1
|
Kanatani S, Fuks JM, Olafsson EB, Westermark L, Chambers B, Varas-Godoy M, Uhlén P, Barragan A. Voltage-dependent calcium channel signaling mediates GABAA receptor-induced migratory activation of dendritic cells infected by Toxoplasma gondii. PLoS Pathog 2017; 13:e1006739. [PMID: 29216332 PMCID: PMC5720541 DOI: 10.1371/journal.ppat.1006739] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 11/08/2017] [Indexed: 11/22/2022] Open
Abstract
The obligate intracellular parasite Toxoplasma gondii exploits cells of the immune system to disseminate. Upon T. gondii-infection, γ–aminobutyric acid (GABA)/GABAA receptor signaling triggers a hypermigratory phenotype in dendritic cells (DCs) by unknown signal transduction pathways. Here, we demonstrate that calcium (Ca2+) signaling in DCs is indispensable for T. gondii-induced DC hypermotility and transmigration in vitro. We report that activation of GABAA receptors by GABA induces transient Ca2+ entry in DCs. Murine bone marrow-derived DCs preferentially expressed the L-type voltage-dependent Ca2+ channel (VDCC) subtype Cav1.3. Silencing of Cav1.3 by short hairpin RNA or selective pharmacological antagonism of VDCCs abolished the Toxoplasma-induced hypermigratory phenotype. In a mouse model of toxoplasmosis, VDCC inhibition of adoptively transferred Toxoplasma-infected DCs delayed the appearance of cell-associated parasites in the blood circulation and reduced parasite dissemination to target organs. The present data establish that T. gondii-induced hypermigration of DCs requires signaling via VDCCs and that Ca2+ acts as a second messenger to GABAergic signaling via the VDCC Cav1.3. The findings define a novel motility-related signaling axis in DCs and unveil that interneurons and DCs share common GABAergic motogenic pathways. T. gondii employs GABAergic non-canonical pathways to induce host cell migration and facilitate dissemination. Dendritic cells are considered the gatekeepers of the immune system but can, paradoxically, also function as ‘Trojan horses’ to mediate dissemination of the common intracellular parasite Toxoplasma gondii. Previous work has shown that Toxoplasma hijacks the migratory machinery of dendritic cells by inducing secretion of the neurotransmitter GABA and by activating GABAergic signaling pathways, thereby making infected dendritic cells hypermigratory in vitro and in vivo. Here, we show that the signaling molecule calcium plays a central role for this migratory activation and that signal transduction is preferentially mediated through a subtype of voltage-gated calcium channel (Cav1.3). This study functionally implicates Cav1.3 channels in a, hitherto uncharacterized, calcium signaling axis by which dendritic cells are induced to become migratory. The studies show how an obligate intracellular pathogen takes advantage of non-canonical signaling pathways in immune cells to modulate their migratory properties, and thereby facilitate the dissemination of the parasite.
Collapse
Affiliation(s)
- Sachie Kanatani
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Jonas M. Fuks
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Einar B. Olafsson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Linda Westermark
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Benedict Chambers
- Center for Infectious Medicine, Department of Medicine, Karolinska University Hospital Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Manuel Varas-Godoy
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden
- Centro de Investigacion Biomedica, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
| | - Per Uhlén
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden
| | - Antonio Barragan
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
2
|
Stamogiannos A, Papakyriakou A, Mauvais FX, van Endert P, Stratikos E. Screening Identifies Thimerosal as a Selective Inhibitor of Endoplasmic Reticulum Aminopeptidase 1. ACS Med Chem Lett 2016; 7:681-5. [PMID: 27437077 DOI: 10.1021/acsmedchemlett.6b00084] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 05/31/2016] [Indexed: 11/28/2022] Open
Abstract
We employed virtual screening followed by in vitro evaluation to discover novel inhibitors of ER aminopeptidase 1, an important enzyme for the human adaptive immune response that has emerged as an attractive target for cancer immunotherapy and the control of autoimmunity. Screening hits included three structurally related compounds carrying the (E)-N'-((1H-indol-3-yl)methylene)-1H-pyrazole-5-carbohydrazide scaffold and (2-carboxylatophenyl)sulfanyl-ethylmercury as novel ERAP1 inhibitors. The latter, also known as thimerosal, a common component in vaccines, was found to inhibit ERAP1 in the submicromolar range and to present strong selectivity versus the homologous aminopeptidases ERAP2 and IRAP. Cell-based analysis indicated that thimerosal can effectively reduce ERAP1-dependent cross-presentation by dendritic cells in a dose-dependent manner.
Collapse
Affiliation(s)
| | | | - Francois-Xavier Mauvais
- Institut
National de la Santé et de la Recherche Médicale, Unité1151; Université Paris Descartes, Sorbonne Paris Cité; Centre National de la Recherche Scientifique, Unité 8253, 75015 Paris, France
| | - Peter van Endert
- Institut
National de la Santé et de la Recherche Médicale, Unité1151; Université Paris Descartes, Sorbonne Paris Cité; Centre National de la Recherche Scientifique, Unité 8253, 75015 Paris, France
| | - Efstratios Stratikos
- National Center for Scientific Research Demokritos, Agia Paraskevi GR-15310, Athens, Greece
| |
Collapse
|
3
|
Loison E, Gougeon ML. Thimerosal compromises human dendritic cell maturation, IL-12 production, chemokine release, and T-helper polarization. Hum Vaccin Immunother 2015; 10:2328-35. [PMID: 25424939 DOI: 10.4161/hv.29520] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Thimerosal is a preservative used in multidose vials of vaccine formulations to prevent bacterial and fungal contamination. We recently reported that nanomolar concentrations of thimerosal induce cell cycle arrest of human T cells activated via the TCR and inhibition of proinflammatory cytokine production, thus interfering with T-cell functions. Given the essential role of dendritic cells (DCs) in T-cell polarization and vaccine immunity, we studied the influence of non-toxic concentrations of thimerosal on DC maturation and functions. Ex-vivo exposure of human monocyte-derived DCs to nanomolar concentrations of thimerosal prevented LPS-induced DC maturation, as evidenced by the inhibition of morphological changes and a decreased expression of the maturation markers CD86 and HLA-DR. In addition thimerosal dampened their proinflammatory response, in particular the production of the Th1 polarizing cytokine IL-12, as well as TNF-α and IL-6. DC-dependent T helper polarization was altered, leading to a decreased production of IFN-γ IP10 and GM-CSF and increased levels of IL-8, IL-9, and MIP-1α. Although multi-dose vials of vaccines containing thimerosal remain important for vaccine delivery, our results alert about the ex-vivo immunomodulatory effects of thimerosal on DCs, a key player for the induction of an adaptive response.
Collapse
Affiliation(s)
- Emily Loison
- a Institut Pasteur; Antiviral Immunity Biotherapy and Vaccine Unit; Infection and Epidemiology Department; Paris, France
| | | |
Collapse
|
4
|
Yeter D, Deth R, Kuo HC. Mercury promotes catecholamines which potentiate mercurial autoimmunity and vasodilation: implications for inositol 1,4,5-triphosphate 3-kinase C susceptibility in kawasaki syndrome. Korean Circ J 2014; 43:581-91. [PMID: 24174958 PMCID: PMC3808853 DOI: 10.4070/kcj.2013.43.9.581] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Previously, we reviewed biological evidence that mercury could induce autoimmunity and coronary arterial wall relaxation as observed in Kawasaki syndrome (KS) through its effects on calcium signaling, and that inositol 1,4,5-triphosphate 3-kinase C (ITPKC) susceptibility in KS would predispose patients to mercury by increasing Ca2+ release. Hg2+ sensitizes inositol 1,4,5-triphosphate (IP3) receptors at low doses, which release Ca2+ from intracellular stores in the sarcoplasmic reticulum, resulting in delayed, repetitive calcium influx. ITPKC prevents IP3 from triggering IP3 receptors to release calcium by converting IP3 to inositol 1,3,4,5-tetrakisphosphate. Defective IP3 phosphorylation resulting from reduced genetic expressions of ITPKC in KS would promote IP3, which increases Ca2+ release. Hg2+ increases catecholamine levels through the inhibition of S-adenosylmethionine and subsequently catechol-O-methyltransferase (COMT), while a single nucleotide polymorphism of the COMT gene (rs769224) was recently found to be significantly associated with the development of coronary artery lesions in KS. Accumulation of norepinephrine or epinephrine would potentiate Hg2+-induced calcium influx by increasing IP3 production and increasing the permeability of cardiac sarcolemma to Ca2+. Norepinephrine and epinephrine also promote the secretion of atrial natriuretic peptide, a potent vasodilator that suppresses the release of vasoconstrictors. Elevated catecholamine levels can induce hypertension and tachycardia, while increased arterial pressure and a rapid heart rate would promote arterial vasodilation and subsequent fatal thromboses, particularly in tandem. Genetic risk factors may explain why only a susceptible subset of children develops KS although mercury exposure from methylmercury in fish or thimerosal in pediatric vaccines is nearly ubiquitous. During the infantile acrodynia epidemic, only 1 in 500 children developed acrodynia whereas mercury exposure was very common due to the use of teething powders. This hypothesis mirrors the leading theory for KS in which a widespread infection only induces KS in susceptible children. Acrodynia can mimic the clinical picture of KS, leading to its inclusion in the differential diagnosis for KS. Catecholamine levels are often elevated in acrodynia and may also play a role in KS. We conclude that KS may be the acute febrile form of acrodynia.
Collapse
|
5
|
Neuropathology and animal models of autism: genetic and environmental factors. AUTISM RESEARCH AND TREATMENT 2013; 2013:731935. [PMID: 24151553 PMCID: PMC3787615 DOI: 10.1155/2013/731935] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 08/07/2013] [Accepted: 08/09/2013] [Indexed: 02/05/2023]
Abstract
Autism is a heterogeneous behaviorally defined neurodevelopmental disorder. It is defined by the presence of marked social deficits, specific language abnormalities, and stereotyped repetitive patterns of behavior. Because of the variability in the behavioral phenotype of the disorder among patients, the term autism spectrum disorder has been established. In the first part of this review, we provide an overview of neuropathological findings from studies of autism postmortem brains and identify the cerebellum as one of the key brain regions that can play a role in the autism phenotype. We review research findings that indicate possible links between the environment and autism including the role of mercury and immune-related factors. Because both genes and environment can alter the structure of the developing brain in different ways, it is not surprising that there is heterogeneity in the behavioral and neuropathological phenotypes of autism spectrum disorders. Finally, we describe animal models of autism that occur following insertion of different autism-related genes and exposure to environmental factors, highlighting those models which exhibit both autism-like behavior and neuropathology.
Collapse
|
6
|
Spiering R, van der Zee R, Wagenaar J, van Eden W, Broere F. Mycobacterial and mouse HSP70 have immuno-modulatory effects on dendritic cells. Cell Stress Chaperones 2013; 18:439-46. [PMID: 23269491 PMCID: PMC3682017 DOI: 10.1007/s12192-012-0397-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 12/13/2012] [Accepted: 12/14/2012] [Indexed: 01/07/2023] Open
Abstract
Previously, it has been shown that heat shock protein 70 (HSP70) can prevent inflammatory damage in experimental autoimmune disease models. Various possible underlying working mechanisms have been proposed. One possibility is that HSP70 induces a tolerogenic phenotype in dendritic cells (DCs) as a result of the direct interaction of the antigen with the DC. Tolerogenic DCs can induce antigen-specific regulatory T cells and dampen pathogenic T cell responses. We show that treatment of murine DCs with either mycobacterial (Mt) or mouse HSP70 and pulsed with the disease-inducing antigen induced suppression of proteoglycan-induced arthritis (PGIA), although mouse HSP70-treated DCs could ameliorate PGIA to a greater extent. In addition, while murine DCs treated with Mt- or mouse HSP70 had no significantly altered phenotype as compared to untreated DCs, HSP70-treated DCs pulsed with pOVA (ovalbumin peptide 323-339) induced a significantly increased production of IL-10 in pOVA-specific T cells. IL-10-producing T cells were earlier shown to be involved in Mt HSP70-induced suppression of PGIA. In conclusion, this study indicates that Mt- and mouse HSP70-treated BMDC can suppress PGIA via an IL-10-producing T cell-dependent manner.
Collapse
Affiliation(s)
- R. Spiering
- Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
| | - R. van der Zee
- Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
| | - J. Wagenaar
- Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
| | - W. van Eden
- Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
| | - F. Broere
- Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
7
|
Goines PE, Ashwood P. Cytokine dysregulation in autism spectrum disorders (ASD): possible role of the environment. Neurotoxicol Teratol 2013; 36:67-81. [PMID: 22918031 PMCID: PMC3554862 DOI: 10.1016/j.ntt.2012.07.006] [Citation(s) in RCA: 199] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 07/03/2012] [Accepted: 07/31/2012] [Indexed: 02/07/2023]
Abstract
Autism spectrum disorders (ASD) are neurodevelopmental diseases that affect an alarming number of individuals. The etiological basis of ASD is unclear, and evidence suggests it involves both genetic and environmental factors. There are many reports of cytokine imbalances in ASD. These imbalances could have a pathogenic role, or they may be markers of underlying genetic and environmental influences. Cytokines act primarily as mediators of immunological activity but they also have significant interactions with the nervous system. They participate in normal neural development and function, and inappropriate activity can have a variety of neurological implications. It is therefore possible that cytokine dysregulation contributes directly to neural dysfunction in ASD. Further, cytokine profiles change dramatically in the face of infection, disease, and toxic exposures. Imbalances in cytokines may represent an immune response to environmental contributors to ASD. The following review is presented in two main parts. First, we discuss select cytokines implicated in ASD, including IL-1Β, IL-6, IL-4, IFN-γ, and TGF-Β, and focus on their role in the nervous system. Second, we explore several neurotoxic environmental factors that may be involved in the disorders, and focus on their immunological impacts. This review represents an emerging model that recognizes the importance of both genetic and environmental factors in ASD etiology. We propose that the immune system provides critical clues regarding the nature of the gene by environment interactions that underlie ASD pathophysiology.
Collapse
Affiliation(s)
- Paula E. Goines
- University of California, Davis, School of Veterinary Medicine, Department of Molecular Biosciences
| | - Paul Ashwood
- University of California, Davis, School of Medicine, Department of Medical Microbiology and Immunology
| |
Collapse
|
8
|
Yeter D, Deth R. ITPKC susceptibility in Kawasaki syndrome as a sensitizing factor for autoimmunity and coronary arterial wall relaxation induced by thimerosal's effects on calcium signaling via IP3. Autoimmun Rev 2012; 11:903-8. [DOI: 10.1016/j.autrev.2012.03.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 03/22/2012] [Indexed: 12/12/2022]
|
9
|
|
10
|
Migdal C, Foggia L, Tailhardat M, Courtellemont P, Haftek M, Serres M. Sensitization effect of thimerosal is mediated in vitro via reactive oxygen species and calcium signaling. Toxicology 2010; 274:1-9. [PMID: 20457211 DOI: 10.1016/j.tox.2010.04.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Revised: 04/14/2010] [Accepted: 04/28/2010] [Indexed: 11/29/2022]
Abstract
Thimerosal, a mercury derivative composed of ethyl mercury chloride (EtHgCl) and thiosalicylic acid (TSA), is widely used as a preservative in vaccines and cosmetic products and causes cutaneous reactions. Since dendritic cells (DCs) play an essential role in the immune response, the sensitization potency of chemicals was studied in vitro using U937, a human promyelomonocytic cell line that is used as a surrogate of monocytic differentiation and activation. Currently, this cell line is under ECVAM (European Center for the Validation of Alternative Methods) validation as an alternative method for discriminating chemicals. Thimerosal and mercury derivatives induced in U937 an overexpression of CD86 and interleukin (IL)-8 secretion similarly to 1-chloro-2,4-dinitrobenzene (DNCB), a sensitizer used as a positive control for DC activation. Non-sensitizers, dichloronitrobenzene (DCNB), TSA and sodium dodecyl sulfate (SDS), an irritant, had no effect. U937 activation was prevented by cell pretreatment with N-acetyl-L-cysteine (NAC) but not with thiol-independent antioxidants except vitamin E which affected CD86 expression by preventing lipid peroxidation of cell membranes. Thimerosal, EtHgCl and DNCB induced glutathione (GSH) depletion and reactive oxygen species (ROS) within 15 min; another peak was detected after 2h for mercury compounds only. MitoSOX, a specific mitochondrial fluorescent probe, confirmed that ROS were essentially produced by mitochondria in correlation with its membrane depolarization. Changes in mitochondrial membrane permeability induced by mercury were reversed by NAC but not by thiol-independent antioxidants. Thimerosal and EtHgCl also induced a calcium (Ca2+) influx with a peak at 3h, suggesting that Ca2+ influx is a secondary event following ROS induction as Ca2+ influx was suppressed after pretreatment with NAC but not with thiol-independent antioxidants. Ca2+ influx was also suppressed when culture medium was deprived of Ca2+ confirming the specificity of the measure. In conclusion, these data suggest that thimerosal induced U937 activation via oxidative stress from mitochondrial stores and mitochondrial membrane depolarization with a primordial effect of thiol groups. A cross-talk between ROS and Ca2+ influx was demonstrated.
Collapse
Affiliation(s)
- Camille Migdal
- EA 41-69, Université Lyon 1, Pavillon R, Hôpital Edouard Herriot, 69437 Lyon Cedex 03, France
| | | | | | | | | | | |
Collapse
|
11
|
Vukcevic M, Zorzato F, Spagnoli G, Treves S. Frequent calcium oscillations lead to NFAT activation in human immature dendritic cells. J Biol Chem 2010; 285:16003-11. [PMID: 20348098 DOI: 10.1074/jbc.m109.066704] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Spontaneous Ca(2+) oscillations have been observed in a number of excitable and non-excitable cells, but in most cases their biological role remains elusive. In the present study we demonstrate that spontaneous Ca(2+) oscillations occur in immature human monocyte-derived dendritic cells but not in dendritic cells stimulated to undergo maturation with lipopolysaccharide or other toll like-receptor agonists. We investigated the mechanism and role of spontaneous Ca(2+) oscillations in immature dendritic cells and found that they are mediated by the inositol 1,4,5-trisphosphate receptor as they were blocked by pretreatment of cells with the inositol 1,4,5-trisphosphate receptor antagonist Xestospongin C and 2-aminoethoxydiphenylborate. A component of the Ca(2+) signal is also due to influx from the extracellular environment and may be involved in maintaining the level of the intracellular Ca(2+) stores. As to their biological role, our results indicate that they are intimately linked to the "immature" phenotype and are associated with the translocation of the transcription factor NFAT into the nucleus. In fact, once the Ca(2+) oscillations are blocked with 2-aminoethoxydiphenylborate or by treating the cells with lipopolysaccharide, NFAT remains cytoplasmic. The results presented in this report provide novel insights into the physiology of monocyte-derived dendritic cells and into the mechanisms involved in maintaining the cells in the immature stage.
Collapse
Affiliation(s)
- Mirko Vukcevic
- Departments of Anaesthesia and Biomedicine, Basel University Hospital, Basel 4031, Switzerland
| | | | | | | |
Collapse
|
12
|
Pessah IN, Lehmler HJ, Robertson LW, Perez CF, Cabrales E, Bose DD, Feng W. Enantiomeric specificity of (-)-2,2',3,3',6,6'-hexachlorobiphenyl toward ryanodine receptor types 1 and 2. Chem Res Toxicol 2009; 22:201-7. [PMID: 18954145 DOI: 10.1021/tx800328u] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Polychlorinated biphenyls (PCBs) with unsymmetrical chlorine substitutions and multiple orthosubstitutions that restrict rotation around the biphenyl bond may exist in two stable enantiomeric forms.Stereospecific binding and functional modification of specific biological signaling targets have not been previously described for PCB atropisomers. We report that (-)-2,2',3,3',6,6'-hexachlorobiphenyl [(-)-PCB 136] enhances the binding of [3H]ryanodine to high-affinity sites on ryanodine receptors type 1(RyR1) and type 2 (RyR2) (EC50 values ~0.95 microM), whereas (+)-PCB 136 is inactive at < or =10 microM.(-)-PCB 136 induces a rapid release of Ca2+ from microsomal vesicles by selective sensitization of RyRs, an effect not antagonized by (+)-PCB 136. (-)-PCB 136 (500nM) enhances the activity of reconstituted RyR1 channels 3-fold by stabilizing the open and destabilizing the closed conformational states. The enantiomeric specificity is also demonstrated in intact HEK 293 cells expressing RyR1 where exposure to (-)-PCB 136 (100 nM; 12 h) sensitizes responses to caffeine, whereas (+)-PCB 136 does not. These data show enantiomeric specificity of (-)-PCB 136 toward a broadly expressed family of microsomal Ca2+ channels that may extend to other chiral noncoplanar PCBs and related structures.Evidence for enantioselective enrichment of PCBs in biological tissues that express RyR1 and RyR2channels may provide new mechanistic leads about their toxicological impacts on human health
Collapse
Affiliation(s)
- Isaac N Pessah
- Department of VM, Molecular Biosciences and UC Davis Center for Children's Environmental Health, University of California, One Shields Avenue, Davis, California 95616, USA.
| | | | | | | | | | | | | |
Collapse
|
13
|
Vukcevic M, Spagnoli GC, Iezzi G, Zorzato F, Treves S. Ryanodine receptor activation by Ca v 1.2 is involved in dendritic cell major histocompatibility complex class II surface expression. J Biol Chem 2008; 283:34913-22. [PMID: 18927079 PMCID: PMC3259872 DOI: 10.1074/jbc.m804472200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Revised: 10/10/2008] [Indexed: 01/09/2023] Open
Abstract
Dendritic cells express the skeletal muscle ryanodine receptor (RyR1), yet little is known concerning its physiological role and activation mechanism. Here we show that dendritic cells also express the Ca(v)1.2 subunit of the L-type Ca(2+) channel and that release of intracellular Ca(2+) via RyR1 depends on the presence of extracellular Ca(2+) and is sensitive to ryanodine and nifedipine. Interestingly, RyR1 activation causes a very rapid increase in expression of major histocompatibility complex II molecules on the surface of dendritic cells, an effect that is also observed upon incubation of mouse BM12 dendritic cells with transgenic T cells whose T cell receptor is specific for the I-A(bm12) protein. Based on the present results, we suggest that activation of the RyR1 signaling cascade may be important in the early stages of infection, providing the immune system with a rapid mechanism to initiate an early response, facilitating the presentation of antigens to T cells by dendritic cells before their full maturation.
Collapse
Affiliation(s)
- Mirko Vukcevic
- Departments of Anaesthesia and
Biomedicine and Institute of Surgical Research,
Basel University Hospital, 4031 Basel, Switzerland and the
Department of Experimental and Diagnostic
Medicine, General Pathology section, University of Ferrara, 44100 Ferrara,
Italy
| | - Giulio C. Spagnoli
- Departments of Anaesthesia and
Biomedicine and Institute of Surgical Research,
Basel University Hospital, 4031 Basel, Switzerland and the
Department of Experimental and Diagnostic
Medicine, General Pathology section, University of Ferrara, 44100 Ferrara,
Italy
| | - Giandomenica Iezzi
- Departments of Anaesthesia and
Biomedicine and Institute of Surgical Research,
Basel University Hospital, 4031 Basel, Switzerland and the
Department of Experimental and Diagnostic
Medicine, General Pathology section, University of Ferrara, 44100 Ferrara,
Italy
| | - Francesco Zorzato
- Departments of Anaesthesia and
Biomedicine and Institute of Surgical Research,
Basel University Hospital, 4031 Basel, Switzerland and the
Department of Experimental and Diagnostic
Medicine, General Pathology section, University of Ferrara, 44100 Ferrara,
Italy
| | - Susan Treves
- Departments of Anaesthesia and
Biomedicine and Institute of Surgical Research,
Basel University Hospital, 4031 Basel, Switzerland and the
Department of Experimental and Diagnostic
Medicine, General Pathology section, University of Ferrara, 44100 Ferrara,
Italy
| |
Collapse
|
14
|
|
15
|
Thompson WW, Price C, Goodson B, Shay DK, Benson P, Hinrichsen VL, Lewis E, Eriksen E, Ray P, Marcy SM, Dunn J, Jackson LA, Lieu TA, Black S, Stewart G, Weintraub ES, Davis RL, DeStefano F. Early thimerosal exposure and neuropsychological outcomes at 7 to 10 years. N Engl J Med 2007; 357:1281-92. [PMID: 17898097 DOI: 10.1056/nejmoa071434] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND It has been hypothesized that early exposure to thimerosal, a mercury-containing preservative used in vaccines and immune globulin preparations, is associated with neuropsychological deficits in children. METHODS We enrolled 1047 children between the ages of 7 and 10 years and administered standardized tests assessing 42 neuropsychological outcomes. (We did not assess autism-spectrum disorders.) Exposure to mercury from thimerosal was determined from computerized immunization records, medical records, personal immunization records, and parent interviews. Information on potential confounding factors was obtained from the interviews and medical charts. We assessed the association between current neuropsychological performance and exposure to mercury during the prenatal period, the neonatal period (birth to 28 days), and the first 7 months of life. RESULTS Among the 42 neuropsychological outcomes, we detected only a few significant associations with exposure to mercury from thimerosal. The detected associations were small and almost equally divided between positive and negative effects. Higher prenatal mercury exposure was associated with better performance on one measure of language and poorer performance on one measure of attention and executive functioning. Increasing levels of mercury exposure from birth to 7 months were associated with better performance on one measure of fine motor coordination and on one measure of attention and executive functioning. Increasing mercury exposure from birth to 28 days was associated with poorer performance on one measure of speech articulation and better performance on one measure of fine motor coordination. CONCLUSIONS Our study does not support a causal association between early exposure to mercury from thimerosal-containing vaccines and immune globulins and deficits in neuropsychological functioning at the age of 7 to 10 years.
Collapse
Affiliation(s)
- William W Thompson
- National Center for Immunizations and Respiratory Diseases, Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Bracci L, Vukcevic M, Spagnoli G, Ducreux S, Zorzato F, Treves S. Ca2+ signaling through ryanodine receptor 1 enhances maturation and activation of human dendritic cells. J Cell Sci 2007; 120:2232-40. [PMID: 17567682 DOI: 10.1242/jcs.007203] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Increases in intracellular Ca2+ concentration accompany many physiological events, including maturation of dendritic cells, professional antigen-presenting cells characterized by their ability to migrate to secondary lymphoid organs where they initiate primary immune responses. The mechanism and molecules involved in the early steps of Ca2+ release in dendritic cells have not yet been defined. Here we show that the concomitant activation of ryanodine receptor-induced Ca2+ release together with the activation of Toll-like receptors by suboptimal concentrations of microbial stimuli provide synergistic signals, resulting in dendritic cell maturation and stimulation of T cell functions. Furthermore, our results show that the initial intracellular signaling cascade activated by ryanodine receptors is different from that induced by activation of Toll-like receptors. We propose that under physiological conditions, especially when low suboptimal amounts of Toll-like receptor ligands are present, ryanodine receptor-mediated events cooperate in bringing about dendritic cell maturation.
Collapse
Affiliation(s)
- Laura Bracci
- Institute of Surgical Research, Basel University Hospital, Hebelstrasse 20, 4031 Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
17
|
Herbert MR. Clinical implications of environmental toxicology for children’s neurodevelopment in autism. FUTURE NEUROLOGY 2007. [DOI: 10.2217/14796708.2.2.167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Martha R Herbert
- Harvard Medical School, Pediatric Neurology, Center for Morphometric Analysis, Massachusetts General Hospital, Center for Child & Adolescent Development, Cambridge Health Alliance, Charlestown, MA 02129, USA
| |
Collapse
|
18
|
Agrawal A, Kaushal P, Agrawal S, Gollapudi S, Gupta S. Thimerosal induces TH2 responses via influencing cytokine secretion by human dendritic cells. J Leukoc Biol 2006; 81:474-82. [PMID: 17079650 DOI: 10.1189/jlb.0706467] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Thimerosal is an organic mercury compound that is used as a preservative in vaccines and pharmaceutical products. Recent studies have shown a TH2-skewing effect of mercury, although the underlying mechanisms have not been identified. In this study, we investigated whether thimerosal can exercise a TH2-promoting effect through modulation of functions of dendritic cells (DC). Thimerosal, in a concentration-dependent manner, inhibited the secretion of LPS-induced proinflammatory cytokines TNF-alpha, IL-6, and IL-12p70 from human monocyte-derived DC. However, the secretion of IL-10 from DC was not affected. These thimerosal-exposed DC induced increased TH2 (IL-5 and IL-13) and decreased TH1 (IFN-gamma) cytokine secretion from the T cells in the absence of additional thimerosal added to the coculture. Thimerosal exposure of DC led to the depletion of intracellular glutathione (GSH), and addition of exogenous GSH to DC abolished the TH2-promoting effect of thimerosal-treated DC, restoring secretion of TNF-alpha, IL-6, and IL-12p70 by DC and IFN-gamma secretion by T cells. These data suggest that modulation of TH2 responses by mercury and thimerosal, in particular, is through depletion of GSH in DC.
Collapse
Affiliation(s)
- Anshu Agrawal
- Division of Basic and Clinical Immunology, University of California, Irvine, CA 92697, USA.
| | | | | | | | | |
Collapse
|
19
|
Ta TA, Pessah IN. Ryanodine receptor type 1 (RyR1) possessing malignant hyperthermia mutation R615C exhibits heightened sensitivity to dysregulation by non-coplanar 2,2',3,5',6-pentachlorobiphenyl (PCB 95). Neurotoxicology 2006; 28:770-9. [PMID: 17023049 PMCID: PMC2274001 DOI: 10.1016/j.neuro.2006.08.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Revised: 07/29/2006] [Accepted: 08/23/2006] [Indexed: 11/22/2022]
Abstract
Malignant hyperthermia (MH) susceptibility is conferred by inheriting one of >60 missense mutations within the highly regulated microsomal Ca(2+) channel known as ryanodine receptor type 1 (RyR1). Although MH susceptible patients lack overt clinical signs, a potentially lethal MH syndrome can be triggered by exposure to halogenated alkane anesthetics. This study compares how non-coplanar 2,2',3,5',6-pentachlorobiphenyl (PCB 95), a congener identified in environmental and human samples, alters the binding properties of [(3)H]ryanodine to RyR1 in vitro. Junctional sarcoplasmic reticulum (SR) was isolated from skeletal muscle dissected from wild type pigs ((Wt)RyR1) and pigs homozygous for MH mutation R615C ((MH)RyR1), a mutation also found in humans. Although the level of (Wt)RyR1 and (MH)RyR1 expression is the same, (MH)RyR1 shows heightened sensitivity to activation and altered regulation by physiological cations. We report here that (MH)RyR1 shows more pronounced activation by Ca(2+), and is less sensitive to channel inhibition by Ca(2+) and Mg(2+), compared to (Wt)RyR1. In a buffer containing 100nM free Ca(2+), conditions typically found in resting cells, PCB 95 (50-1000nM) enhances the activity of (MH)RyR1 whereas it has no detectable effect on (Wt)RyR1. PCB 95 (2microM) decreases channel inhibition by Mg(2+) to a greater extent in (MH)RyR1 (IC(50) increased nine-fold) compared to (Wt)RyR1 (IC(50) increased by 2.5-fold). PCB95 reduces inhibition by Ca(2+) two-fold more with (MH)RyR1 than (Wt)RyR1. Our data suggest that non-coplanar PCBs are more potent and efficacious toward (MH)RyR1 than (Wt)RyR1, and have more profound effects on its cation regulation. Considering the important roles of Ca(2+) and Mg(2+) in regulating Ca(2+) signals involving RyR channels, these data provide the first mechanistic evidence that a genetic mutation known to confer susceptibility to pharmacological agents also enhances sensitivity to an environmental contaminant.
Collapse
Affiliation(s)
- Tram Anh Ta
- UC Davis, Center for Children's Environmental Health, Davis, CA 95616, USA
| | | |
Collapse
|