1
|
Wang W, Sun B, Luo D, Chen X, Yao M, Zhang A. Neurotransmitter Metabolism in Arsenic Exposure-Induced Cognitive Impairment: Emerging Insights and Predictive Implications. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19165-19177. [PMID: 39423902 DOI: 10.1021/acs.est.4c06269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Scholars have long been interested in the association between arsenic (As) exposure and neurological disorders; however, existing systematic epidemiological investigations are insufficient and lack the inclusion of diagnostic or predictive biological markers. This study sought to evaluate the association between As exposure and cognitive impairment and identify potential biomarkers by developing predictive models. Here, we found that logarithm (Ln)-transformed urinary As concentrations were negatively linearly related to the mini-mental state examination (MMSE) score exposure-response curves. Subsequently, we identified a unique plasma neurometabolite profile in subjects exposed to As compared with the reference group. Further analyses showed that tryptophan, tyrosine, dopamine, epinephrine, and homovanillic acid were all significantly associated with both urinary As concentrations and MMSE scores. Notably, the association between As exposure and MMSE scores was partly mediated by tryptophan, tyrosine, dopamine, and epinephrine. Importantly, an unprecedented prediction model utilizing neurotransmitters was established to assess the risk of cognitive impairment due to As exposure. A 91.1% consistency rate was found between the predicted and the actual probabilities. Additionally, machine learning models also produced highly accurate predictions. Overall, this study revealed a dose-dependent cognitive decline in As-exposed adults accompanied by a disturbance in the signature of neurotransmitter metabolites, offering new predictive insights.
Collapse
Affiliation(s)
- Wenjuan Wang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, Guizhou 550025, People's Republic of China
| | - Baofei Sun
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, Guizhou 550025, People's Republic of China
| | - Daopeng Luo
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, Guizhou 550025, People's Republic of China
| | - Xiong Chen
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, Guizhou 550025, People's Republic of China
| | - Maolin Yao
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, Guizhou 550025, People's Republic of China
| | - Aihua Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, Guizhou 550025, People's Republic of China
| |
Collapse
|
2
|
Wang F, Ye L, Jiang X, Zhang R, Chen S, Chen L, Yu H, Zeng X, Li D, Xing X, Xiao Y, Chen W. Specific CpG sites methylation is associated with hematotoxicity in low-dose benzene-exposed workers. ENVIRONMENT INTERNATIONAL 2024; 186:108645. [PMID: 38615541 DOI: 10.1016/j.envint.2024.108645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/10/2024] [Accepted: 04/08/2024] [Indexed: 04/16/2024]
Abstract
Benzene is a broadly used industrial chemicals which causes various hematologic abnormalities in human. Altered DNA methylation has been proposed as epigenetic biomarkers in health risk evaluation of benzene exposure, yet the role of methylation at specific CpG sites in predicting hematological effects remains unclear. In this study, we recruited 120 low-level benzene-exposed and 101 control male workers from a petrochemical factory in Maoming City, Guangdong Province, China. Urinary S-phenylmercapturic acid (SPMA) in benzene-exposed workers was 3.40-fold higher than that in control workers (P < 0.001). Benzene-induced hematotoxicity was characterized by reduced white blood cells counts and nuclear division index (NDI), along with an increased DNA damage and urinary 8-hydroxy-2'-deoxyguanosine (all P < 0.05). Methylation levels of TRIM36, MGMT and RASSF1a genes in peripheral blood lymphocytes (PBLCs) were quantified by pyrosequencing. CpG site 6 of TRIM36, CpG site 2, 4, 6 of RASSF1a and CpG site 1, 3 of MGMT methylation were recognized as hot CpG sites due to a strong correlation with both internal exposure and hematological effects. Notably, integrating hot CpG sites methylation of multiple genes reveal a higher efficiency in prediction of integrative damage compared to individual genes at hot CpG sites. The negative dose-response relationship between the combined methylation of hot CpG sites in three genes and integrative damage enabled the classification of benzene-exposed individuals into high-risk or low-risk groups using the median cut-off value of the integrative index. Subsequently, a prediction model for integrative damage in benzene-exposed populations was built based on the methylation status of the identified hot CpG sites in the three genes. Taken together, these findings provide a novel insight into application prospect of specific CpG site methylation as epi-biomarkers for health risk assessment of environmental pollutants.
Collapse
Affiliation(s)
- Feier Wang
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Lizhu Ye
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China; Boji Drug Evaluation Center, Boji Medical Technology Co., Ltd, Guangzhou, China
| | - Xinhang Jiang
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Rui Zhang
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Shen Chen
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Liping Chen
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Hongyao Yu
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Xiaowen Zeng
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Daochuan Li
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Xiumei Xing
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yongmei Xiao
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| | - Wen Chen
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
3
|
Yao M, Zeng Q, Luo P, Yang G, Li J, Sun B, Liang B, Zhang A. Assessing the health risks of coal-burning arsenic-induced skin damage: A 22-year follow-up study in Guizhou, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167236. [PMID: 37739080 DOI: 10.1016/j.scitotenv.2023.167236] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/14/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023]
Abstract
Risk assessment of arsenic-induced skin damage has always received significant global attention. Theories derived from arsenic exposure in drinking water may not be applicable to the coal-burning type to arsenic-exposed area. Furthermore, very few studies have successfully determined the reference value of cumulative arsenic (CA) exposure that leads to specific skin lesions. In this study, we conducted a 22-year follow-up investigation to assess the risk of skin lesions and cancer resulting from long-term, multi-channel arsenic exposure from hazard identification, dose-response assessment, exposure assessment, and risk characterization. The results show that the arsenic exposure can significantly increase the prevalence of skin lesions. For each interquartile range increase of hair arsenic (HA) and CA, the risk of skin damage increased by 1.91 and 3.90 times, respectively. The lower confidence limit of the benchmark dose of HA of arsenic-induced various skin lesions ranged from 0.07 to 0.12 μg·g-1, and 932.57 to 1368.92 mg for CA. The chronic daily intake, lifetime average daily dose in the arsenic-exposed area after the comprehensive prevention and control measures have decreased significantly, but remained higher than the daily baseline level of 3.0 μg·kg-1·d-1. Even as recently as 2020, the hazard quotients and hazard index still exceeded 1, measuring 155.33 and 55.20, and the lifetime excess risk of skin cancer (2.80 × 10-3) remains significantly higher than the acceptable level of 10-6. Our study underscores the effectiveness of comprehensive prevention and control measures in managing high arsenic exposure in coal-burning arsenic poisoning areas. However, it is crucial to acknowledge that the risk of both non-carcinogenic and carcinogenic effects on the skin remains substantially higher than the acceptable level. We recommend setting reference limits for monitoring skin damage among individuals exposed to arsenic, with a recommended upper limit of 0.07 μg·g-1 for HA and a maximum acceptable level of 935.57 mg for CA.
Collapse
Affiliation(s)
- Maolin Yao
- The key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education & School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Qibing Zeng
- The key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education & School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Peng Luo
- The key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education & School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Guanghong Yang
- The key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education & School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Jun Li
- The key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education & School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Baofei Sun
- The key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education & School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Bing Liang
- The key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education & School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Aihua Zhang
- The key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education & School of Public Health, Guizhou Medical University, Guiyang 550025, China.
| |
Collapse
|
4
|
Wang Q, Ma L, Sun B, Zhang A. Reduced Peripheral Blood Mitochondrial DNA Copy Number as Identification Biomarker of Suspected Arsenic-Induced Liver Damage. Biol Trace Elem Res 2023; 201:5083-5097. [PMID: 36720785 DOI: 10.1007/s12011-023-03584-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/24/2023] [Indexed: 02/02/2023]
Abstract
Arsenic (As) can cause liver damage and liver cancer and is capable of seriously affecting human health. Therefore, it is important to identify biomarkers of arsenic-induced liver damage. Mitochondria are key targets of hepatotoxicity caused by arsenic. The mitochondrial DNA copy number (mtDNAcn) is the number of mitochondrial DNA (mtDNA) copies in the genome. mtDNA is vulnerable to exogenous chemical attacks, thus causing mtDNAcn to change after exposure to environmental pollutants. Therefore, mtDNAcn can serve as a potential marker to identify and assess the risk of diseases caused by exposure to environmental pollutants. In this study, we selected 272 arsenicosis patients (155 cases without liver damage and 117 cases with liver damage) and 218 participants not exposed to arsenic (155 cases without liver damage and 63 cases with liver damage) as subjects to investigate the correlation between peripheral blood mtDNAcn and arsenic-induced liver damage, as well as the ability of peripheral blood mtDNAcn to identify and assess the risk of arsenic-induced liver damage. Peripheral blood mtDNAcn in patients with arsenic-induced liver damage is significantly decreased and negatively correlated with serum ALT, AST, and GGT levels. The decrease of peripheral blood mtDNAcn was associated with an increased risk of arsenic-induced liver damage. The receiver operating characteristic (ROC) curve analysis indicated that peripheral blood mtDNAcn could specifically identify patients with liver damage in the arsenicosis group. The decision tree C5.0 model was established to identify arsenicosis in all patients with liver damage. Peripheral blood mtDNAcn was included in the model and played the most important role in the identification of arsenic-induced liver damage. This study provided a basis for the identification and evaluation of arsenic-induced liver damage by peripheral blood mtDNAcn, indicating that peripheral blood mtDNAcn is expected to be a potential biomarker of arsenic-induced liver damage, and provides clues for exploring the mechanism of arsenic-induced liver damage from mitochondria damage.
Collapse
Affiliation(s)
- Qi Wang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Lu Ma
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Baofei Sun
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Aihua Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China.
| |
Collapse
|
5
|
Wen W, Zha S, Cheng H, Qi J, Chen Q, Gu Y. As3MT is related to relative RNAs and base modifications of p53 in workers exposed to arsenic. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:62094-62103. [PMID: 36940027 DOI: 10.1007/s11356-023-26457-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/10/2023] [Indexed: 05/10/2023]
Abstract
As3MT is the key enzyme involved in the methylation metabolism of arsenic. It is associated with DNA methylation closely also. This study is to explore the relationships between As3MT and epigenetic changes, and how p53 and relative ncRNAs and mRNAs play roles in the process. In this study, workers from four arsenic plants and individuals who resided in villages far away from the four plants were recruited. Arsenic compounds, relative indices, 28 relative RNAs, and base modifications of exons 5-8 of p53 were detected separately. Several methods were used to analyze the associations between them. Results shown that As3MT RNA was closely associated with all selected lncRNAs, miRNAs, and mRNAs related to miRNA production and maturation, tumorigenesis, and base modifications of p53. There probably exists causal relationship. Base modifications of exons 7 and 8 of p53 had significant synergistic effects on the expression of As3MT RNA and a series of genetic indices. But miR-190, miR-548, and base modifications of exon 5 of p53 had substantial inhibitory effects. Arsenic compounds and relative indices of metabolic transformation may have limited roles. The main novel finding in the present study is that As3MT play special and significant roles in the genotoxicity and carcinogenesis which could be coordinated operation with p53, and influenced by epigenetic factors largely, such as lncRNAs and miRNAs. P53 and relative ncRNAs and mRNAs may regulate the process by interacting with As3MT. The changes may initiate by arsenic, but probability through indirect relationship.
Collapse
Affiliation(s)
- Weihua Wen
- Yunnan Center for Disease Control and Prevention, No.158, Dongsi Street, Kunming, 650022, Yunnan, China.
| | - Shun Zha
- Yunnan Center for Disease Control and Prevention, No.158, Dongsi Street, Kunming, 650022, Yunnan, China
| | - Huirong Cheng
- Yunnan Center for Disease Control and Prevention, No.158, Dongsi Street, Kunming, 650022, Yunnan, China
| | - Jun Qi
- Yunnan Center for Disease Control and Prevention, No.158, Dongsi Street, Kunming, 650022, Yunnan, China
| | - Qian Chen
- Public Health College, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Yun Gu
- Public Health College, Kunming Medical University, Kunming, 650500, Yunnan, China
| |
Collapse
|
6
|
Zhang J, Ma L, Li B, Chen X, Wang D, Zhang A. Identification of biomarkers for risk assessment of arsenicosis based on untargeted metabolomics and machine learning algorithms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161861. [PMID: 36716877 DOI: 10.1016/j.scitotenv.2023.161861] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/08/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Long-term exposure to inorganic arsenic may lead to arsenicosis. There are, however, currently no validated metabolic biomarkers used for the identification of arsenicosis risk. This study aims to identify metabolites associated with arsenicosis and establish prediction models for risk assessment based on untargeted metabolomics and machine learning algorithms. METHODS In total, 105 coal-borne arsenicosis patients, with 35 subjects in each of the mild, moderate, and severe subgroups according to their symptom severity, and 60 healthy residents were enrolled from Guizhou, China. Ultra-high performance liquid chromatography-tandem mass spectrometer (UHPLC-MS/MS) was utilized to acquire the plasma metabolic profiles of the studied subjects. Statistical analysis was used to identify disease-associated metabolites. Machine learning algorithms and the identified metabolic biomarkers were resorted to assess the arsenicosis risk. RESULTS A total of 143 metabolic biomarkers, with organic acids being the majority, were identified to be closely associated with arsenicosis, and the most involved pathway was glycine, serine, and threonine metabolism. Comparative analysis of metabolites in arsenicosis patients with different symptom severity revealed 422 altered molecules, where disrupted metabolism of beta-alanine and arginine demonstrated the most significance. For risk assessment, the model established by a single biomarker (L-carnosine) could undoubtedly discriminate arsenicosis patients from the healthy. For classifying arsenicosis patients with different severity, the model established using 52 metabolites and linear discriminate analysis (LDA) algorithm yielded an accuracy of 0.970-0.979 on calibration set (n = 132) and 0.818-0.848 on validation set (n = 33). CONCLUSION Altered metabolites and disrupted pathways are prevalent in arsenicosis patients; The disrupted metabolism of one carbon and dysfunction of antioxidant defense system may partially be causes of the systematic multi-organ damage and carcinogenesis in arsenicosis patients; Metabolic biomarkers, combined with machine learning algorithms, could be efficient for risk assessment and early identification of arsenicosis.
Collapse
Affiliation(s)
- Jin Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Lu Ma
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Boyan Li
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Xiong Chen
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Dapeng Wang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Aihua Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, China.
| |
Collapse
|
7
|
Sun M, Cheng H, Yu T, Tan J, Li M, Chen Q, Gu Y, Jiang C, Li S, He Y, Wen W. Involvement of a AS3MT/c-Fos/p53 signaling axis in arsenic-induced tumor in human lung cells. ENVIRONMENTAL TOXICOLOGY 2023; 38:615-627. [PMID: 36399430 DOI: 10.1002/tox.23708] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/29/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Arsenite methyltransferase (AS3MT) is an enzyme that catalyzes the dimethylation of arsenite (+3 oxidation state). At present, the studies on arsenic carcinogenicity mainly focus on studying the polymorphisms of AS3MT and measuring their catalytic activities. We recently showed that AS3MT was overexpressed in lung cancer patients who had not been exposed to arsenic. However, little is known about the molecular mechanisms of AS3MT in arsenite-induced tumorigenesis. In this study, we showed that AS3MT protein expression was higher in the arsenic-exposed population compared to the unexposed population. AS3MT was also overexpressed in human lung adenocarcinoma (A549) and human bronchial epithelial (16HBE) cells exposed to arsenic (A549: 20-60 μmol/L; 16HBE: 2-6 μmol/L) for 48 h. Furthermore, we investigated the effects of AS3MT on cell proliferation and apoptosis using siRNA. The downregulation of AS3MT inhibited the proliferation and promoted the apoptosis of cells. Mechanistically, AS3MT was found to specifically bind to c-Fos, thereby inhibiting the binding of c-Fos to c-Jun. Additionally, the siRNA-mediated knockdown of AS3MT enhanced the phosphorylation of Ser392 in p53 by upregulating p38 MAPK expression. This led to the activation of p53 signaling and the upregulated expression of downstream targets, such as p21, Fas, PUMA, and Bax. Together, these studies revealed that the inorganic arsenic-mediated upregulation of AS3MT expression directly affected the proliferation and apoptosis of cells, leading to arsenic-induced toxicity or carcinogenicity.
Collapse
Affiliation(s)
- Mingjun Sun
- Occupational Health and Launch Health Institute, Yunnan Center for Disease Control and Prevention, Kunming, China
- School of Public Health, Dali University, Dali, China
| | - Huirong Cheng
- Occupational Health and Launch Health Institute, Yunnan Center for Disease Control and Prevention, Kunming, China
| | - Tianle Yu
- Cardiovascular medicine, Weihai Central Hospital, Weihai, China
| | - Jingwen Tan
- School of Public Health, Kunming Medical University, Kunming, China
| | - Ming Li
- Elderly Health Management Center, Haida Hospital, Weihai, China
| | - Qian Chen
- Occupational Health and Launch Health Institute, Yunnan Center for Disease Control and Prevention, Kunming, China
- School of Public Health, Dali University, Dali, China
| | - Yun Gu
- Occupational Health and Launch Health Institute, Yunnan Center for Disease Control and Prevention, Kunming, China
- School of Public Health, Dali University, Dali, China
| | - Chenglan Jiang
- School of Public Health, Kunming Medical University, Kunming, China
| | - Shuting Li
- School of Public Health, Kunming Medical University, Kunming, China
| | - Yuefeng He
- School of Public Health, Kunming Medical University, Kunming, China
| | - Weihua Wen
- Occupational Health and Launch Health Institute, Yunnan Center for Disease Control and Prevention, Kunming, China
| |
Collapse
|
8
|
Fang X, Zeng Q, Sun B, Wei S, Zou Z, Xia S, Luo P, Zhang A. Ginkgo biloba Extract Attenuates the Disruption of Pro- and Anti-inflammatory Balance of Peripheral Blood in Arsenism Patients by Decreasing Hypermethylation of the Foxp3 Promoter Region. Biol Trace Elem Res 2022; 200:4967-4976. [PMID: 35064870 DOI: 10.1007/s12011-022-03101-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/03/2022] [Indexed: 12/15/2022]
Abstract
Coal-burning type of arsenism, a chronic arsenism caused by environmental arsenic pollution, found firstly at Guizhou Province of China, manifested as the disruption of pro- and anti-inflammatory T cell balance and multiple organ damage, while no specific treatment for the arsenism patients. The effect of methylation of the forkhead box P3 (Foxp3) promoter region on arsenic-induced disruption of pro- and anti-inflammatory T cell balance was first evaluated in this study, between the control and arsenism groups. The results show that arsenic can induce the hypermethylation of 6 sites in the Foxp3 promoter by upregulating the expression of recombinant DNA Methyltransferase 1 (Dnmt1) mRNA, leading to the downregulation of Foxp3 mRNA, Tregs, and interleukin 10 (IL-10, anti-inflammatory cytokine) levels, and increased the levels of interleukin 17 (IL-17, pro-inflammatory cytokine) in the peripheral blood of patients with arsenic poisoning. Further randomized controlled double-blind experiments (including the placebo control groups and the Ginkgo biloba extract (GBE) intervention groups) showed that compared to the placebo control group or before GBE intervention, the levels of Dnmt1 mRNA, Foxp3 methylation, and IL-17 in the peripheral blood of the GBE intervention group were significantly decreased after intervention (P < 0.05), but the levels of regulatory T cells (Tregs) and IL-10 were significantly increased (P < 0.05). Our study provides some limited evidence that GBE can attenuate the disruption of pro- and anti-inflammatory balance of peripheral blood in arsenism patients by decreasing hypermethylation of the Foxp3 promoter region. This study provides scientific basis for further understanding a possible natural medicinal plant, GBE, as a more effective measure to prevent and control the disruption of pro- and anti-inflammatory balance caused by coal-burning type of arsenism.
Collapse
Affiliation(s)
- Xiaolin Fang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Qibing Zeng
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Baofei Sun
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Shaofeng Wei
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Zhonglan Zou
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Shiqing Xia
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Peng Luo
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Aihua Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, China.
| |
Collapse
|
9
|
Zhao Z, Hao M, Li Y, Li S. Contamination, sources and health risks of toxic elements in soils of karstic urban parks based on Monte Carlo simulation combined with a receptor model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156223. [PMID: 35643134 DOI: 10.1016/j.scitotenv.2022.156223] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 06/15/2023]
Abstract
Understanding the health risks of toxic elements (TEs) in urban park soils and determining their priority control factors are crucial for public health and pollution management. Soil samples were collected from 33 urban parks in Guiyang, a typical karstic city. For each park, 15-45 topsoil samples were collected according to the area and then thoroughly mixed to obtain a representative sample. The results showed that the mean concentrations of TEs in park soils (22.5, 0.37, 88.6, 43.7, 0.26, 39.9, 44.7, and 101.0 mg/kg for As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn, respectively) were higher than their background values. Approximately 54.5% and 33.3% of enrichment factor (EF) values reached moderately enriched to significantly enriched levels for Cd and Hg, respectively. Moreover, 54.5% and 42.4% of monomial potential ecological index (EI) values were at considerable to high risk levels for Cd and Hg, respectively. These results illustrate that Cd and Hg pose high ecological risks. According to the potential ecological risk index (RI) values, 21.2% of the parks were exposed to considerable ecological risk and 48.5% were at moderate risk. Based on the positive matrix factorization (PMF) model, four sources governing TE contamination (including coal combustion, natural sources, traffic emissions, and industrial activities) were identified, with contribution rates of 32.3%, 31.0%, 19.6%, and 17.1%, respectively. A probabilistic health risk assessment showed acceptable non-carcinogenic risks and high levels of carcinogenic risk in all populations. Based on the source-specific health risk assessment, arsenic from coal combustion was determined to be a major contributor to human health risks. Although several efforts have been made by the local government to eliminate coal-borne arsenicosis, our results revealed that the accumulation of arsenic in the soil due to coal combustion poses a potential threat to human health.
Collapse
Affiliation(s)
- Zhenjie Zhao
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, China; State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Ming Hao
- College of Medical humanities, Guizhou Medical University, Guiyang 550025, China
| | - Yunlong Li
- Shandong Institute of Geophysical and Geochemical Exploration, Jinan 250013, China
| | - Shehong Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| |
Collapse
|
10
|
Liu X, Wang J. NMDA receptors mediate synaptic plasticity impairment of hippocampal neurons due to arsenic exposure. Neuroscience 2022; 498:300-310. [PMID: 35905926 DOI: 10.1016/j.neuroscience.2022.07.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 06/08/2022] [Accepted: 07/15/2022] [Indexed: 11/16/2022]
Abstract
Endemic arsenism is a worldwide health problem. Chronic arsenic exposure results in cognitive dysfunction due to arsenic and its metabolites accumulating in hippocampus. As the cellular basis of cognition, synaptic plasticity is pivotal in arsenic-induced cognitive dysfunction. N-methyl-D-aspartate receptors (NMDARs) serve physiological functions in synaptic transmission. However, excessive NMDARs activity contributes to exitotoxicity and synaptic plasticity impairment. Here, we provide an overview of the mechanisms that NMDARs and their downstream signaling pathways mediate synaptic plasticity impairment due to arsenic exposure in hippocampal neurons, ways of arsenic exerting on NMDARs, as well as the potential therapeutic targets except for water improvement.
Collapse
Affiliation(s)
- Xiaona Liu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University(23618504), Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin, China, 150081
| | - Jing Wang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University(23618504), Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin, China, 150081.
| |
Collapse
|
11
|
Jiang J, He S, Liu K, Yu K, Long P, Xiao Y, Liu Y, Yu Y, Wang H, Zhou L, Zhang X, He M, Guo H, Wu T, Yuan Y. Multiple plasma metals, genetic risk and serum complement C3, C4: A gene-metal interaction study. CHEMOSPHERE 2022; 291:132801. [PMID: 34752839 DOI: 10.1016/j.chemosphere.2021.132801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/23/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
Exposure to metals and metalloids is widely related with human health, and could affect the function of immune system. The complement system links innate and adaptive immunity, and is critically involved in the pathogenesis of inflammatory and immune diseases. The third and fourth components of complement (C3, C4) play key roles in the complement system. However, few studies have examined the relations between multiple metals and complement levels. In this study, based on a total of 2977 participants from the Dongfeng-Tongji cohort, China, we investigated 17 plasma metals and serum C3, C4 levels, and calculated C3/C4-associated genetic risk scores (GRSs) using established single nucleotide polymorphisms. We further explored the potential gene-metal interactions on C3 and C4. After multivariable adjustment, an increment of 10-standard deviation increase in natural log-transformed exposure concentrations of plasma copper was associated with 0.549 (0.489, 0.608) (FDR <0.0001), and 1.146 (0.999, 1.294) (FDR <0.0001) higher natural log-transformed serum C3 and C4 levels, respectively. While each increment of 10-standard deviation of natural log-transformed zinc was associated with a difference of 0.083 (0.024, 0.143) (FDR = 0.049) and 0.007 (-0.138, 0.152) (FDR = 0.935) in log-transformed C3 and C4 levels, respectively. Participants with higher GRS had higher C3 and C4 levels. Furthermore, we found a significant interaction between arsenic exposure and C3-GRS in relation to C3 level (Pinteraction = 0.0096). Our results suggested that plasma arsenic would modify the association between C3 genetic predisposition and serum C3 level. We provide new insight into metals exposure on the human immune system. These findings require replication in future research.
Collapse
Affiliation(s)
- Jing Jiang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shiqi He
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Kang Liu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Kuai Yu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Pinpin Long
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yang Xiao
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yiyi Liu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yanqiu Yu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hao Wang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lue Zhou
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaomin Zhang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Meian He
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Huan Guo
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Tangchun Wu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yu Yuan
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
12
|
Ozturk M, Metin M, Altay V, Bhat RA, Ejaz M, Gul A, Unal BT, Hasanuzzaman M, Nibir L, Nahar K, Bukhari A, Dervash MA, Kawano T. Arsenic and Human Health: Genotoxicity, Epigenomic Effects, and Cancer Signaling. Biol Trace Elem Res 2022; 200:988-1001. [PMID: 33864199 DOI: 10.1007/s12011-021-02719-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/11/2021] [Indexed: 02/06/2023]
Abstract
Arsenic is a well-known element because of its toxicity. Humans as well as plants and animals are negatively affected by its exposure. Some countries suffer from high levels of arsenic in their tap water and soils, which is considered a primary arsenic-linked risk factor for living beings. Humans generally get exposed to arsenic by contaminated drinking waters, resulting in many health problems, ranging from cancer to skin diseases. On the other hand, the FDA-certified drug arsenic trioxide provides solutions for various diseases, including several types of cancers. This issue emphasizes the importance of speciation of the metalloid elements in terms of impacts on health. When species get exposed to arsenic, it affects the cells altering their involvement. It can lead to abnormalities in inflammatory mechanisms and the immune system which contribute to the negative impacts generated on the body. The poisoning originating from arsenic gives rise to various biological signs on the body which can be useful for the diagnosis. It is important to find true biomarkers for the detection of arsenic poisoning. In view of its application in medicine and biology, studies on understanding the biological activity of arsenic have increased. In this review, we aim at summarizing the current state of knowledge of arsenic and the mechanism behind its toxicity including genotoxicity, oxidative insults, epigenomic changes, and alterations in cellular signaling.
Collapse
Affiliation(s)
- Munir Ozturk
- Department of Botany and Centre for Environmental Studies, Ege University, Izmir, Turkey.
| | - Mert Metin
- Graduate School of Environmental Engineering, The University of Kitakyushu, 1-1 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka, 808-0135, Japan
| | - Volkan Altay
- Department of Biology, Faculty of Science and Arts, Hatay Mustafa Kemal University, Hatay, Turkey
| | - Rouf Ahmad Bhat
- Department of Environmental Science, Sri Pratap College, Cluster University Srinagar, Srinagar, Kashmir, India
| | - Mahnoor Ejaz
- Atta-ur-Rahman School of Applied Biosciences, Nat. University of Sciences & Technology, Islamabad, Pakistan
| | - Alvina Gul
- Atta-ur-Rahman School of Applied Biosciences, Nat. University of Sciences & Technology, Islamabad, Pakistan
| | - Bengu Turkyilmaz Unal
- Faculty of Science and Arts, Dept. of Biotechnology, Nigde Omer Halisdemir University, Nigde, Turkey
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Lutfunnahar Nibir
- Upazilla Health Complex, Ministry of Health, Government of the People's, Homna, Comilla, Bangladesh
| | - Kamuran Nahar
- Dept. of Agricultural Botany, Faculty of Agriculture, Sher-e-Bangla Agricul. University, Dhaka, Bangladesh
| | - Andleep Bukhari
- Medical Pharmacology, Cerrahpasa Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Moonisa Aslam Dervash
- Sher-e-Kashmir University of Agricultural Sciences and Technology, Srinagar, Kashmir, India
| | - Tomonori Kawano
- Graduate School of Environmental Engineering, The University of Kitakyushu, 1-1 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka, 808-0135, Japan
| |
Collapse
|
13
|
Wang Q, Wang W, Sun B, Zhang A. Genomic DNA hydroxymethylation reveals potential role in identification of lung injury in coal-burning arsenicosis populations. ENVIRONMENTAL RESEARCH 2022; 204:112053. [PMID: 34536373 DOI: 10.1016/j.envres.2021.112053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 08/11/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
Arsenic (As) is a toxic metalloid element that causes lung cancer and multiple non-malignant respiratory diseases. The toxicity of arsenic is mediated in part by epigenetic mechanisms, such as alterations in DNA methylation. While increasing studies have highlighted the potential importance of arsenic exposure to DNA methylation patterns and the subsequent risks for arsenic toxicity, there has been little focus on DNA hydroxymethylation-a negative regulation mechanism of DNA methylation. Therefore, this study aimed to investigate the relationship between genomic DNA methylation/hydroxymethylation and lung injury in arsenicosis populations. First, an increased risk of lung injury and exacerbation of lung function impairment in the arsenicosis population was confirmed. Levels of 5-methylcytosine/deoxycytidine (5 mC/dC), 5-hydroxymethylcytosine/deoxycytidine (5 hmC/dC) and 5 hmC/5 mC in genomic DNA of peripheral blood were decreased in the arsenicosis population compared to in the control. Additionally, multivariate logistic regression models showed an increased risk of chest digital radiography (DR) abnormalities when 5 hmC/dC and 5 hmC/5 mC levels were lower (OR = 3.12 and 3.96, all P < 0.001). For 3 years follow-up, regression analysis showed that a decline in 5 hmC/dC was significantly associated with the decline of lung function parameters [forced vital capacity (FVC), forced expiratory volume in 1 s (FEV1) and maximal mid-expiratory flow (MMEF); β = 0.167, 0.122 and 0.073, respectively; all P < 0.05]. Using the receiver operating characteristic (ROC) curve, a combination of 5 hmC/5 dC and 5 hmC/5 mC obtained the highest value for distinguishing lung injury in all subjects (AUC = 0.82, P < 0.01). In contrast, in arsenicosis subjects, 5 hmC/dC was better at distinguishing lung injury (AUC = 0.84, P < 0.01). Together, the results revealed that a decrease in genomic DNA hydroxymethylation markers was associated with lung injury in coal-burning arsenicosis populations. Genomic DNA hydroxymethylation could be a novel biomarker for identifying the risk of lung injury caused by coal-burning arsenicosis.
Collapse
Affiliation(s)
- Qingling Wang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, PR China
| | - Wenjuan Wang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, PR China
| | - Baofei Sun
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, PR China
| | - Aihau Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, PR China.
| |
Collapse
|
14
|
Source Apportionment and Health Risk Assessment of Heavy Metals in PM2.5 in Handan: A Typical Heavily Polluted City in North China. ATMOSPHERE 2021. [DOI: 10.3390/atmos12101232] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In order to determine the pollution sources and human health risks of metal elements in PM2.5, samples were collected by a large flow particulate matter sampler in the four seasons in 2013, 2015, and 2017 (January, April, July, and October). The mass concentrations of 10 metals (Ti, V, Cr, Mn, Ni, Cu, Zn, As, Cd, and Pb) were analyzed. The sources of heavy metals were identified by Unmix, and the potential non-carcinogenic/carcinogenic risk was evaluated. The influences of local and regional sources were also explored during the high-carcinogenic risk period (HCRP). The wind field and 72 h backward trajectories were performed to identify the potential local and regional sources in HCRP. The results showed that the average annual concentrations of PM2.5 in the urban area of Handan city were 105.14, 91.18, and 65.85 μg/m3 in 2013, 2015, and 2017, respectively. The average daily concentrations of the metals in PM2.5 in January were higher than that of April, July, and October. The average mass concentrations of the 10 heavy metal elements in PM2.5 were 698.26, 486.92, and 456.94 ng·m−3 in 2013, 2015, and 2017, respectively. The main sources of the metals in PM2.5 were soil dust sources, vehicular emissions, coal burning, and industrial activities. The carcinogenic risks of Cr and As were above 1 × 10−6 over the three years. Wind direction analysis showed that the potential local sources were heavy industry enterprises and the economic development zone. The backward trajectory analysis indicated that PM2.5 long transported from Shandong, Henan, and the surrounding cities of Handan had quite an impact on the heavy metals contained in the atmosphere of the studied area. The health risk assessment results demonstrated that the trend for non-carcinogenic risk declined, and there was no non-carcinogenic risk in 2017. However, the carcinogenic risk levels were high over the three years, particularly in January.
Collapse
|
15
|
Yao M, Zeng Q, Luo P, Sun B, Liang B, Wei S, Xu Y, Wang Q, Liu Q, Zhang A. Assessing the risk of coal-burning arsenic-induced liver damage: a population-based study on hair arsenic and cumulative arsenic. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:50489-50499. [PMID: 33959842 DOI: 10.1007/s11356-021-14273-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/30/2021] [Indexed: 06/12/2023]
Abstract
Exposure to arsenic-contaminated air and food caused by the burning of coal in unventilated indoor stoves is a major environmental public health concern in Guizhou Province, China. The liver is one of the main target organs for coal-fired arsenic exposure; however, there is little information about the risk assessment between cumulative arsenic exposure and the prevalence of liver damage. This study first evaluated the chronic daily intake (CDI) for two exposure pathways (inhalation and ingestion) and five environmental media (i.e., indoor and outdoor air, drinking water, rice, corn, and chili peppers) in 1998, 2006, 2014, and 2017. Then, the dose-effect and dose-response relationship between hair arsenic (HA) and cumulative arsenic (CA) levels and liver damage was analyzed. The results clearly show that the CDI in 1998 was 34.9 μg·kg-1·d-1, 22.9 μg·kg-1·d-1 in 2006, 11.7 μg·kg-1·d-1 in 2014, and 6.7 μg·kg-1·d-1 in 2017 in the arsenic exposure area. All of these values were higher than the daily baseline level of 3.0 μg·kg-1·d-1 as recommended by the Joint FAO/WHO Expert Committee on Food Additives (JECFA), and the increased HA and CA can increase the risk of coal-fired arsenic-induced liver damage. In addition, we analyzed the possible maximum acceptable CA exposure level for coal-fired arsenic-induced liver damage using the Bayesian benchmark dose. The recommended maximum acceptable CA exposure level for liver damage caused by coal-burning arsenic is 7120 mg. This study provides scientific insight into understanding the dose-response relationship of liver damage caused by coal-burning arsenic exposure and the monitoring and prevention of arsenic poisoning.
Collapse
Affiliation(s)
- Maolin Yao
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, 550025, China
| | - Qibing Zeng
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, 550025, China
| | - Peng Luo
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, 550025, China
| | - Baofei Sun
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, 550025, China
| | - Bing Liang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, 550025, China
| | - Shaofeng Wei
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, 550025, China
| | - Yuyan Xu
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, 550025, China
| | - Qingling Wang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, 550025, China
| | - Qizhan Liu
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Aihua Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, 550025, China.
| |
Collapse
|
16
|
Xu Y, Yu C, Zeng Q, Yao M, Chen X, Zhang A. Assessing the potential value of Rosa Roxburghii Tratt in arsenic-induced liver damage based on elemental imbalance and oxidative damage. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:1165-1175. [PMID: 32564172 DOI: 10.1007/s10653-020-00612-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 05/27/2020] [Indexed: 06/11/2023]
Abstract
Environmental exposure to arsenic is a major public health challenge worldwide. Growing evidence indicates that coal-burning arsenic can cause hepatic oxidative damage. However, the value of Rosa roxburghii Tratt (RRT) with antioxidant properties on arsenic-caused hepatic oxidative damage has never been elucidated yet. In this study, the animals were exposed to coal-burning arsenic (10 mg/kg bw) for 90 days and the result showed a loss of body weight, impaired liver function and liver diseases, increased hepatic oxidative damage and metabolic disorder of multiple elements including selenium, copper, zinc which were related to synthesis of antioxidant enzymes. Another finding is that RRT restored the abnormal liver function and alleviated the procedures of liver diseases of arsenic poisoning rats. In addition, it could also effectively reduce the degree of oxidative damage in serum and liver, and restore the activity of some antioxidant enzymes. Importantly, RRT reversed the content of most disordered elements caused by arsenic in liver and reduced the excretion of several essential elements in urine, including selenium, copper and zinc. Our study provides some limited evidence that RRT can alleviate coal-burning arsenic-induced liver damage induced by regulating elemental metabolic disorders and liver oxidation and antioxidant balance. The study provides a scientific basis for further studies of the causes of the arsenic-induced liver damage, and effective intervention strategies.
Collapse
Affiliation(s)
- Yuyan Xu
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Chun Yu
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Qibing Zeng
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Maolin Yao
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Xiong Chen
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Aihua Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China.
| |
Collapse
|
17
|
Xue J, Xiao T, Wei S, Sun J, Zou Z, Shi M, Sun Q, Dai X, Wu L, Li J, Xia H, Tang H, Zhang A, Liu Q. miR-21-regulated M2 polarization of macrophage is involved in arsenicosis-induced hepatic fibrosis through the activation of hepatic stellate cells. J Cell Physiol 2021; 236:6025-6041. [PMID: 33481270 DOI: 10.1002/jcp.30288] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 01/02/2021] [Accepted: 01/05/2021] [Indexed: 12/15/2022]
Abstract
Arsenicosis induced by chronic exposure to arsenic is recognized as one of the main damaging effects on public health. Exposure to arsenic can cause hepatic fibrosis, but the molecular mechanisms by which this occurs are complex and elusive. It is not known if miRNAs are involved in arsenic-induced liver fibrosis. We found that in the livers of mice exposed to arsenite, there were elevated levels of microRNA-21 (miR-21), phosphorylated mammalian target of rapamycin (p-mTOR), and arginase 1 (Arg1); low levels of phosphatase and tensin homolog (PTEN); and more extensive liver fibrosis. For cultured cells, arsenite-induced miR-21, p-mTOR, and Arg1; decreased PTEN; and promoted M2 polarization of macrophages derived from THP-1 monocytes (THP-M), which caused secretion of fibrogenic cytokines, including transforming growth factor-β1. Coculture of arsenite-treated, THP-M with LX-2 cells induced α-SMA and collagen I in the LX-2 cells and resulted in the activation of these cells. Downregulation of miR-21 in THP-M inhibited arsenite-induced M2 polarization and activation of LX-2 cells, but cotransfection with PTEN siRNA or a miR-21 inhibitor reversed this inhibition. Moreover, knockout of miR-21 in mice attenuated liver fibrosis and M2 polarization compared with WT mice exposed to arsenite. Additionally, LN, PCIII, and HA levels were higher in patients with higher hair arsenic levels, and levels of miR-21 were higher than controls and positively correlated with PCIII, LN, and HA levels. Thus, arsenite induces the M2 polarization of macrophages via miR-21 regulation of PTEN, which is involved in the activation of hepatic stellate cells and hepatic fibrosis. The results establish a previously unknown mechanism for arsenicosis-induced fibrosis.
Collapse
Affiliation(s)
- Junchao Xue
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tian Xiao
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shaofeng Wei
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, Guizhou, China
| | - Jing Sun
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhonglan Zou
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, Guizhou, China
| | - Ming Shi
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, Guangdong, China
| | - Qian Sun
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiangyu Dai
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lu Wu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Junjie Li
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Haibo Xia
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Huanwen Tang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, Guangdong, China
| | - Aihua Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, Guizhou, China
| | - Qizhan Liu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
18
|
Hu Y, Xiao T, Zhang A. Associations between and risks of trace elements related to skin and liver damage induced by arsenic from coal burning. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111719. [PMID: 33396050 DOI: 10.1016/j.ecoenv.2020.111719] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/21/2020] [Accepted: 11/23/2020] [Indexed: 05/10/2023]
Abstract
Long-term exposure to high levels of arsenic has been documented to induce skin and liver damage, affecting hundreds of millions of people. While arsenic-induced skin and liver damage and trace element alterations have been studied, their correlations and risks have not been explained. Based on the above premise, this study included a total of 172 subjects from a coal-burning arsenic poisoning area. The levels of 18 trace elements in hair and six liver function indices in serum were detected, and the associations between and risks of trace elements related to skin and liver damage were analyzed. Finally, the receiver operating characteristic (ROC) curve and areas under the curve (AUC) were used to analyze the diagnostic values of certain trace elements for arsenic-induced skin and liver damage. The results found that a decrease in Se was a risk factor for arsenic-induced skin and liver damage (OR = 8.33 and 1.92, respectively). Furthermore, increases in Al and V were risk factors for arsenic-induced skin damage (OR = 1.05) and liver damage (OR = 13.16), respectively. In addition, the results found that Se and Al possessed certain diagnostic values for arsenic-induced skin damage (AUC = 0.93, 0.80), that Se possessed a diagnostic value for liver damage (AUC = 0.93), and that the combination of Se and Al increased the diagnostic value for skin damage (AUC = 0.96). This study provides an important research basis for further understanding the reasons for arsenic-induced skin and liver damage, for screening and identifying candidate diagnostic biomarkers, and for improving prevention and control strategies for arsenism.
Collapse
Affiliation(s)
- Yong Hu
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, China
| | - Tingting Xiao
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, China
| | - Aihua Zhang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, China.
| |
Collapse
|
19
|
Hu Y, Xiao T, Wang Q, Liang B, Zhang A. Effects of Essential Trace Elements and Oxidative Stress on Endemic Arsenism Caused by Coal Burning in PR China. Biol Trace Elem Res 2020; 198:25-36. [PMID: 31960276 DOI: 10.1007/s12011-020-02047-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/15/2020] [Indexed: 12/12/2022]
Abstract
Few studies have investigated the association between essential trace elements and oxidative stress in environmental media and populations with endemic arsenism caused by coal burning. Element contents and oxidative stress indicators were measured. Moreover, the expression of genes related to the nuclear factor E2-related factor 2 (Nrf2)/Kelch-like ECH-associated protein 1 (Keap1)-antioxidant response element (ARE) signaling pathway and Nrf2-ARE binding ability is detected. The results show that the contents of arsenic, copper, iron, and chromium were increased in environmental media from the arsenism area compared with the control area; however, the selenium content decreased. The arsenic, iron, chromium, and copper contents and the copper/zinc ratio were also increased in the arsenic-exposed population; however, the selenium content decreased. The results also show that the concentrations of arsenic, iron, and chromium and the copper/zinc ratio increased gradually with the severity of arsenism. However, selenium concentrations decreased gradually with the severity of arsenism. The contents of malondialdehyde, 8-hydroxyldeoxyguanosine, and protein carbonyl in plasma increased, while the levels of sulfhydryl, thioredoxin reductase (TrxR), glutathione peroxidase (Gpx), and superoxide dismutase 1 (SOD1) decreased. The mRNA expression of Keap1 and TrxR1 decreased in the blood, while the mRNA expression of Nrf2, GPx1, and SOD1 increased. Moreover, the Nrf2 protein content and Nrf2-ARE binding ability increased, and the Keap1 protein content decreased. In conclusion, our data suggest that the increased arsenic content in environmental media and populations was accompanied by abnormal levels of essential trace elements. Insufficient selenium intake, copper, and chromium overload and a high copper/zinc ratio might be some of the causes of arsenism, which might be related to the Nrf2/Keap1-ARE signaling pathway.
Collapse
Affiliation(s)
- Yong Hu
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Tingting Xiao
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Qi Wang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Bing Liang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Aihua Zhang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China.
| |
Collapse
|
20
|
Wang W, Zheng F, Lin C, Zhang A. Changes in energy metabolism and macrophage polarization: Potential mechanisms of arsenic-induced lung injury. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 204:110948. [PMID: 32739672 DOI: 10.1016/j.ecoenv.2020.110948] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/10/2020] [Accepted: 06/25/2020] [Indexed: 06/11/2023]
Abstract
Exposure to arsenic is epidemiologically associated with increased lung disease. In detailing the mechanism by which arsenic exposure leads to disease, studies have emphasized that metabolic reprogramming and immune dysfunction are related to arsenic-induced lung injury. However, the association between the mechanisms listed above is not well understood. Thus, the current study aimed to investigate the interaction of energy metabolism and macrophage polarization, by which arsenic exposure adversely induced lung injury in both in vitro and human studies. First, we confirmed a shift to glycolytic metabolism resulting from mitochondrial dysfunction. This shift was accompanied by an increase in the levels of phosphorylated PDHE1α (S293) and PDK1 and a concomitant marked increase in several key markers of the HIF-1α signaling pathway (HIF-1α, p-PKM2, GLUT1 and HK-2). In addition, utilizing an in vitro model in which lung epithelial cells are cultured with macrophages, we determined that arsenic treatment polarizes macrophages towards the M2 phenotype through lactate. In the human study, the serum lactate and TGF-β levels were higher in arsenic-exposed subjects than that in reference subjects (t= 4.50, 6.24, both p < 0.05), while FVC and FEV1 were both lower (t= 5.47, 7.59, both p < 0.05). Pearson correlation analyses showed a significant negative correlation between the serum TGF-β and lactate levels and the lung function parameters (pcorrelation<0.05). In mediation analyses, lactate and TGF-β significantly mediated 24.3% and 9.0%, respectively, of the association between arsenic and FVC (pmediation<0.05), while lactate and TGF-β significantly mediated 22.2% and 12.5%, respectively, of the association between arsenic and FEV1 (pmediation<0.05). Together, the results of the in vitro and human studies indicated that there is complex communication between metabolic reprogramming and immune dysfunction, resulting in exacerbated effects in a feedback loop with increased arsenic-induced lung damage.
Collapse
Affiliation(s)
- Wenjuan Wang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, PR China
| | - Fanyan Zheng
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, PR China
| | - Changhu Lin
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, PR China
| | - Aihua Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, PR China.
| |
Collapse
|
21
|
Zhu Y, Costa M. Metals and molecular carcinogenesis. Carcinogenesis 2020; 41:1161-1172. [PMID: 32674145 PMCID: PMC7513952 DOI: 10.1093/carcin/bgaa076] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/19/2020] [Accepted: 07/13/2020] [Indexed: 12/11/2022] Open
Abstract
Many metals are essential for living organisms, but at higher doses they may be toxic and carcinogenic. Metal exposure occurs mainly in occupational settings and environmental contaminations in drinking water, air pollution and foods, which can result in serious health problems such as cancer. Arsenic (As), beryllium (Be), cadmium (Cd), chromium (Cr) and nickel (Ni) are classified as Group 1 carcinogens by the International Agency for Research on Cancer. This review provides a comprehensive summary of current concepts of the molecular mechanisms of metal-induced carcinogenesis and focusing on a variety of pathways, including genotoxicity, mutagenesis, oxidative stress, epigenetic modifications such as DNA methylation, histone post-translational modification and alteration in microRNA regulation, competition with essential metal ions and cancer-related signaling pathways. This review takes a broader perspective and aims to assist in guiding future research with respect to the prevention and therapy of metal exposure in human diseases including cancer.
Collapse
Affiliation(s)
- Yusha Zhu
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Max Costa
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
22
|
Dai L, Lv X, Chen Z, Huang Z, Li B, Xie Y, Duan Y, Zhao H, Wang Y, Yu Q, Li S, Zhou Y, Shen X. Elevated whole blood arsenic level is associated with type 2 diabetes in coal-burning areas in Guizhou. Toxicol Appl Pharmacol 2020; 403:115135. [DOI: 10.1016/j.taap.2020.115135] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/28/2020] [Accepted: 07/09/2020] [Indexed: 12/22/2022]
|
23
|
Chen J, Jiang J, Liu Y, Ye Y, Ma Y, Cen Y, Chen W, Wang S, Yang G, Zhang A. Arsenite induces dysfunction of regulatory T cells through acetylation control of the Foxp3 promoter. Hum Exp Toxicol 2020; 40:35-46. [PMID: 32735129 DOI: 10.1177/0960327120934533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Arsenic is known to cause damage to the body's immune system by inducing epigenetic changes. However, the molecular mechanism of this damage remains elusive. Here, we report that arsenic disrupts the morphology of lymphocytes, decreases cell viability, and results in abnormal proportions of T lymphocyte subsets. Moreover, our results revealed that arsenic can reduce global acetylation of histone H4 at K16 (H4K16 ac) in lymphocytes via decreasing the level of males absent on the first but upregulates mRNA and protein levels of the forkhead/winged-helix box P3 (Foxp3) gene by increasing the acetylation of histone H4 at K16 (H4K16) at the promoter of Foxp3. Finally, arsenic-induced dysfunction of regulatory T cells (Tregs) could be ameliorated by trichostatin A. Our research indicates that arsenic-induced immunosuppressive effect in human lymphocytes may be related to the acetylation of H4K16 at the promoter of Foxp3 and that histone deacetylase inhibitors may play a role in the prevention and treatment of immune injury caused by arsenic.
Collapse
Affiliation(s)
- J Chen
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Health, 74628Guizhou Medical University, Guiyang, China
| | - J Jiang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Health, 74628Guizhou Medical University, Guiyang, China
| | - Y Liu
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Health, 74628Guizhou Medical University, Guiyang, China
| | - Y Ye
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Health, 74628Guizhou Medical University, Guiyang, China
| | - Y Ma
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Health, 74628Guizhou Medical University, Guiyang, China
| | - Y Cen
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Health, 74628Guizhou Medical University, Guiyang, China
| | - W Chen
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Health, 74628Guizhou Medical University, Guiyang, China
| | - S Wang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Health, 74628Guizhou Medical University, Guiyang, China
| | - G Yang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Health, 74628Guizhou Medical University, Guiyang, China
| | - A Zhang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Health, 74628Guizhou Medical University, Guiyang, China
| |
Collapse
|
24
|
Zeng Q, Zhang A. Assessing potential mechanisms of arsenic-induced skin lesions and cancers: Human and in vitro evidence. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 260:113919. [PMID: 31995775 DOI: 10.1016/j.envpol.2020.113919] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/03/2020] [Accepted: 01/04/2020] [Indexed: 05/10/2023]
Abstract
Environmental exposure to arsenic is a major public health challenge worldwide. In detailing the hallmark signs of chronic arsenic exposure, previous studies have shown that epigenetic and immune dysfunction are associated with arsenic-induced skin lesions; however, knowledge regarding interactions between the mechanisms listed above is limited. In this study, a total of 106 skin samples were collected over the past 20 years. Based on the presence or absence of high arsenic exposure, the participants were divided into arsenic exposure (72) and reference (34) groups. Additionally, the arsenic exposure group was further divided into the non-cancer group (31, including skin hyperpigmentation and hyperkeratosis) and the skin cancer group (41, including Bowen's disease, basal cell carcinoma and squamous cell carcinoma) according to a skin histopathological examination. First, the associations among miR-155, NF-AT1 with immunological dysfunction and arsenic-induced skin lesions and carcinogenesis were confirmed using these skin samples. In the arsenic-exposed group, miR-155-5p, keratin 1(Krt1), keratin 10 (Krt10), and keratin 6c (Krt6c) were significantly increased in the skin (p < 0.05), while NF-AT1, interleukin-2 (IL-2), and interferon-γ (IFN-γ) were significantly decreased (p < 0.05). Clear correlations were observed among these factors (p < 0.05). In immortalized human keratinocytes, silencing and overexpression of NF-AT1 could alter the expression and secretion of immunological dysfunction indicators (IL-2 and IFN-γ) that are induced by arsenic exposure (p < 0.05); however, miR-155-5p levels did not change significantly (p > 0.05). The miR-155-5p mimic and inhibitor could regulate the NF-AT1-mediated immunological dysfunction caused by arsenic (p < 0.05). Our study provides some limited evidence that miR-155-5p regulates the NF-AT1-mediated immunological dysfunction that is involved in the pathogenesis and carcinogenesis of arsenic. The second major finding was that Krt1 and Krt10 are markers of hyperkeratosis caused by arsenic, and Krt6c is a potential biomarker that can reflect arsenic carcinogenesis.
Collapse
Affiliation(s)
- Qibing Zeng
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, Guizhou Medical University, Guiyang, 550025, China
| | - Aihua Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, Guizhou Medical University, Guiyang, 550025, China.
| |
Collapse
|
25
|
Zhao T, Sun D, Zhao M, Lai Y, Liu Y, Zhang Z. N 6-methyladenosine mediates arsenite-induced human keratinocyte transformation by suppressing p53 activation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 259:113908. [PMID: 31931413 PMCID: PMC7082205 DOI: 10.1016/j.envpol.2019.113908] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/11/2019] [Accepted: 12/31/2019] [Indexed: 05/31/2023]
Abstract
N6-methyladenosine (m6A), the most abundant and reversible RNA modification, plays critical a role in tumorigenesis. However, whether m6A can regulate p53, a leading antitumor protein remains poorly understood. In this study, we explored the regulatory role of m6A on p53 activation using an arsenite-transformed keratinocyte model, the HaCaT-T cell line. We created the cell line by exposing human keratinocyte HaCaT cells to 1 μM arsenite for 5 months. We found that the cells exhibited an increased m6A level along with an aberrant expression of the methyltransferases, demethylase, and readers of m6A. Moreover, the cells exhibited decreased p53 activity and reduced p53 phosphorylation, acetylation, and transactivation with a high nucleus export rate of p53. Knockdown of the m6A methyltransferase, METTL3 significantly decreased m6A level, restoring p53 activation and inhibiting cellular transformation phenotypes in the arsenite-transformed cells. Further, using both a bioinformatics analysis and experimental approaches, we demonstrated that m6A downregulated the expression of the positive p53 regulator, PRDM2, through the YTHDF2-promoted decay of PRDM2 mRNAs. We showed that m6A upregulated the expression of the negative p53 regulator, YY1 and MDM2 through YTHDF1-stimulated translation of YY1 and MDM2 mRNA. Taken together, our study revealed the novel role of m6A in mediating arsenite-induced human keratinocyte transformation by suppressing p53 activation. This study further sheds light on the mechanisms of arsenic carcinogenesis via RNA epigenetics.
Collapse
Affiliation(s)
- Tianhe Zhao
- Department of Environmental and Occupational Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Donglei Sun
- Department of Environmental and Occupational Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Manyu Zhao
- Department of Environmental and Occupational Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yanhao Lai
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, USA, 33199
| | - Yuan Liu
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, USA, 33199
| | - Zunzhen Zhang
- Department of Environmental and Occupational Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
26
|
Ma L, Liang B, Yang Y, Chen L, Liu Q, Zhang A. hOGG1 promoter methylation, hOGG1 genetic variants and their interactions for risk of coal-borne arsenicosis: A case-control study. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 75:103330. [PMID: 32004920 DOI: 10.1016/j.etap.2020.103330] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 06/10/2023]
Abstract
To identify the effect of hOGG1 methylation, Ser326Cys polymorphism and their interactions on the risk of coal-borne arsenicosis, 113 coal-borne arsenicosis subjects and 55 reference subjects were recruited. Urinary arsenic contents were analyzed with ICP-MS. hOGG1 methylation and Ser326Cys polymorphism was measured by mehtylation-specific PCR and restriction fragment length polymorphism PCR in PBLCs, respectively. The results showed that the prevalence of methylated hOGG1 and variation genotype (326 Ser/Cys & 326 Cys/Cys) were increased with raised levels of urinary arsenic in arsenicosis subjects. Increased prevalence of methylated hOGG1 and variation genotype were associated with raised risk of arsenicosis. Moreover, the results revealed that variant genotype might increase the susceptibility to hOGG1 methylation. The interactions of methylated hOGG1 and variation genotype were also found to contribute to increased risk of arsenicosis. Taken together, hOGG1 hypermethylation, hOGG1 variants and their interactions might be potential biomarkers for evaluating risk of coal-borne arsenicosis.
Collapse
Affiliation(s)
- Lu Ma
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, PR China.
| | - Bing Liang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, PR China.
| | - Yuan Yang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, PR China.
| | - Liyuan Chen
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, PR China.
| | - Qizhan Liu
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, PR China.
| | - Aihua Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, PR China.
| |
Collapse
|
27
|
Wang W, Wang Q, Zou Z, Zheng F, Zhang A. Human arsenic exposure and lung function impairment in coal-burning areas in Guizhou, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 190:110174. [PMID: 31927192 DOI: 10.1016/j.ecoenv.2020.110174] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 12/01/2019] [Accepted: 01/02/2020] [Indexed: 06/10/2023]
Abstract
To evaluate the effect of coal-burning arsenic (As) exposure on lung function and the potential underlying mechanisms, a total of 217 As-exposed subjects and 75 reference subjects were recruited into this study. Hair arsenic (H-As), pulmonary function tests, and serum inflammatory markers CC16, SP-A, MMP-9, and TIMP-1 were evaluated. Residents from As-exposed areas showed higher H-As concentrations (median 0.25 μg/g) than subjects from the reference area (median 0.14 μg/g). Large reductions in lung function parameters were noted in the As-exposed group. A significant negative correlation was observed between H-As concentrations and lung function. Specifically, monotonic negative dose-response relationships were observed between H-As and FEV1(%), FEV1/FVC (%) and FEF75 (%) (all P < 0.05), while the associations between H-As and FVC (%), FEF25 (%), and FEF50 (%) were nonlinear (P for nonlinearity = 0.03, 0.001, 0.01, respectively). In addition, there was a direct positive relationship between H-As and the inflammatory response. Alterations in inflammatory biomarkers (CC16, SP-A, MMP-9, and MMP-9/TIMP-1) were significantly associated with As-induced lung function impairment. Thus, this population-based study revealed that As exposure has significant toxic effects on lung function and increased inflammation may occur during this toxic process. We provide scientific evidence for an As-induced alteration in inflammatory biomarkers and pulmonary damage in an As-exposed population. The results of this study can inform risk assessment and risk control processes in relation to human As exposure in coal-burning arsenicosis areas.
Collapse
Affiliation(s)
- Wenjuan Wang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, PR China
| | - Qingling Wang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, PR China
| | - Zhonglan Zou
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, PR China
| | - Fanyan Zheng
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, PR China
| | - Aihua Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, PR China.
| |
Collapse
|
28
|
Zhang AL, Chen L, Ma L, Ding XJ, Tang SF, Zhang AH, Li J. Role of H3K18ac-regulated nucleotide excision repair-related genes in arsenic-induced DNA damage and repair of HaCaT cells. Hum Exp Toxicol 2020; 39:1168-1177. [PMID: 32031413 DOI: 10.1177/0960327120903482] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Arsenic is an environmental poison and is a grade I human carcinogen that can cause many types of damage to the body. The skin is one of the main target organs of arsenic damage, but the molecular mechanisms underlying arsenic poisoning are not clear. Arsenic is an epigenetic agent. Histone acetylation is one of the earliest covalent modifications to be discovered and is closely related to the occurrence and development of tumors. To investigate the role of acetylated histone H3K18 (H3K18 ac) in arsenic-induced DNA damage, HaCaT cells were exposed to sodium arsenite (NaAsO2) for 24 h. It was found that arsenic induced the downregulation of xeroderma pigmentosum A, D, and F (XPA, XPD, and XPF-nucleotide excision repair (NER)-related genes) expression, as well as histone H3K18 ac expression, and aggravated DNA damage. Chromatin immunoprecipitation quantitative polymerase chain reaction (ChIP-qPCR) analysis showed that H3K18 acetylation in the promoter regions of XPA, XPD, and XPF was downregulated. In addition, the use of the histone deacetylase inhibitor trichostatin A (TSA) partially inhibited arsenic-induced DNA damage, inhibited deacetylation of H3K18 ac in the promoter regions of XPA, XPD, and XPF genes, increased acetylation of H3K18, and promoted the transcriptional expression of NER-related genes. Our study revealed that NaAsO2 induces DNA damage and inhibits the expression of NER-related genes, while TSA increases the H3K18 ac enrichment level and promotes the transcriptional expression of NER, thereby inhibiting DNA damage. These findings provide new ideas for understanding the molecular mechanisms underlying arsenic-induced skin damage.
Collapse
Affiliation(s)
- A L Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
| | - L Chen
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
| | - L Ma
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
| | - X J Ding
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
| | - S F Tang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
| | - A H Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
| | - J Li
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
| |
Collapse
|
29
|
Dai X, Chen C, Xue J, Xiao T, Mostofa G, Wang D, Chen X, Xu H, Sun Q, Li J, Wei Y, Chen F, Quamruzzaman Q, Zhang A, Liu Q. Exosomal MALAT1 derived from hepatic cells is involved in the activation of hepatic stellate cells via miRNA-26b in fibrosis induced by arsenite. Toxicol Lett 2019; 316:73-84. [PMID: 31513886 DOI: 10.1016/j.toxlet.2019.09.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/28/2019] [Accepted: 09/08/2019] [Indexed: 12/15/2022]
Abstract
In the liver microenvironment, interactions among diverse types of hepatic cells are involved in liver fibrosis. In fibrotic tissues, exosomes act as transporters in intercellular communication. Long non-coding RNAs (lncRNAs) are involved in the activation of hepatic stellate cells (HSCs), which are participants in liver fibrosis. However, the functions of exosomal lncRNAs in liver fibrosis induced by arsenite are undefined. The purposes of the present study were (a) to determine if lncRNAs secreted from human hepatic (L-02) cells exposed to arsenite are shuttled to hepatic stellate LX-2 cells and (b) to establish their effects on LX-2 cells. In mice, MALAT1 was overexpressed in the progression of liver fibrosis induced by arsenite as well as in L-02 cells exposed to arsenite. Co-cultures with arsenite-treated L-02 cells induced the activation of LX-2 cells and overexpression of MALAT1. Arsenite-treated L-02 cells transported MALAT1 into LX-2 cells. Downregulation of MALAT1, which reduced the MALAT1 levels in exosomes derived from arsenite-treated L-02 cells, inhibited the activation of LX-2 cells. Additionally, exosomal MALAT1 derived from arsenite-treated L-02 cells promoted the activation of LX-2 cells via microRNA-26b regulation of COL1A2. Furthermore, circulating exosomal MALAT1 was up-regulated in people exposed to arsenite. In sum, exosomes derived from arsenite-treated hepatic cells transferred MALAT1 to HSCs, which induced their activation. These findings support the concept that, during liver fibrosis induced by arsenite, exosomal lncRNAs are involved in cell-cell communication.
Collapse
Affiliation(s)
- Xiangyu Dai
- Center for Global Health, China International Cooperation Center for Environment and Human Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Chao Chen
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, Henan, people's Republic of China
| | - Junchao Xue
- Center for Global Health, China International Cooperation Center for Environment and Human Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Tian Xiao
- Center for Global Health, China International Cooperation Center for Environment and Human Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Golam Mostofa
- Dhaka Community Hospital Trust, Dhaka 1217, Bangladesh
| | - Dapeng Wang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, People's Republic of China
| | - Xiong Chen
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, People's Republic of China
| | - Hui Xu
- Center for Global Health, China International Cooperation Center for Environment and Human Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Qian Sun
- Center for Global Health, China International Cooperation Center for Environment and Human Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Junjie Li
- Center for Global Health, China International Cooperation Center for Environment and Human Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Yongyue Wei
- Center for Global Health, China International Cooperation Center for Environment and Human Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Feng Chen
- Center for Global Health, China International Cooperation Center for Environment and Human Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | | | - Aihua Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, People's Republic of China
| | - Qizhan Liu
- Center for Global Health, China International Cooperation Center for Environment and Human Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China.
| |
Collapse
|
30
|
Xu Y, Zou Z, Liu Y, Wang Q, Sun B, Zeng Q, Liu Q, Zhang A. miR-191 is involved in renal dysfunction in arsenic-exposed populations by regulating inflammatory response caused by arsenic from burning arsenic-contaminated coal. Hum Exp Toxicol 2019; 39:37-46. [DOI: 10.1177/0960327119874423] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Chronic exposure to arsenic may result in the manifestation of damage in multiple organs or systems of the body. Arsenic-induced renal dysfunction has been determined, but their pathogenesis has not been fully examined. In this study, we measured the expression levels of miR-191 in plasma, the contents of pro-inflammatory (interleukin (IL)-6 and tumor necrosis factor alpha) and anti-inflammatory (IL-2 and transforming growth factor beta) cytokines, and renal dysfunction indicators (blood urea nitrogen, blood creatinine, uric acid, and cystatin C) in serum from control and arsenic poisoning populations and analyzed the relationship between the miR-191, cytokines, and renal dysfunction indicators. The results clearly show the alteration of miR-191 expression was significantly associated with arsenic-induced renal dysfunction. Overall, the association of miR-191, inflammatory response and renal dysfunction, is clearly supported by the current findings. In other words, miR-191 is involved in renal dysfunction in exposed populations by regulating inflammatory response caused by coal-burning arsenic. The study provides a scientific basis for further studies of the causes of the arsenic-induced renal dysfunction, the biological role of miR-191, and targeted prevention strategies.
Collapse
Affiliation(s)
- Y Xu
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
| | - Z Zou
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
| | - Y Liu
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
| | - Q Wang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
| | - B Sun
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
| | - Q Zeng
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
| | - Q Liu
- Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - A Zhang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
| |
Collapse
|
31
|
Zeng Q, Zou Z, Wang Q, Sun B, Liu Y, Liang B, Liu Q, Zhang A. Association and risk of five miRNAs with arsenic-induced multiorgan damage. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 680:1-9. [PMID: 31085440 DOI: 10.1016/j.scitotenv.2019.05.042] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/01/2019] [Accepted: 05/04/2019] [Indexed: 06/09/2023]
Abstract
Chronic exposure to arsenic remains a major environmental public health concern worldwide, affecting hundreds of millions of people. Arsenic-induced multiorgan damage and miRNA expression changes after arsenic exposure have been determined, but their associations and risks have not been fully examined. In this study, we measured the expression levels of five miRNAs in plasma from control and arsenic poisoned populations, and we analyzed the relationship between miRNAs and multiorgan damage. The results clearly show that the upregulation of miR-155 expression can increase the risk of arsenic induced skin damage (OR = 10.55; 95% CI: 6.02, 18.47); further, there is a link between the expression of miR-21 (OR = 11.84; 95% CI: 5.34, 26.28) and miR-145 (OR = 2.39; 95% CI: 1.61, 3.55) and liver damage, and miR-191 and kidney damage (OR = 3.65; 95% CI: 1.49, 8.93). In addition, we analyzed the diagnostic value of miRNAs associated with specific organ damage in arsenic-induced multiorgan damage. It was found that the miR-155 has a certain diagnostic value in arsenic-induced skin damage (AUC = 0.83), miR-21 and miR-145 have diagnostic value for liver damage (AUC = 0.80, 0.81) and miR-191 has diagnostic value for kidney damage (AUC = 0.83). This study provides the first comprehensive assessment of the association and risk of five miRNAs with arsenic-induced multiorgan damage. The study can provide a scientific basis for further understanding the causes of arsenic-induced multiorgan damage, identification of possible biological markers, and improvement of targeted prevention and control strategies.
Collapse
Affiliation(s)
- Qibing Zeng
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Zhonglan Zou
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Qingling Wang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Baofei Sun
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Yonglian Liu
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Bing Liang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Qizhan Liu
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Aihua Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China.
| |
Collapse
|
32
|
Wang D, Luo P, Zou Z, Wang Q, Yao M, Yu C, Wei S, Sun B, Zhu K, Zeng Q, Li J, Liang B, Zhang A. Alterations of arsenic levels in arsenicosis residents and awareness of its risk factors: A population-based 20-year follow-up study in a unique coal-borne arsenicosis County in Guizhou, China. ENVIRONMENT INTERNATIONAL 2019; 129:18-27. [PMID: 31102951 DOI: 10.1016/j.envint.2019.05.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/02/2019] [Accepted: 05/03/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Currently, most arsenic (As) studies in populations are concerned with water-borne arsenicosis. However, residents in Xingren County of Guizhou Province, Southwest of China, represent a unique case of arsenicosis which is related to indoor combustion of high As-containing coal. This study aimed to assess the alterations of As levels and its risk factors in coal-borne arsenicosis residents during the past 20 years. METHODS Four follow-up investigations in Xingren County were selected from the year 1998 to 2017, a total of 245, 272, 584, and 309 residents were involved in the four investigations, respectively. Local external environmental medium (coal, soil, water, air, rice, corn and chili peppers) and biological samples (urine, hair) were collected at each time of investigation for total As analysis. Sociodemographics and lifestyles variables were extracted from the questionnaire investigation. Both univariate and multivariate unconditional logistic regression models were performed to analyze the variation of risk factors for coal-borne arsenicosis. RESULTS A substantial reduction of total As levels was observed both in external environmental medium and biological samples in the unique coal-borne arsenicosis region, especially since the year 2006. In addition, age, duration of consuming high As-containing coal and smoking status were found to be the most significant risk factors for coal-borne arsenicosis during the past 20 years by both two different logistic regression models. Room ventilation and grain drying modes were no longer to be risk factors since 1998 survey. Annual household income had always been an important protective factor for coal-borne arsenicosis in recent 20 years by both two different logistic regression models. Grain storage modes had become significant protective factor in 2014 and 2017 survey. A certain correlation between sex, education and coal-borne arsenicosis was observed by univariate logistic regression model but no clear links were found by multivariate logistic regression model. CONCLUSIONS Considerable efforts to blocking As exposure from burning coal and As contaminated foods in this region are observed over the study period. Further practical health education programs may need to target individuals with long-term of As exposure, lower socioeconomic status and smoking in order to better prevent and control the occurrence and development of coal-borne arsenicosis.
Collapse
Affiliation(s)
- Dapeng Wang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, PR China
| | - Peng Luo
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, PR China
| | - Zhonglan Zou
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, PR China
| | - Qingling Wang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, PR China
| | - Maolin Yao
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, PR China
| | - Chun Yu
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, PR China
| | - Shaofeng Wei
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, PR China
| | - Baofei Sun
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, PR China
| | - Kai Zhu
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, PR China
| | - Qibing Zeng
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, PR China
| | - Jun Li
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, PR China
| | - Bing Liang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, PR China
| | - Aihua Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, PR China.
| |
Collapse
|
33
|
miR-145 via targeting ERCC2 is involved in arsenite-induced DNA damage in human hepatic cells. Toxicol Lett 2018; 295:220-228. [DOI: 10.1016/j.toxlet.2018.04.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 04/23/2018] [Accepted: 04/24/2018] [Indexed: 01/06/2023]
|
34
|
Zhou Q, Xi S. A review on arsenic carcinogenesis: Epidemiology, metabolism, genotoxicity and epigenetic changes. Regul Toxicol Pharmacol 2018; 99:78-88. [PMID: 30223072 DOI: 10.1016/j.yrtph.2018.09.010] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 09/08/2018] [Accepted: 09/12/2018] [Indexed: 12/19/2022]
Abstract
Long-term exposure to arsenic (inorganic arsenic) is a world-wide environmental health concern. Arsenic is classified as the Group 1 human carcinogen by the International Agency for Research on Cancer (IARC). Epidemiological studies have established a strong association between inorganic arsenic (iAs) exposure in drinking water and an increased incidence of cancer including bladder, liver, lung, prostate, and skin cancer. iAs also increases the risk of other diseases such as cardiovascular disease, hypertension and diabetes. The molecular mechanisms of carcinogenesis of iAs remain poorly defined, several mechanisms have been proposed, including genotoxicity, altered cell proliferation, oxidative stress, changes to the epigenome, disturbances of signal transduction pathways, cytotoxicity and regenerative proliferation. In this article, we will summarize current knowledge on the mechanisms of arsenic carcinogenesis and focus on integrating all these issues to garner a broader perspective.
Collapse
Affiliation(s)
- Qing Zhou
- Department of Environmental and Occupational Health, Liaoning Provincial Key Laboratory of Arsenic Biological Effect and Poisoning, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning Province, People's Republic of China
| | - Shuhua Xi
- Department of Environmental and Occupational Health, Liaoning Provincial Key Laboratory of Arsenic Biological Effect and Poisoning, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning Province, People's Republic of China.
| |
Collapse
|
35
|
Hu Y, Yu C, Yao M, Wang L, Liang B, Zhang B, Huang X, Zhang A. The PKCδ-Nrf2-ARE signalling pathway may be involved in oxidative stress in arsenic-induced liver damage in rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 62:79-87. [PMID: 29986281 DOI: 10.1016/j.etap.2018.05.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/24/2018] [Accepted: 05/21/2018] [Indexed: 06/08/2023]
Abstract
Arsenic poisoning is a worldwide endemic disease that affects thousands of people. Growing evidence from animal, cell, and human studies indicates that arsenic has deleterious effects on the liver. Oxidative stress is considered the primary mechanism for arsenic toxicity in liver damage. However, the mechanisms remain unclear. In light of this fact, the main objective of this study was to investigate the effects of the protein kinase C delta-nuclear factor E2-related factor 2-antioxidant response element (PKCδ-Nrf2-ARE) signalling pathway on oxidative stress in liver damage. In the present study, we used a model of liver damage induced by coal-burning arsenic in rats, which was set up by our research group. The oxidative stress index and the transcription and protein expression levels of PKCδ, Nrf2, Keap1, SOD1, and GPx1 were detected, and then their correlation analyses were carried out. The results demonstrated that coal-burning arsenic can cause oxidative stress liver damage in rats, which may be related to the PKCδ-Nrf2-ARE signalling pathway. This study may provide a new pathway for studies of the mechanisms of arsenism.
Collapse
Affiliation(s)
- Yong Hu
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Chun Yu
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Maolin Yao
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Lei Wang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Bing Liang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Bixia Zhang
- Forty-fourth Hospital of PLA, Guiyang, 550025, Guizhou, China
| | - Xiaoxin Huang
- Forty-fourth Hospital of PLA, Guiyang, 550025, Guizhou, China
| | - Aihua Zhang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, China.
| |
Collapse
|
36
|
Yang D, Yang X, Deng F, Guo X. Ambient Air Pollution and Biomarkers of Health Effect. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1017:59-102. [PMID: 29177959 DOI: 10.1007/978-981-10-5657-4_4] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Recently, the air pollution situation of our country is very serious along with the development of urbanization and industrialization. Studies indicate that the exposure of air pollution can cause a rise of incidence and mortality of many diseases, such as chronic obstructive pulmonary disease (COPD), asthma, myocardial infarction, and so on. However, there is now growing evidence showing that significant air pollution exposures are associated with early biomarkers in various systems of the body. In order to better prevent and control the damage effect of air pollution, this article summarizes comprehensively epidemiological studies about the bad effects on the biomarkers of respiratory system, cardiovascular system, and genetic and epigenetic system exposure to ambient air pollution.
Collapse
Affiliation(s)
- Di Yang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, No. 38 Xueyuan Road, Beijing, China
| | - Xuan Yang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, No. 38 Xueyuan Road, Beijing, China
| | - Furong Deng
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, No. 38 Xueyuan Road, Beijing, China.
| | - Xinbiao Guo
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, No. 38 Xueyuan Road, Beijing, China
| |
Collapse
|
37
|
Bhattacharjee P, Sanyal T, Bhattacharjee S, Bhattacharjee P. Epigenetic alteration of mismatch repair genes in the population chronically exposed to arsenic in West Bengal, India. ENVIRONMENTAL RESEARCH 2018; 163:289-296. [PMID: 29499398 DOI: 10.1016/j.envres.2018.01.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 01/04/2018] [Accepted: 01/06/2018] [Indexed: 06/08/2023]
Abstract
INTRODUCTION Arsenic exposure and its adverse health outcome, including the association with cancer risk are well established from several studies across the globe. The present study aims to analyze the epigenetic regulation of key mismatch repair (MMR) genes in the arsenic-exposed population. METHOD A case-control study was conducted involving two hundred twenty four (N=224) arsenic exposed [with skin lesion (WSL=110) and without skin lesion (WOSL=114)] and one hundred and two (N=102) unexposed individuals. The methylation status of key MMR genes i.e. MLH1, MSH2, and PMS2 were analyzed using methylation-specific PCR (MSP). The gene expression was studied by qRTPCR. The expression of H3K36me3, which was earlier reported to be an important regulator of MMR pathway, was assessed using ELISA. RESULTS Arsenic-exposed individuals showed significant promoter hypermethylation (p < 0.0001) of MLH1 and MSH2 compared to those unexposed with consequent down-regulation in their gene expression [MLH1 (p=0.001) and MSH2 (p<0.05)]. However, no significant association was found in expression and methylation of PMS2 with arsenic exposure. We found significant down-regulation of H3K36me3 in the arsenic-exposed group, most significantly in the WSL group (p<0.0001). The expression of SETD2, the methyltransferase of an H3K36me3 moiety was found to be unaltered in arsenic exposure, suggesting the involvement of other regulatory factors yet to be identified. DISCUSSION In summary, the epigenetic repression of DNA damage repair genes due to promoter hypermethylation of MLH1 and MSH2 and inefficient recruitment of MMR complex at the site of DNA damage owing to the reduced level of H3K36me3 impairs the mismatch repair pathway that might render the arsenic-exposed individuals more susceptible towards DNA damage and associated cancer risk.
Collapse
Affiliation(s)
- Pritha Bhattacharjee
- Department of Zoology, University of Calcutta, Kolkata 700019, India; Department of Environmental Science, University of Calcutta, Kolkata 700019, India
| | - Tamalika Sanyal
- Department of Zoology, University of Calcutta, Kolkata 700019, India; Department of Environmental Science, University of Calcutta, Kolkata 700019, India
| | | | - Pritha Bhattacharjee
- Department of Environmental Science, University of Calcutta, Kolkata 700019, India.
| |
Collapse
|
38
|
Wei B, Yu J, Kong C, Li H, Yang L, Guo Z, Cui N, Xia Y, Wu K. An investigation of the health effects caused by exposure to arsenic from drinking water and coal combustion: arsenic exposure and metabolism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:25947-25954. [PMID: 28940151 DOI: 10.1007/s11356-017-0203-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 09/12/2017] [Indexed: 06/07/2023]
Abstract
Few studies have been conducted to compare arsenic exposure, metabolism, and methylation in populations exposed to arsenic in drinking water and from coal combustion. Therefore, arsenic concentrations in the environment and arsenic speciation in the urine of subjects exposed to arsenic as a consequence of coal combustion in a rural area in Shaanxi province (CCA) and in drinking water in a rural area in Inner Mongolia (DWA) were investigated. The mean arsenic concentrations in drinking water, indoor air, and soil in CCA were 4.52 μg/L, 0.03 mg/m3, and 14.93 mg/kg, respectively. The mean arsenic concentrations in drinking water and soil in DWA were 144.71 μg/L and 10.19 mg/kg, respectively, while the level in indoor air was lower than the limit of detection. The total daily intakes of arsenic in DWA and CCA were 4.47 and 3.13 μg/day·kg, respectively. The mean urinary concentrations of inorganic arsenic (iAs), monomethylarsonic acid (MMA), dimethylarsenic acid (DMA), and total arsenic (TAs) for subjects with skin lesions in DWA were 50.41, 47.01, 202.66, and 300.08 μg/L. The concentrations for subjects without skin lesions were 49.76, 44.20, 195.60, and 289.56 μg/L, respectively. The %iAs, %MMA, and %DMA in the TAs in the urine of subjects from CCA were 12.24, 14.73, and 73.03%, while the corresponding values from DWA were 17.54, 15.57, and 66.89%, respectively. The subjects in DWA typically had a higher %iAs and %MMA, and a lower %DMA, and primary and secondary methylation index (PMI and SMI) than the subjects in CCA. It was concluded that the arsenic methylation efficiency of subjects in DWA and CCA was significantly influenced by chronic exposure to high levels of arsenic in the environment. The lower PMI and SMI values in DWA revealed lower arsenic methylation capacity due to ingestion of arsenic in drinking water. However, it remained unclear if the differences in arsenic metabolism between the two groups were due to differences in exposure levels or in exposure route.
Collapse
Affiliation(s)
- Binggan Wei
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11 A Datun Road, 100101, Beijing, People's Republic of China
| | - Jiangping Yu
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11 A Datun Road, 100101, Beijing, People's Republic of China
| | - Chang Kong
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11 A Datun Road, 100101, Beijing, People's Republic of China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Hairong Li
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11 A Datun Road, 100101, Beijing, People's Republic of China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China.
| | - Linsheng Yang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11 A Datun Road, 100101, Beijing, People's Republic of China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China.
| | - Zhiwei Guo
- Inner Mongolia Center for Disease Control and Research, Hohhot, China
| | - Na Cui
- Inner Mongolia Center for Disease Control and Research, Hohhot, China
| | - Yajuan Xia
- Inner Mongolia Center for Disease Control and Research, Hohhot, China
| | - Kegong Wu
- Inner Mongolia Center for Disease Control and Research, Hohhot, China
| |
Collapse
|
39
|
Zeng Q, Luo P, Gu J, Liang B, Liu Q, Zhang A. PKC θ-mediated Ca 2+/NF-AT signalling pathway may be involved in T-cell immunosuppression in coal-burning arsenic-poisoned population. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 55:44-50. [PMID: 28823652 DOI: 10.1016/j.etap.2017.08.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 07/17/2017] [Accepted: 08/06/2017] [Indexed: 06/07/2023]
Abstract
Arsenic poisoning is a worldwide endemic disease that affects thousands of people. Growing evidence from animal, cell, and human studies indicates that arsenic has deleterious effects on the immune system. The present investigation is a population-based study that observed changes in the proliferation of human T-cells and IL-2 and INF-γ mRNA expression. Our results show that coal-burning arsenic can cause T-cell immunosuppression in the population, and participates in the occurrence and development of arsenic poisoning. In addition, we analyzed the intracellular calcium index, expression of protein kinase C theta (PKC θ) and phosphorylated PKC θ, and the DNA-binding activity of NF-AT in peripheral blood mononuclear cells (PBMCs). Our analysis demonstrates that the PKC θ-mediated Ca2+/NF-AT signalling pathway may be involved in the T-cell immunosuppression of coal-burning arsenic-poisoned population. This study provides important data for a mechanistic understanding of endemic arsenic poisoning.
Collapse
Affiliation(s)
- Qibing Zeng
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, Guizhou Medical University, Guiyang 550025, Guizhou, China
| | - Peng Luo
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, Guizhou Medical University, Guiyang 550025, Guizhou, China
| | - Junying Gu
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, Guizhou Medical University, Guiyang 550025, Guizhou, China
| | - Bing Liang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, Guizhou Medical University, Guiyang 550025, Guizhou, China
| | - Qizhan Liu
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Aihua Zhang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, Guizhou Medical University, Guiyang 550025, Guizhou, China.
| |
Collapse
|
40
|
Al-Eryani L, Waigel S, Jala V, Jenkins SF, States JC. Cell cycle pathway dysregulation in human keratinocytes during chronic exposure to low arsenite. Toxicol Appl Pharmacol 2017; 331:130-134. [PMID: 28595984 PMCID: PMC5957280 DOI: 10.1016/j.taap.2017.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 05/31/2017] [Accepted: 06/02/2017] [Indexed: 11/25/2022]
Abstract
BACKGROUND Arsenic is naturally prevalent in the earth's crust and widely distributed in air and water. Chronic low arsenic exposure is associated with several cancers in vivo, including skin cancer, and with transformation in vitro of cell lines including immortalized human keratinocytes (HaCaT). Arsenic also is associated with cell cycle dysregulation at different exposure levels in multiple cell lines. In this work, we analyzed gene expression in HaCaT cells to gain an understanding of gene expression changes contributing to transformation at an early time point. METHODS HaCaT cells were exposed to 0 or 100nM NaAsO2 for 7weeks. Total RNA was purified and analyzed by microarray hybridization. Differential expression with fold change≥|1.5| and p-value≤0.05 was determined using Partek Genomic Suite™ and pathway and network analyses using MetaCore™ software (FDR≤0.05). Cell cycle analysis was performed using flow cytometry. RESULTS 644 mRNAs were differentially expressed. Cell cycle/cell cycle regulation pathways predominated in the list of dysregulated pathways. Genes involved in replication origin licensing were enriched in the network. Cell cycle assay analysis showed an increase in G2/M compartment in arsenite-exposed cells. CONCLUSIONS Arsenite exposure induced differential gene expression indicating dysregulation of cell cycle control, which was confirmed by cell cycle analysis. The results suggest that cell cycle dysregulation is an early event in transformation manifested in cells unable to transit G2/M efficiently. Further study at later time points will reveal additional changes in gene expression related to transformation processes.
Collapse
Affiliation(s)
- Laila Al-Eryani
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, United States
| | - Sabine Waigel
- Department of Medicine, University of Louisville, Louisville, KY, United States
| | - Venkatakrishna Jala
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, United States
| | - Samantha F Jenkins
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, United States
| | - J Christopher States
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, United States.
| |
Collapse
|
41
|
Luo F, Zou Z, Liu X, Ling M, Wang Q, Wang Q, Lu L, Shi L, Liu Y, Liu Q, Zhang A. Enhanced glycolysis, regulated by HIF-1α via MCT-4, promotes inflammation in arsenite-induced carcinogenesis. Carcinogenesis 2017; 38:615-626. [PMID: 28419250 DOI: 10.1093/carcin/bgx034] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 04/06/2017] [Indexed: 12/14/2022] Open
Abstract
Arsenite is well established as a human carcinogen, but the molecular mechanisms leading to arsenite-induced carcinogenesis are complex and elusive. Accelerated glycolysis, a common process in tumor cells called the Warburg effect, is associated with various biological phenomena. However, the role of glycolysis induced by arsenite is unknown. We have found that, with chronic exposure to arsenite, L-02 cells undergo a metabolic shift to glycolysis. In liver cells exposed to arsenite, hypoxia inducible factor-1α (HIF-1α) and monocarboxylate transporter-4 (MCT-4) are over-expressed. MCT-4, directly mediated by HIF-1α, maintains a high level of glycolysis, and the enhanced glycolysis promotes pro-inflammatory properties, which are involved in arsenite carcinogenesis. In addition, serum lactate and cytokines are higher in arsenite-exposed human populations, and there is a positive correlation between them. Moreover, there is a positive relationship between lactate and cytokines with arsenic in hair. In sum, these findings indicate that MCT-4, mediated by HIF-1α, enhances the glycolysis induced by arsenite. Lactate, the end product of glycolysis, is released into the extracellular environment. The acidic microenvironment promotes production of pro-inflammatory cytokines, which contribute to arsenite-induced liver carcinogenesis. These results provide a link between the induction of glycolysis and inflammation in liver cells exposed to arsenite, and thus establish a previously unknown mechanism for arsenite-induced hepatotoxicity.
Collapse
Affiliation(s)
- Fei Luo
- Institute of Toxicology.,The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Zhonglan Zou
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, People's Republic of China and
| | - Xinlu Liu
- Institute of Toxicology.,The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Min Ling
- Jiangsu Center for Disease Control and Prevention, Nanjing 210009, Jiangsu, People's Republic of China
| | - Qingling Wang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, People's Republic of China and
| | - Qi Wang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, People's Republic of China and
| | - Lu Lu
- Institute of Toxicology.,The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Le Shi
- Institute of Toxicology.,The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Yonglian Liu
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, People's Republic of China and
| | - Qizhan Liu
- Institute of Toxicology.,The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Aihua Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, People's Republic of China and
| |
Collapse
|
42
|
Sun B, Xue J, Li J, Luo F, Chen X, Liu Y, Wang Q, Qi C, Zou Z, Zhang A, Liu Q. Circulating miRNAs and their target genes associated with arsenism caused by coal-burning. Toxicol Res (Camb) 2017; 6:162-172. [PMID: 30090486 PMCID: PMC6062399 DOI: 10.1039/c6tx00428h] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 01/20/2017] [Indexed: 12/26/2022] Open
Abstract
Endemic arsenism, caused by burning coal containing high levels of arsenic, is found only in the Guizhou and Shanxi Provinces of China. Dysregulated microRNAs (miRNAs), detected in the blood, are emerging as promising biomarkers. At present, little is known about the change and clinical efficacy of circulating miRNAs in patients with endemic arsenism produced by burning of coal. Here, we determined, by using TaqMan Human miRNA Array Chips, the differential expression of plasma miRNAs between patients with arsenism caused by coal-burning and a control group. Four increased miRNAs (miR-21, miR-145, miR-155, and miR-191) were verified in a larger sample by quantitative real-time PCR. Furthermore, bioinformatics and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were used to associate changes in plasma levels of the miRNAs with their functions and their effects on various pathways. The results of chip array assays show that the levels of miR-21, miR-141, miR-148a, miR-145, miR-155, miR-191, miR-218, and miR-491 were most prominently increased and that the levels of miR-200b, miR-200c, miR-26, and miR-34c were decreased. The qRT-PCR results confirm that the circulating levels of miR-21, miR-145, miR-155, and miR-191 are increased in patients with arsenism caused by coal-burning. KEGG analyses show that these miRNAs inhibit the target genes of pathways related to immune inflammation, oxidative stress, and DNA damage repair. Therefore, the four miRNAs may be biomarkers of endemic arsenism caused by coal-burning. Further studies with larger samples should be performed to confirm these findings and to elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Baofei Sun
- Key Laboratory of Environmental Pollution Monitoring and Disease Control , Ministry of Education , Department of Toxicology , School of Public Health , Guizhou Medical University , Guiyang 550025 , Guizhou , China .
| | - Junchao Xue
- Institute of Toxicology , School of Public Health , Nanjing Medical University , Nanjing 211166 , Jiangsu , China . ; ; Tel: +86-25-8686-8424
| | - Jun Li
- Key Laboratory of Environmental Pollution Monitoring and Disease Control , Ministry of Education , Department of Toxicology , School of Public Health , Guizhou Medical University , Guiyang 550025 , Guizhou , China .
| | - Fei Luo
- Institute of Toxicology , School of Public Health , Nanjing Medical University , Nanjing 211166 , Jiangsu , China . ; ; Tel: +86-25-8686-8424
| | - Xiong Chen
- Key Laboratory of Environmental Pollution Monitoring and Disease Control , Ministry of Education , Department of Toxicology , School of Public Health , Guizhou Medical University , Guiyang 550025 , Guizhou , China .
| | - Yonglian Liu
- Key Laboratory of Environmental Pollution Monitoring and Disease Control , Ministry of Education , Department of Toxicology , School of Public Health , Guizhou Medical University , Guiyang 550025 , Guizhou , China .
| | - Qingling Wang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control , Ministry of Education , Department of Toxicology , School of Public Health , Guizhou Medical University , Guiyang 550025 , Guizhou , China .
| | - Caihua Qi
- Key Laboratory of Environmental Pollution Monitoring and Disease Control , Ministry of Education , Department of Toxicology , School of Public Health , Guizhou Medical University , Guiyang 550025 , Guizhou , China .
| | - Zhonglan Zou
- Key Laboratory of Environmental Pollution Monitoring and Disease Control , Ministry of Education , Department of Toxicology , School of Public Health , Guizhou Medical University , Guiyang 550025 , Guizhou , China .
| | - Aihua Zhang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control , Ministry of Education , Department of Toxicology , School of Public Health , Guizhou Medical University , Guiyang 550025 , Guizhou , China .
| | - Qizhan Liu
- Institute of Toxicology , School of Public Health , Nanjing Medical University , Nanjing 211166 , Jiangsu , China . ; ; Tel: +86-25-8686-8424
| |
Collapse
|
43
|
Luo F, Sun B, Li H, Xu Y, Liu Y, Liu X, Lu L, Li J, Wang Q, Wei S, Shi L, Lu X, Liu Q, Zhang A. A MALAT1/HIF-2α feedback loop contributes to arsenite carcinogenesis. Oncotarget 2016; 7:5769-87. [PMID: 26735578 PMCID: PMC4868720 DOI: 10.18632/oncotarget.6806] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 12/05/2015] [Indexed: 02/07/2023] Open
Abstract
Arsenic is well established as a human carcinogen, but the molecular mechanisms leading to arsenic-induced carcinogenesis are complex and elusive. It is also not known if lncRNAs are involved in arsenic-induced liver carcinogenesis. We have found that MALAT1, a non-coding RNA, is over-expressed in the sera of people exposed to arsenite and in hepatocellular carcinomas (HCCs), and MALAT1 has a close relation with the clinicopathological characteristics of HCC. In addition, hypoxia-inducible factor (HIF)-2α is up-regulated in HCCs, and MALAT1 and HIF-2α have a positive correlation in HCC tissues. During the malignant transformation of human hepatic epithelial (L-02) cells induced by a low concentration (2.0 μM) of arsenite, MALAT1 and HIF-2α are increased. In addition, arsenite-induced MALAT1 causes disassociation of the von Hippel-Lindau (VHL) protein from HIF-2α, therefore, alleviating VHL-mediated HIF-2α ubiquitination, which causes HIF-2α accumulation. In turn, HIF-2α transcriptionally regulates MALAT1, thus forming a positive feedback loop to ensure expression of arsenite-induced MALAT1 and HIF-2α, which are involved in malignant transformation. Moreover, MALAT1 and HIF-2α promote the invasive and metastatic capacities of arsenite-induced transformed L-02 cells and in HCC-LM3 cells. The capacities of MALAT1 and HIF-2α to promote tumor growth are validated in mouse xenograft models. In mice, arsenite induces an inflammatory response, and MALAT1 and HIF-2α are over-expressed. Together, these findings suggest that the MALAT1/HIF-2α feedback loop is involved in regulation of arsenite-induced malignant transformation. Our results not only confirm a novel mechanism involving reciprocal regulation between MALAT1 and HIF-2α, but also expand the understanding of the carcinogenic potential of arsenite.
Collapse
Affiliation(s)
- Fei Luo
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China.,The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Baofei Sun
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guiyang Medical University, Guiyang 550025, Guizhou, People's Republic of China
| | - Huiqiao Li
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Yuan Xu
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China.,The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China.,Thoracic and GI Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Yi Liu
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China.,The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Xinlu Liu
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China.,The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Lu Lu
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China.,The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Jun Li
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guiyang Medical University, Guiyang 550025, Guizhou, People's Republic of China
| | - Qingling Wang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guiyang Medical University, Guiyang 550025, Guizhou, People's Republic of China
| | - Shaofeng Wei
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guiyang Medical University, Guiyang 550025, Guizhou, People's Republic of China
| | - Le Shi
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China.,The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Xiaolin Lu
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China.,The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Qizhan Liu
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China.,The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Aihua Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guiyang Medical University, Guiyang 550025, Guizhou, People's Republic of China
| |
Collapse
|
44
|
Zhang A, Li H, Xiao Y, Chen L, Zhu X, Li J, Ma L, Pan X, Chen W, He Z. Aberrant methylation of nucleotide excision repair genes is associated with chronic arsenic poisoning. Biomarkers 2016; 22:429-438. [PMID: 27685703 DOI: 10.1080/1354750x.2016.1217933] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
OBJECTIVE To define whether aberrant methylation of DNA repair genes is associated with chronic arsenic poisoning. METHODS Hundred and two endemic arsenicosis patients and 36 healthy subjects were recruited. Methylight and bisulfite sequencing (BSP) assays were used to examine the methylation status of ERCC1, ERCC2 and XPC genes in peripheral blood lymphocytes (PBLs) and skin lesions of arsenicosis patients and NaAsO2-treated HaCaT cells. RESULTS Hypermethylation of ERCC1 and ERCC2 and suppressed gene expression were found in PBLs and skin lesions of arsenicosis patients and was correlated with the level of arsenic exposure. Particularly, the expression of ERCC1 and ERCC2 was associated with the severity of skin lesions. In vitro studies revealed an induction of ERCC2 hypermethylation and decreased mRNA expression in response to NaAsO2 treatment. CONCLUSION Hypermethylation of ERCC1 and ERCC2 and concomitant suppression of gene expression might be served as the epigenetic marks associated with arsenic exposure and adverse health effects.
Collapse
Affiliation(s)
- Aihua Zhang
- a The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education Department of Toxicology , School of Public Health, Guizhou Medical University , Guiyang , China
| | - Huiyao Li
- b Department of Toxicology, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment , School of Public Health, Sun Yat-Sen University , Guangzhou , China
| | - Yun Xiao
- a The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education Department of Toxicology , School of Public Health, Guizhou Medical University , Guiyang , China
| | - Liping Chen
- b Department of Toxicology, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment , School of Public Health, Sun Yat-Sen University , Guangzhou , China
| | - Xiaonian Zhu
- c Department of Toxicology, School of Public Health , Guilin Medical University , Guilin , China
| | - Jun Li
- a The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education Department of Toxicology , School of Public Health, Guizhou Medical University , Guiyang , China
| | - Lu Ma
- a The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education Department of Toxicology , School of Public Health, Guizhou Medical University , Guiyang , China
| | - Xueli Pan
- a The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education Department of Toxicology , School of Public Health, Guizhou Medical University , Guiyang , China
| | - Wen Chen
- b Department of Toxicology, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment , School of Public Health, Sun Yat-Sen University , Guangzhou , China
| | - Zhini He
- b Department of Toxicology, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment , School of Public Health, Sun Yat-Sen University , Guangzhou , China
| |
Collapse
|
45
|
Li J, Ma L, Wang X, Li D, Zeng Q, Xing X, Li C, Xie L, Chen L, Chen W, Zhang A. Modifications of H3K9me2, H3K36me3 and H4K20me2 may be involved in arsenic-induced genetic damage. Toxicol Res (Camb) 2016; 5:1380-1387. [PMID: 30090442 DOI: 10.1039/c6tx00117c] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 06/19/2016] [Indexed: 12/16/2022] Open
Abstract
Endemic arsenic poisoning is a worldwide disease and many studies show that arsenic has obvious genetic toxicity. However, the mechanism of arsenic-induced genetic damage is unclear. In this study, coal-fired arsenic poisoning patients in the Guizhou Province, China, were selected as research subjects. Through an analysis of the relationship between genetic damage and histone modification levels and by comparing the control and arsenic poisoning groups, further analysis of their relationship was carried out, the aim being to explore the role of histone modification in arsenic-induced genetic damage. The result shows that arsenic may inhibit the modification level of H4K20me2 and H3K9me2, and increase the modification of H3K36me3, involved in the repair of DNA damage induced by arsenic. This study could provide a new pathway for studies of the genetic toxicity of arsenic.
Collapse
Affiliation(s)
- Jun Li
- Key Laboratory of Environmental Pollution Monitoring and Disease Control , Ministry of Education , Department of Toxicology , School of Public Health , Guiyang Medical University , Guiyang 550025 , China . ; Tel: +86-851-86780815
| | - Lu Ma
- Key Laboratory of Environmental Pollution Monitoring and Disease Control , Ministry of Education , Department of Toxicology , School of Public Health , Guiyang Medical University , Guiyang 550025 , China . ; Tel: +86-851-86780815
| | - Xilan Wang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control , Ministry of Education , Department of Toxicology , School of Public Health , Guiyang Medical University , Guiyang 550025 , China . ; Tel: +86-851-86780815
| | - Daochuan Li
- Department of Toxicology , Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment , School of Public Health , Sun Yat-sen University , Guangzhou 510080 , China . ; ; Tel: +86-20-87330599
| | - Qibing Zeng
- Key Laboratory of Environmental Pollution Monitoring and Disease Control , Ministry of Education , Department of Toxicology , School of Public Health , Guiyang Medical University , Guiyang 550025 , China . ; Tel: +86-851-86780815
| | - Xiumei Xing
- Department of Toxicology , Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment , School of Public Health , Sun Yat-sen University , Guangzhou 510080 , China . ; ; Tel: +86-20-87330599
| | - Chenggui Li
- Key Laboratory of Environmental Pollution Monitoring and Disease Control , Ministry of Education , Department of Toxicology , School of Public Health , Guiyang Medical University , Guiyang 550025 , China . ; Tel: +86-851-86780815
| | - Lang Xie
- Key Laboratory of Environmental Pollution Monitoring and Disease Control , Ministry of Education , Department of Toxicology , School of Public Health , Guiyang Medical University , Guiyang 550025 , China . ; Tel: +86-851-86780815
| | - Li Chen
- Key Laboratory of Environmental Pollution Monitoring and Disease Control , Ministry of Education , Department of Toxicology , School of Public Health , Guiyang Medical University , Guiyang 550025 , China . ; Tel: +86-851-86780815
| | - Wen Chen
- Department of Toxicology , Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment , School of Public Health , Sun Yat-sen University , Guangzhou 510080 , China . ; ; Tel: +86-20-87330599
| | - Aihua Zhang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control , Ministry of Education , Department of Toxicology , School of Public Health , Guiyang Medical University , Guiyang 550025 , China . ; Tel: +86-851-86780815
| |
Collapse
|
46
|
Mauro M, Caradonna F, Klein CB. Dysregulation of DNA methylation induced by past arsenic treatment causes persistent genomic instability in mammalian cells. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2016; 57:137-50. [PMID: 26581878 PMCID: PMC5008255 DOI: 10.1002/em.21987] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 10/29/2015] [Accepted: 10/31/2015] [Indexed: 05/21/2023]
Abstract
The mechanisms by which arsenic-induced genomic instability is initiated and maintained are poorly understood. To investigate potential epigenetic mechanisms, in this study we evaluated global DNA methylation levels in V79 cells and human HaCaT keratinocytes at several time points during expanded growth of cell cultures following removal of arsenite exposures. We have found altered genomic methylation patterns that persisted up to 40 cell generations in HaCaT cells after the treatments were withdrawn. Moreover, mRNA expression levels were evaluated by RT-PCR for DNMT1, DNMT3A, DNMT3B, HMLH1, and HMSH2 genes, demonstrating that the down regulation of DNMT3A and DNMT3B genes, but not DNMT1, occurred in an arsenic dose-dependent manner, and persisted for many cell generations following removal of the arsenite, offering a plausible mechanism of persistently genotoxic arsenic action. Analyses of promoter methylation status of the DNA mismatch repair genes HMLH1 and HMSH2 show that HMSH2, but not HMLH1, was epigenetically regulated by promoter hypermethylation changes following arsenic treatment. The results reported here demonstrate that arsenic exposure promptly induces genome-wide global DNA hypomethylation, and some specific gene promoter methylation changes, that persist for many cell generations following withdrawal of arsenite, supporting the hypothesis that the cells undergo epigenetic reprogramming at both the gene and genome level that is durable over many cell generations in the absence of further arsenic treatment. These DNA methylation changes, in concert with other known epigenome alterations, are likely contributing to long-lasting arsenic-induced genomic instability that manifests in several ways, including aberrant chromosomal effects.
Collapse
Affiliation(s)
- Maurizio Mauro
- Dipartimento Di Scienze E Tecnologie Biologiche Chimiche E Farmaceutiche (STEBICEF, Sezione Di Biologia Cellulare) Universita Di Palermo, Italia
| | - Fabio Caradonna
- Dipartimento Di Scienze E Tecnologie Biologiche Chimiche E Farmaceutiche (STEBICEF, Sezione Di Biologia Cellulare) Universita Di Palermo, Italia
| | - Catherine B. Klein
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987
| |
Collapse
|
47
|
Xu YY, Zeng QB, Yao ML, Yu C, Li J, Zhang AH. A possible new mechanism and drug intervention for kidney damage due to arsenic poisoning in rats. Toxicol Res (Camb) 2016; 5:511-518. [PMID: 30090365 PMCID: PMC6061977 DOI: 10.1039/c5tx00165j] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 12/30/2015] [Indexed: 11/21/2022] Open
Abstract
Arsenic poisoning is a worldwide endemic disease that affects thousands of people. Currently, the aetiology of the disease is known, but its pathogenesis is uncharacterized and there is no specific treatment. We established a rat model of coal-burning arsenic poisoning by feeding the animals corn powder baked with high arsenic coal. By observing subsequent changes in kidney and immune function, we found that arsenic induces both kidney and immune damage. Furthermore, there is a significant correlation between kidney and immune damage. Moreover, Ginkgo biloba, a known immune enhancer, was used as an intervention agent in arsenic poisoned rats to validate the relationship between kidney and immune damage. Meanwhile, we also explored the mechanism of Ginkgo biloba treatment of kidney damage in burning-coal arsenic poisoned rats. We found that Ginkgo biloba enhanced immune function in rats with arsenic poisoning and ameliorated arsenic-induced kidney damage. These results suggest that immune suppression may be one of the mechanisms underlying arsenic-induced kidney damage and that Ginkgo biloba might relieve kidney damage by enhancing immune function.
Collapse
Affiliation(s)
- Yu-Yan Xu
- Key Laboratory of Environment Pollution Monitoring and Disease Control , Ministry of Education; Department of Toxicology , School of Public Health , Guizhou Medical University , Guiyang , Guizhou 550025 , China . ; ; Tel: +86 851 8841 6172
| | - Qi-Bing Zeng
- Key Laboratory of Environment Pollution Monitoring and Disease Control , Ministry of Education; Department of Toxicology , School of Public Health , Guizhou Medical University , Guiyang , Guizhou 550025 , China . ; ; Tel: +86 851 8841 6172
| | - Mao-Lin Yao
- Key Laboratory of Environment Pollution Monitoring and Disease Control , Ministry of Education; Department of Toxicology , School of Public Health , Guizhou Medical University , Guiyang , Guizhou 550025 , China . ; ; Tel: +86 851 8841 6172
| | - Chun Yu
- Key Laboratory of Environment Pollution Monitoring and Disease Control , Ministry of Education; Department of Toxicology , School of Public Health , Guizhou Medical University , Guiyang , Guizhou 550025 , China . ; ; Tel: +86 851 8841 6172
| | - Jun Li
- Key Laboratory of Environment Pollution Monitoring and Disease Control , Ministry of Education; Department of Toxicology , School of Public Health , Guizhou Medical University , Guiyang , Guizhou 550025 , China . ; ; Tel: +86 851 8841 6172
| | - Ai-Hua Zhang
- Key Laboratory of Environment Pollution Monitoring and Disease Control , Ministry of Education; Department of Toxicology , School of Public Health , Guizhou Medical University , Guiyang , Guizhou 550025 , China . ; ; Tel: +86 851 8841 6172
| |
Collapse
|
48
|
Arain MB, Kazi TG, Baig JA, Afridi HI, Sarajuddin, Brehman KD, Panhwar H, Arain SS. Co-exposure of arsenic and cadmium through drinking water and tobacco smoking: risk assessment on kidney dysfunction. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:350-7. [PMID: 25074830 DOI: 10.1007/s11356-014-3339-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 07/13/2014] [Indexed: 06/03/2023]
Abstract
The combined exposure of arsenic (As) and cadmium (Cd) causes more pronounced renal toxicity. The study aimed to evaluate the level of As and Cd in biological samples (blood and urine) of adults males, age ranged (30-50 years) exposed referent (ER) and exposed kidney patients (EKP), consumed contaminated drinking water of lake and smoking local cigarettes manufactured by tobacco plants grown on agricultural soil, irrigated with contaminated lake water. For comparative purpose age matched nonexoposed referent (NR) and nonexposed kidney patient (NKP), consumed municipal treaded water and smoking branded cigarette were also selected. The As and Cd levels in drinking water, biological samples, tobacco of branded and nonbranded cigarettes were analyzed using electrothermal atomic absorption spectrometry. The As and Cd concentrations in lake water were higher than the permissible limit recommended by the World Health Organization for drinking water. The As and Cd levels in local cigarette tobacco were found to be 3- to 4-folds higher than branded cigarettes. The biochemical parameters especially urinary N-acetyl-β-glucosaminidase (NAG) of ER, EKP, ER, and EKP subjects were studied as a biomarkers of renal dysfunction. The NAG values were found to be higher in EKP as compared to NKP (p < 0.01). The linear regressions showed higher correlations between As and Cd concentrations in water versus blood and urine samples of EKP (r = 0.71-0.78 and 0.68-0.72), as compared to NKP (p < 0.05).
Collapse
Affiliation(s)
- Muhammad B Arain
- Department of Chemistry, Abdul Wali Khan University Mardan, Mardan, 23200, KP., Pakistan,
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Zhang A, Gao C, Han X, Wang L, Yu C, Zeng X, Chen L, Li D, Chen W. Inactivation of p15 INK4b in chronic arsenic poisoning cases. Toxicol Rep 2014; 1:692-698. [PMID: 28962283 PMCID: PMC5598098 DOI: 10.1016/j.toxrep.2014.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Revised: 07/30/2014] [Accepted: 08/13/2014] [Indexed: 11/27/2022] Open
Abstract
Arsenic exposure from burning high arsenic-containing coal has been associated with human skin lesion and cancer. However, the mechanisms of arsenic-related carcinogenesis are not fully understood. Inactivation of critical tumor suppression genes by epigenetic regulation or genetic modification might contribute to arsenic-induced carcinogenicity. This study aims to clarify the correlation between arsenic pollution and functional defect of p15INK4b gene in arsenic exposure residents from a region of Guizhou Province, China. To this end, 103 arsenic exposure residents and 105 control subjects were recruited in this study. The results showed that the exposure group exhibited higher levels of urinary and hair arsenic compared with the control group (55.28 vs 28.87 μg/L, 5.16 vs 1.36 μg/g). Subjects with higher arsenic concentrations are more likely to have p15INK4b methylation and gene deletion (χ2 = 4.28, P = 0.04 and χ2 = 4.31, P = 0.04). We also found that the degree of p15INK4b hypermethylation and gene deletion occurred at higher incidence in the poisoning cases with skin cancer (3.7% and 14.81% in non-skin cancer group, 41.18% and 47.06 in skin cancer group), and were significantly associated with the stage of skin lesions (χ2 = 12.82, P < 0.01 and χ2 = 7.835, P = 0.005). These observations indicate that inactivation of p15INK4b through genetic alteration or epigenetic modification is a common event that is associated with arsenic exposure and the development of arsenicosis.
Collapse
Affiliation(s)
- Aihua Zhang
- Department of Toxicology, School of Public Health, Guiyang Medical University, Guiyang 550004, China
| | - Chen Gao
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xue Han
- Department of Toxicology, School of Public Health, Guiyang Medical University, Guiyang 550004, China
| | - Lifang Wang
- Department of Toxicology, School of Public Health, Guiyang Medical University, Guiyang 550004, China
| | - Chun Yu
- Department of Toxicology, School of Public Health, Guiyang Medical University, Guiyang 550004, China
| | - Xiaowen Zeng
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Liping Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Daochuan Li
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Wen Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
50
|
Zeng QB, Xu YY, Yu X, Yang J, Hong F, Zhang AH. The combined effects of fluorine and arsenic on renal function in a Chinese population. Toxicol Res (Camb) 2014. [DOI: 10.1039/c4tx00038b] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Chronic exposure to combined fluoride and arsenic continues to be a major public health problem worldwide, affecting thousands of people. The results clearly show that the combined effect of fluoride and arsenic on renal function is mainly antagonism at these exposure levels.
Collapse
Affiliation(s)
- Qi-bing Zeng
- Guiyang Medical University
- School of Public Health
- Guiyang 550004, P.R. China
| | - Yu-yan Xu
- Guiyang Medical University
- School of Public Health
- Guiyang 550004, P.R. China
| | - Xian Yu
- Guiyang Centers for Diseases Control and Prevention
- Guiyang 550001, P.R. China
| | - Jun Yang
- Guiyang Centers for Diseases Control and Prevention
- Guiyang 550001, P.R. China
| | - Feng Hong
- Guiyang Medical University
- School of Public Health
- Guiyang 550004, P.R. China
| | - Ai-hua Zhang
- Guiyang Medical University
- School of Public Health
- Guiyang 550004, P.R. China
| |
Collapse
|