
Collapse
|
38
|
Sierra MI, Valdés A, Fernández AF, Torrecillas R, Fraga MF. The effect of exposure to nanoparticles and nanomaterials on the mammalian epigenome. Int J Nanomedicine 2016; 11:6297-6306. [PMID: 27932878 PMCID: PMC5135284 DOI: 10.2147/ijn.s120104] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Human exposure to nanomaterials and nanoparticles is increasing rapidly, but their effects on human health are still largely unknown. Epigenetic modifications are attracting ever more interest as possible underlying molecular mechanisms of gene–environment interactions, highlighting them as potential molecular targets following exposure to nanomaterials and nanoparticles. Interestingly, recent research has identified changes in DNA methylation, histone post-translational modifications, and noncoding RNAs in mammalian cells exposed to nanomaterials and nanoparticles. However, the challenge for the future will be to determine the molecular pathways driving these epigenetic alterations, the possible functional consequences, and the potential effects on health.
Collapse
Affiliation(s)
- M I Sierra
- Cancer Epigenetics Laboratory, Institute of Oncology of Asturias (IUOPA), Hospital Universitario Central de Asturias (HUCA), Universidad de Oviedo, Oviedo
| | - A Valdés
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Universidad de Oviedo-Principado de Asturias, El Entrego, Spain
| | - A F Fernández
- Cancer Epigenetics Laboratory, Institute of Oncology of Asturias (IUOPA), Hospital Universitario Central de Asturias (HUCA), Universidad de Oviedo, Oviedo
| | - R Torrecillas
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Universidad de Oviedo-Principado de Asturias, El Entrego, Spain
| | - M F Fraga
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Universidad de Oviedo-Principado de Asturias, El Entrego, Spain
| |
Collapse
|
39
|
Differential crosstalk between global DNA methylation and metabolomics associated with cell type specific stress response by pristine and functionalized MWCNT. Biomaterials 2016; 115:167-180. [PMID: 27914347 DOI: 10.1016/j.biomaterials.2016.11.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 10/13/2016] [Accepted: 11/07/2016] [Indexed: 12/15/2022]
Abstract
The present study endeavored to evaluate the comprehensive mechanisms of MWCNT-induced toxicity with particular emphasis on understanding cell specificity in relation to surface functionalization of MWCNT. Following treatment with differentially functionalized (hydroxylation/carboxylation) MWCNT on human bronchial epithelial (BEAS-2B) and human hepatoma (HepG2) cell lines, intracellular uptake, various toxicological end points, global metabolomics profiling and DNA methylation were evaluated. Herein, the comparative in vitro studies ascertained that surface functionalization diminished the toxic potentiality of MWCNT in respect of their pristine counterpart. The surface enhanced Raman scattering with dark-field microscopy attested the intracellular uptake of functionalized-MWCNT, but not the pristine one. The MWCNT's exposure caused alterations in stress responses (oxidative stress, inflammation, profibrosis, DNA damage-repair), differential mode of gene expressions, global metabolomics and DNA methylation status (DNMT3B dependent hypo-methylation in BEAS-2B cells and hyper-methylation in HepG2 cells) in a cell type specific and surface functionalization dependent manner. The alterations in particular metabolites (choline, betaine, succinate etc.) and distinct DNA methylation crosstalk patterns are the possible underlying mechanisms of differential mode of gene expressions and cell type specificity of MWCNT. This study provides preliminary evidence of epigenetic modifications and global metabolomics profiling which might be translated for risk assessment of MWCNT.
Collapse
|
40
|
Galam L, Failla A, Soundararajan R, Lockey RF, Kolliputi N. 4-hydroxynonenal regulates mitochondrial function in human small airway epithelial cells. Oncotarget 2016; 6:41508-21. [PMID: 26484418 PMCID: PMC4747170 DOI: 10.18632/oncotarget.6131] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 09/24/2015] [Indexed: 12/31/2022] Open
Abstract
Prolonged exposure to oxidative stress causes Acute Lung Injury (ALI) and significantly impairs pulmonary function. Previously we have demonstrated that mitochondrial dysfunction is a key pathological factor in hyperoxic ALI. While it is known that hyperoxia induces the production of stable, but toxic 4-hydroxynonenal (4-HNE) molecule, it is unknown how the reactive aldehyde disrupts mitochondrial function. Our previous in vivo study indicated that exposure to hyperoxia significantly increases 4-HNE-Protein adducts, as well as levels of MDA in total lung homogenates. Based on the in vivo studies, we explored the effects of 4-HNE in human small airway epithelial cells (SAECs). Human SAECs treated with 25 μM of 4-HNE showed a significant decrease in cellular viability and increased caspase-3 activity. Moreover, 4-HNE treated SAECs showed impaired mitochondrial function and energy production indicated by reduced ATP levels, mitochondrial membrane potential, and aconitase activity. This was followed by a significant decrease in mitochondrial oxygen consumption and depletion of the reserve capacity. The direct effect of 4-HNE on the mitochondrial respiratory chain was confirmed using Rotenone. Furthermore, SAECs treated with 25 μM 4-HNE showed a time-dependent depletion of total Thioredoxin (Trx) proteins and Trx activity. Taken together, our results indicate that 4-HNE induces cellular and mitochondrial dysfunction in human SAECs, leading to an impaired endogenous antioxidant response.
Collapse
Affiliation(s)
- Lakshmi Galam
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Athena Failla
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Ramani Soundararajan
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Richard F Lockey
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Narasaiah Kolliputi
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|
41
|
Xiao D, Wang H, Han D. Single and combined genotoxicity effects of six pollutants on THP-1 cells. Food Chem Toxicol 2016; 95:96-102. [DOI: 10.1016/j.fct.2016.06.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 05/31/2016] [Accepted: 06/28/2016] [Indexed: 10/21/2022]
|
42
|
Rongione NA, Floerke SA, Celik E. Developments in Antibacterial Disinfection Techniques. APPLYING NANOTECHNOLOGY FOR ENVIRONMENTAL SUSTAINABILITY 2016. [DOI: 10.4018/978-1-5225-0585-3.ch009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
One of the most daunting challenges facing nations today is controlling the spread of increasingly lethal bacteria. Today, a handful of bacteria can no longer be treated with traditional antibiotics and show antibacterial resistance. In this regard, nanotechnology possesses tremendous potential for the development of novel tools which help prevent and combat the spread of unwanted microorganisms. These tools can provide unique solutions for the challenges of the traditional disinfection methods, such as increased antibacterial activity, cost reduction, biocompatibility and personalized treatment. Despite its great potential, nanotechnology remains in its infancy and continued research efforts are required to achieve its full potential. In this chapter, traditional methods and their associated limitations are reviewed for their efficacy against microbial spread, and potential solutions in nanotechnology are described. A review of the state of the art disinfection techniques using nanotechnology is presented, and promising new areas in the field are discussed.
Collapse
|
43
|
McClements DJ, DeLoid G, Pyrgiotakis G, Shatkin JA, Xiao H, Demokritou P. The Role of the Food Matrix and Gastrointestinal Tract in the assessment of biological properties of ingested engineered nanomaterials (iENMs): State of the science and knowledge gaps. NANOIMPACT 2016; 3-4:47-57. [PMID: 29568810 PMCID: PMC5860850 DOI: 10.1016/j.impact.2016.10.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Many foods contain appreciable levels of engineered nanomaterials (ENMs) (diameter < 100 nm) that may be either intentionally or unintentionally added. These ENMs vary considerably in their compositions, dimensions, morphologies, physicochemical properties, and biological responses. From a toxicological point of view, it is often convenient to classify ingested ENMs (iENMs) as being either inorganic (such as TiO2, SiO2, Fe2O3, or Ag) or organic (such as lipid, protein, or carbohydrate), since the former tend to be indigestible and the latter are generally digestible. At present there is a relatively poor understanding of how different types of iENMs behave within the human gastrointestinal tract (GIT), and how the food matrix and biopolymers transform their physico-chemical properties and influence their gastrointestinal fate. This lack of knowledge confounds an understanding of their potential harmful effects on human health. The purpose of this article is to review our current understanding of the GIT fate of iENMs, and to highlight gaps where further research is urgently needed in assessing potential risks and toxicological implications of iENMs. In particular, a strong emphasis is given to the development of standardized screening methods that can be used to rapidly and accurately assess the toxicological properties of iENMs.
Collapse
Affiliation(s)
- David Julian McClements
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA
- corresponding authors: David Julian McClements, Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA. ; Tel: 413 545 1019. Philip Demokritou, Center for Nanotechnology an nanotoxicology, T.H. Chan School of Public Health, Harvard University, Boston MA 02115, , Tel 617 432-3481, Web: www.hsph.harvard.edu/nano
| | - Glen DeLoid
- Laboratory for Environmental Health NanoScience (LEHNS), Center for Nanotechnology and Nanotoxicology, T. H. Chan School of Public Health, Harvard University, 665 Huntington Avenue, Boston, MA 02115, USA
| | - Georgios Pyrgiotakis
- Laboratory for Environmental Health NanoScience (LEHNS), Center for Nanotechnology and Nanotoxicology, T. H. Chan School of Public Health, Harvard University, 665 Huntington Avenue, Boston, MA 02115, USA
| | | | - Hang Xiao
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Philip Demokritou
- Laboratory for Environmental Health NanoScience (LEHNS), Center for Nanotechnology and Nanotoxicology, T. H. Chan School of Public Health, Harvard University, 665 Huntington Avenue, Boston, MA 02115, USA
- corresponding authors: David Julian McClements, Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA. ; Tel: 413 545 1019. Philip Demokritou, Center for Nanotechnology an nanotoxicology, T.H. Chan School of Public Health, Harvard University, Boston MA 02115, , Tel 617 432-3481, Web: www.hsph.harvard.edu/nano
| |
Collapse
|
44
|
Pelclova D, Zdimal V, Kacer P, Fenclova Z, Vlckova S, Komarc M, Navratil T, Schwarz J, Zikova N, Makes O, Syslova K, Belacek J, Zakharov S. Leukotrienes in exhaled breath condensate and fractional exhaled nitric oxide in workers exposed to TiO
2
nanoparticles. J Breath Res 2016; 10:036004. [DOI: 10.1088/1752-7155/10/3/036004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
45
|
Watson C, DeLoid GM, Pal A, Demokritou P. Buoyant Nanoparticles: Implications for Nano-Biointeractions in Cellular Studies. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:3172-3180. [PMID: 27135209 PMCID: PMC5089376 DOI: 10.1002/smll.201600314] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/04/2016] [Indexed: 05/18/2023]
Abstract
In the safety and efficacy assessment of novel nanomaterials, the role of nanoparticle (NP) kinetics in in vitro studies is often ignored although it has significant implications in dosimetry, hazard ranking, and nanomedicine efficacy. It is demonstrated here that certain nanoparticles are buoyant due to low effective densities of their formed agglomerates in culture media, which alters particle transport and deposition, dose-response relationships, and underestimates toxicity and bioactivity. To investigate this phenomenon, this study determines the size distribution, effective density, and assesses fate and transport for a test buoyant NP (polypropylene). To enable accurate dose-response assessment, an inverted 96-well cell culture platform is developed in which adherent cells are incubated above the buoyant particle suspension. The effect of buoyancy is assessed by comparing dose-toxicity responses in human macrophages after 24 h incubation in conventional and inverted culture systems. In the conventional culture system, no adverse effects are observed at any NP concentration tested (up to 250 μg mL(-1) ), whereas dose-dependent decreases in viability and increases in reactive oxygen species are observed in the inverted system. This work sheds light on an unknown issue that plays a significant role in vitro hazard screening and proposes a standardized methodology for buoyant NP assessments.
Collapse
Affiliation(s)
- C.Y. Watson
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard School of Public Health, 655 Huntington Ave Boston, MA 02115
| | - GM. DeLoid
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard School of Public Health, 655 Huntington Ave Boston, MA 02115
| | - A. Pal
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard School of Public Health, 655 Huntington Ave Boston, MA 02115
| | - P. Demokritou
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard School of Public Health, 655 Huntington Ave Boston, MA 02115
| |
Collapse
|
46
|
DeLoid G, Casella B, Pirela S, Filoramo R, Pyrgiotakis G, Demokritou P, Kobzik L. Effects of engineered nanomaterial exposure on macrophage innate immune function. NANOIMPACT 2016; 2:70-81. [PMID: 29568809 PMCID: PMC5860825 DOI: 10.1016/j.impact.2016.07.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Increasing use of engineered nanomaterials (ENMs) means increased human exposures. Potential adverse effects include those on the immune system, ranging from direct toxicity to impairment of defenses against environmental pathogens and toxins. Effects on lung macrophages may be especially prominent, because they serve to clear foreign materials like ENMs and bacterial pathogens. We investigated the effects of 4 hour exposures over a range of concentrations, of a panel of industry-relevant ENMs, including SiO2, Fe2O3, ZnO, CeO2, TiO2, and an Ag/SiO2 composite, on human THP-1 macrophages. Effects on phagocytosis of latex beads, and phagocytosis and killing of Francisella tularensis (FT), as well as viability, oxidative stress and mitochondrial integrity, were measured by automated scanning confocal microscopy and image analysis. Results revealed some notable patterns: 1) Phagocytosis of unopsonized beads was increased, whereas that of opsonized beads was decreased, by all ENMs, with the exception of ZnO, which reduced both opsonized and unopsonized uptake; 2) Uptake of opsonized and unopsonized FT was either impaired or unaffected by all ENMs, with the exception of CeO2, which increased phagocytosis of unopsonized FT; 3) Macrophage killing of FT tended to improve with all ENMs; and 4) Viability was unaffected immediately following exposures with all ENMs tested, but was significantly decreased 24 hours after exposures to Ag/SiO2 and ZnO ENMs. The results reveal a complex landscape of ENM effects on macrophage host defenses, including both enhanced and reduced capacities, and underscore the importance of robust hazard assessment, including immunotoxicity assessment, of ENMs.
Collapse
Affiliation(s)
- Glen DeLoid
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard School of Public Health, Boston, MA, United States of America
- corresponding author: Glen M. DeLoid,
| | - Beatriz Casella
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard School of Public Health, Boston, MA, United States of America
- Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Sandra Pirela
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard School of Public Health, Boston, MA, United States of America
| | - Rose Filoramo
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard School of Public Health, Boston, MA, United States of America
| | - Georgios Pyrgiotakis
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard School of Public Health, Boston, MA, United States of America
| | - Philip Demokritou
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard School of Public Health, Boston, MA, United States of America
| | - Lester Kobzik
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard School of Public Health, Boston, MA, United States of America
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|
47
|
Bajaj P, Harris JF, Huang JH, Nath P, Iyer R. Advances and Challenges in Recapitulating Human Pulmonary Systems: At the Cusp of Biology and Materials. ACS Biomater Sci Eng 2016; 2:473-488. [PMID: 33465851 DOI: 10.1021/acsbiomaterials.5b00480] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The aim of this review is to provide an overview of physiologically relevant microengineered lung-on-a-chip (LoC) platforms for a variety of different biomedical applications with emphasis on drug screening. First, a brief outline of lung anatomy and physiology is presented followed by discussion of the lung parenchyma and its extracellular matrix. Next, we point out the technical challenges in recapitulating the complexity of lung in conventional static two-dimensional microenvironments and the need for alternate lung platforms. The importance of scaling laws is also emphasized in designing these in vitro microengineered lung platforms. The review then discusses current LoC platforms that have been used for testing the efficacy of drugs or as model systems for investigating disorders of the lung parenchyma. Finally, the design parameters in developing an ideal physiologically relevant LoC platform are presented. As this emerging field of organ-on-a-chip can serve an alternative platform for animal testing of drugs or modeling human diseases in vitro, it has significant potential to impact the future of pharmaceutical research.
Collapse
Affiliation(s)
- Piyush Bajaj
- Information Systems and Modeling, §Bioscience Division, and ⊥Physics Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Jennifer F Harris
- Information Systems and Modeling, Bioscience Division, and ⊥Physics Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Jen-Huang Huang
- Information Systems and Modeling, Bioscience Division, and Physics Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Pulak Nath
- Information Systems and Modeling, Bioscience Division, and Physics Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Rashi Iyer
- Information Systems and Modeling, Bioscience Division, and Physics Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
48
|
Chatterjee N, Yang J, Choi J. Differential genotoxic and epigenotoxic effects of graphene family nanomaterials (GFNs) in human bronchial epithelial cells. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2016; 798-799:1-10. [PMID: 26994488 DOI: 10.1016/j.mrgentox.2016.01.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 01/08/2016] [Accepted: 01/27/2016] [Indexed: 12/12/2022]
Abstract
The widespread applications of graphene family nanomaterials (GFNs) raised the considerable concern over human health and environment. The cyto-genotoxic potentiality of GFNs has attracted much more attention, albeit the potential effects on the cellular epigenome remain largely unknown. The effects of GFNs on cellular genome were evaluated with single and double stranded DNA damage and DNA repair gene expressions while the effects on epigenome was accomplished by addressing the global DNA methylation and expression of DNA methylation machineries at non-cytotoxic to moderately cytotoxic doses in in vitro system. We used five different representatives of GFNs-pristine (GNP-Prist), carboxylated (GNP-COOH) and aminated (GNP-NH2) graphene nanoplatelets as well as single layer (SLGO) and few layer (FLGO) graphene oxide. The order of single stranded DNA damage was observed as GNP-Prist ≥ GNP-COOH>GNP-NH2≥FLGO>SLGO at 10mg/L and marked dose dependency was found in SLGO. The GFNs possibly caused genotoxicity by affecting nucleotide excision repair and non-homologus end joining repair systems. Besides, dose dependent increase in global DNA methylation (hypermethylation) were observed in SLGO/FLGO exposure and conversely, GNPs treatment caused hypomethylation following the order as GNP-COOH>GNP-NH2 ≥ GNP-Prist. The decrements of DNA methyltransferase (DNMT3B gene) and methyl-CpG binding domain protein (MBD1) genes were probably the cause of global hypomethylation induced by GNPs. Conversely, the de novo methylation through the up-regulation of DNMT3B and MBD1 genes gave rise to the global DNA hypermethylation in SLGO/FLGO treated cells. In general, the GFNs induced genotoxicity and alterations of global DNA methylation exhibited compounds type specificity with differential physico-chemical properties. Taken together, our study suggests that the GFNs could cause more subtle changes in gene expression programming by modulating DNA methylation status and this information would be helpful for their prospective use in biomedical field.
Collapse
Affiliation(s)
- Nivedita Chatterjee
- School of Environmental Engineering, Graduate School of Energy and Environmental System Engineering, University of Seoul, 163 Siripdaero, Dongdaemun-gu, Seoul 130-743, Republic of Korea
| | - JiSu Yang
- School of Environmental Engineering, Graduate School of Energy and Environmental System Engineering, University of Seoul, 163 Siripdaero, Dongdaemun-gu, Seoul 130-743, Republic of Korea
| | - Jinhee Choi
- School of Environmental Engineering, Graduate School of Energy and Environmental System Engineering, University of Seoul, 163 Siripdaero, Dongdaemun-gu, Seoul 130-743, Republic of Korea.
| |
Collapse
|
49
|
Lu X, Miousse IR, Pirela SV, Moore JK, Melnyk S, Koturbash I, Demokritou P. In vivo epigenetic effects induced by engineered nanomaterials: A case study of copper oxide and laser printer-emitted engineered nanoparticles. Nanotoxicology 2016. [PMID: 26559097 DOI: 10.3109/17435390.2015.1108473.in] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Evidence continues to grow on potential environmental health hazards associated with engineered nanomaterials (ENMs). While the geno- and cytotoxic effects of ENMs have been investigated, their potential to target the epigenome remains largely unknown. The aim of this study is two-fold: 1) determining whether or not industry relevant ENMs can affect the epigenome in vivo and 2) validating a recently developed in vitro epigenetic screening platform for inhaled ENMs. Laser printer-emitted engineered nanoparticles (PEPs) released from nano-enabled toners during consumer use and copper oxide (CuO) were chosen since these particles induced significant epigenetic changes in a recent in vitro companion study. In this study, the epigenetic alterations in lung tissue, alveolar macrophages and peripheral blood from intratracheally instilled mice were evaluated. The methylation of global DNA and transposable elements (TEs), the expression of the DNA methylation machinery and TEs, in addition to general toxicological effects in the lung were assessed. CuO exhibited higher cell-damaging potential to the lung, while PEPs showed a greater ability to target the epigenome. Alterations in the methylation status of global DNA and TEs, and expression of TEs and DNA machinery in mouse lung were observed after exposure to CuO and PEPs. Additionally, epigenetic changes were detected in the peripheral blood after PEPs exposure. Altogether, CuO and PEPs can induce epigenetic alterations in a mouse experimental model, which in turn confirms that the recently developed in vitro epigenetic platform using macrophage and epithelial cell lines can be successfully utilized in the epigenetic screening of ENMs.
Collapse
Affiliation(s)
- Xiaoyan Lu
- a Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard T. H. Chan School of Public Health , Boston , MA , USA
| | - Isabelle R Miousse
- b Department of Environmental and Occupational Health , College of Public Health, University of Arkansas for Medical Sciences , Little Rock , AR , USA
| | - Sandra V Pirela
- a Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard T. H. Chan School of Public Health , Boston , MA , USA
| | - Jodene K Moore
- c Department of Systems Biology , Harvard Medical School , Boston , MA , USA , and
| | - Stepan Melnyk
- d Department of Pediatrics , University of Arkansas for Medical Sciences , Little Rock , AR , USA
| | - Igor Koturbash
- b Department of Environmental and Occupational Health , College of Public Health, University of Arkansas for Medical Sciences , Little Rock , AR , USA
| | - Philip Demokritou
- a Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard T. H. Chan School of Public Health , Boston , MA , USA
| |
Collapse
|
50
|
Pirela SV, Lu X, Miousse I, Sisler JD, Qian Y, Guo N, Koturbash I, Castranova V, Thomas T, Godleski J, Demokritou P. Effects of intratracheally instilled laser printer-emitted engineered nanoparticles in a mouse model: A case study of toxicological implications from nanomaterials released during consumer use. NANOIMPACT 2016; 1:1-8. [PMID: 26989787 PMCID: PMC4791579 DOI: 10.1016/j.impact.2015.12.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Incorporation of engineered nanomaterials (ENMs) into toners used in laser printers has led to countless quality and performance improvements. However, the release of ENMs during printing (consumer use) has raised concerns about their potential adverse health effects. The aim of this study was to use "real world" printer-emitted particles (PEPs), rather than raw toner powder, and assess the pulmonary responses following exposure by intratracheal instillation. Nine-week old male Balb/c mice were exposed to various doses of PEPs (0.5, 2.5 and 5 mg/kg body weight) by intratracheal instillation. These exposure doses are comparable to real world human inhalation exposures ranging from 13.7 to 141.9 h of printing. Toxicological parameters reflecting distinct mechanisms of action were evaluated, including lung membrane integrity, inflammation and regulation of DNA methylation patterns. Results from this in vivo toxicological analysis showed that while intratracheal instillation of PEPs caused no changes in the lung membrane integrity, there was a pulmonary immune response, indicated by an elevation in neutrophil and macrophage percentage over the vehicle control and low dose PEPs groups. Additionally, exposure to PEPs upregulated expression of the Ccl5 (Rantes), Nos1 and Ucp2 genes in the murine lung tissue and modified components of the DNA methylation machinery (Dnmt3a) and expression of transposable element (TE) LINE-1 compared to the control group. These genes are involved in both the repair process from oxidative damage and the initiation of immune responses to foreign pathogens. The results are in agreement with findings from previous in vitro cellular studies and suggest that PEPs may cause immune responses in addition to modifications in gene expression in the murine lung at doses that can be comparable to real world exposure scenarios, thereby raising concerns of deleterious health effects.
Collapse
Affiliation(s)
- Sandra V. Pirela
- Department of Environmental Health, Center for Nanotechnology and Nanotoxicology, T. H. Chan School of Public Health, Harvard University, Boston, MA, United States
| | - Xiaoyan Lu
- Department of Environmental Health, Center for Nanotechnology and Nanotoxicology, T. H. Chan School of Public Health, Harvard University, Boston, MA, United States
| | - Isabelle Miousse
- Department of Environmental and Occupational Health, College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Jennifer D. Sisler
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, United States
| | - Yong Qian
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, United States
| | - Nancy Guo
- Department of Pharmaceutical Sciences/Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV, United States
| | - Igor Koturbash
- Department of Environmental and Occupational Health, College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Vincent Castranova
- Department of Pharmaceutical Sciences/Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV, United States
| | - Treye Thomas
- U.S. Consumer Product Safety Commission, Office of Hazard Identification and Reduction, Rockville, MD, United States
| | - John Godleski
- Department of Environmental Health, Center for Nanotechnology and Nanotoxicology, T. H. Chan School of Public Health, Harvard University, Boston, MA, United States
| | - Philip Demokritou
- Department of Environmental Health, Center for Nanotechnology and Nanotoxicology, T. H. Chan School of Public Health, Harvard University, Boston, MA, United States
- Corresponding author at: Department of Environmental Health, Center for Nanotechnology and Nanotoxicology, T. H. Chan School of Public Health, Harvard University, 665 Huntington Avenue, Room 1310, Boston, MA 02115, United States. Tel.: +1 917 432 3481. (P. Demokritou)
| |
Collapse
|