1
|
Chambliss SE, Matsui EC, Zárate RA, Zigler CM. The Role of Neighborhood Air Pollution in Disparate Racial and Ethnic Asthma Acute Care Use. Am J Respir Crit Care Med 2024; 210:178-185. [PMID: 38412262 PMCID: PMC11273303 DOI: 10.1164/rccm.202307-1185oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 02/27/2024] [Indexed: 02/29/2024] Open
Abstract
Rationale: The share of Black or Latinx residents in a census tract remains associated with asthma-related emergency department (ED) visit rates after controlling for socioeconomic factors. The extent to which evident disparities relate to the within-city heterogeneity of long-term air pollution exposure remains unclear. Objectives: To investigate the role of intraurban spatial variability of air pollution in asthma acute care use disparity. Methods: An administrative database was used to define census tract population-based incidence rates of asthma-related ED visits. We estimate the associations between census tract incidence rates and 1) average fine and coarse particulate matter, nitrogen dioxide (NO2), and sulfur dioxide (SO2), and 2) racial and ethnic composition using generalized linear models controlling for socioeconomic and housing covariates. We also examine for the attenuation of incidence risk ratios (IRRs) associated with race/ethnicity when controlling for air pollution exposure. Measurements and Main Results: Fine and coarse particulate matter and SO2 are all associated with census tract-level incidence rates of asthma-related ED visits, and multipollutant models show evidence of independent risk associated with coarse particulate matter and SO2. The association between census tract incidence rate and Black resident share (IRR, 1.51 [credible interval (CI), 1.48-1.54]) is attenuated by 24% when accounting for air pollution (IRR, 1.39 [CI, 1.35-1.42]), and the association with Latinx resident share (IRR, 1.11 [CI, 1.09-1.13]) is attenuated by 32% (IRR, 1.08 [CI, 1.06-1.10]). Conclusions: Neighborhood-level rates of asthma acute care use are associated with local air pollution. Controlling for air pollution attenuates associations with census tract racial/ethnic composition, suggesting that intracity variability in air pollution could contribute to neighborhood-to-neighborhood asthma morbidity disparities.
Collapse
Affiliation(s)
- Sarah E. Chambliss
- Department of Population Health
- Center for Health and Environment: Education and Research, and
| | - Elizabeth C. Matsui
- Department of Population Health
- Center for Health and Environment: Education and Research, and
- Department of Pediatrics, Dell Medical School, University of Texas at Austin, Austin, Texas; and
| | | | - Corwin M. Zigler
- Center for Health and Environment: Education and Research, and
- Department of Statistics and Data Sciences, The University of Texas at Austin, Austin, Texas
| |
Collapse
|
2
|
Giang A, Edwards MR, Fletcher SM, Gardner-Frolick R, Gryba R, Mathias JD, Venier-Cambron C, Anderies JM, Berglund E, Carley S, Erickson JS, Grubert E, Hadjimichael A, Hill J, Mayfield E, Nock D, Pikok KK, Saari RK, Samudio Lezcano M, Siddiqi A, Skerker JB, Tessum CW. Equity and modeling in sustainability science: Examples and opportunities throughout the process. Proc Natl Acad Sci U S A 2024; 121:e2215688121. [PMID: 38498705 PMCID: PMC10990085 DOI: 10.1073/pnas.2215688121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024] Open
Abstract
Equity is core to sustainability, but current interventions to enhance sustainability often fall short in adequately addressing this linkage. Models are important tools for informing action, and their development and use present opportunities to center equity in process and outcomes. This Perspective highlights progress in integrating equity into systems modeling in sustainability science, as well as key challenges, tensions, and future directions. We present a conceptual framework for equity in systems modeling, focused on its distributional, procedural, and recognitional dimensions. We discuss examples of how modelers engage with these different dimensions throughout the modeling process and from across a range of modeling approaches and topics, including water resources, energy systems, air quality, and conservation. Synthesizing across these examples, we identify significant advances in enhancing procedural and recognitional equity by reframing models as tools to explore pluralism in worldviews and knowledge systems; enabling models to better represent distributional inequity through new computational techniques and data sources; investigating the dynamics that can drive inequities by linking different modeling approaches; and developing more nuanced metrics for assessing equity outcomes. We also identify important future directions, such as an increased focus on using models to identify pathways to transform underlying conditions that lead to inequities and move toward desired futures. By looking at examples across the diverse fields within sustainability science, we argue that there are valuable opportunities for mutual learning on how to use models more effectively as tools to support sustainable and equitable futures.
Collapse
Affiliation(s)
- Amanda Giang
- Institute for Resources, Environment and Sustainability, University of British Columbia, Vancouver, BCV6T 1Z4, Canada
- Department of Mechanical Engineering, University of British Columbia, Vancouver, BCV6T 1Z4, Canada
| | - Morgan R. Edwards
- La Follette School of Public Affairs, University of Wisconsin-Madison, Madison, WI53706
- Nelson Institute Center for Sustainability and the Global Environment, University of Wisconsin-Madison, Madison, WI53706
| | - Sarah M. Fletcher
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA94305
- Woods Institute for the Environment, Stanford University, Stanford, CA94305
| | - Rivkah Gardner-Frolick
- Department of Mechanical Engineering, University of British Columbia, Vancouver, BCV6T 1Z4, Canada
| | - Rowenna Gryba
- Department of Statistics, University of British Columbia, Vancouver, BCV6T 1Z4, Canada
- Department of Geography, University of British Columbia, Vancouver, BCV6T 1Z4, Canada
- Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BCV6T 1Z4, Canada
| | - Jean-Denis Mathias
- Université Clermont Auvergne, INRAE, UR LISC, Centre de Clermont-Ferrand, AubièreF-63178, France
| | - Camille Venier-Cambron
- Department of Environmental Geography, Instituut voor Milieuvraagstukken, Vrije Universiteit Amsterdam, Amsterdam1081 HV, The Netherlands
| | - John M. Anderies
- School of Sustainability, Arizona State University, Tempe, AZ85287
| | - Emily Berglund
- Department of Civil Construction, and Environmental Engineering, North Carolina State University, Raleigh, NC27695
| | - Sanya Carley
- Kleinman Center for Energy Policy, Stuart Weitzman School of Design, Department of City Planning, University of Pennsylvania, Philadelphia, PA19104
| | - Jacob Shimkus Erickson
- Nelson Institute Center for Sustainability and the Global Environment, University of Wisconsin-Madison, Madison, WI53706
- Department of Agricultural and Applied Economics, University of Wisconsin-Madison, Madison, WI53706
| | - Emily Grubert
- Keough School of Global Affairs, University of Notre Dame, Notre Dame, IN46556
| | - Antonia Hadjimichael
- Department of Geosciences, College of Earth and Mineral Sciences, Pennsylvania State University, University Park, PA16802
- Earth and Environmental Systems Institute, College of Earth and Mineral Sciences, Pennsylvania State University, University Park, PA16802
| | - Jason Hill
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, Minneapolis, MN55455
| | - Erin Mayfield
- Thayer School of Engineering, Dartmouth College, Hanover, NH03755
| | - Destenie Nock
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA15213
| | - Kimberly Kivvaq Pikok
- International Arctic Research Center, University of Alaska Fairbanks, Fairbanks, AK99775
| | - Rebecca K. Saari
- Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, ONN2L 3G1, Canada
| | - Mateo Samudio Lezcano
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA15213
| | - Afreen Siddiqi
- Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Jennifer B. Skerker
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA94305
| | - Christopher W. Tessum
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL61801
| |
Collapse
|
3
|
Bradley A, Croes BE, Harkins C, McDonald BC, de Gouw JA. Air Pollution Inequality in the Denver Metroplex and its Relationship to Historical Redlining. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4226-4236. [PMID: 38380822 PMCID: PMC10919081 DOI: 10.1021/acs.est.3c03230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/22/2024]
Abstract
Prior studies have shown that people of color (POC) in the United States are exposed to higher levels of pollution than non-Hispanic White people. We show that the city of Denver, Colorado, displays similar race- and ethnicity-based air pollution disparities by using a combination of high-resolution satellite data, air pollution modeling, historical demographic information, and areal apportionment techniques. TROPOMI NO2 columns and modeled PM2.5 concentrations from 2019 are higher in communities subject to redlining. We calculated and compared Spearman coefficients for pollutants and race at the census tract level for every city that underwent redlining to contextualize the disparities in Denver. We find that the location of polluting infrastructure leads to higher populations of POC living near point sources, including 40% higher Hispanic and Latino populations. This influences pollution distribution, with annual average PM2.5 surface concentrations of 6.5 μg m-3 in census tracts with 0-5% Hispanic and Latino populations and 7.5 μg m-3 in census tracts with 60-65% Hispanic and Latino populations. Traffic analysis and emission inventory data show that POC are more likely to live near busy highways. Unequal spatial distribution of pollution sources and POC have allowed for pollution disparities to persist despite attempts by the city to rectify them. Finally, we identify the core causes of the pollution disparities to provide direction for remediation.
Collapse
Affiliation(s)
- Alexander
C. Bradley
- University
of Colorado Boulder, Boulder, Colorado 80309, United States
- Cooperative
Institute for Research in Environmental Sciences, Boulder, Colorado 80309, United States
| | - Bart E. Croes
- Cooperative
Institute for Research in Environmental Sciences, Boulder, Colorado 80309, United States
| | - Colin Harkins
- Cooperative
Institute for Research in Environmental Sciences, Boulder, Colorado 80309, United States
- Chemical
Sciences Laboratory, National Oceanic and
Atmospheric Administration, Boulder, Colorado 80305, United States
| | - Brian C. McDonald
- Chemical
Sciences Laboratory, National Oceanic and
Atmospheric Administration, Boulder, Colorado 80305, United States
| | - Joost A. de Gouw
- University
of Colorado Boulder, Boulder, Colorado 80309, United States
- Cooperative
Institute for Research in Environmental Sciences, Boulder, Colorado 80309, United States
| |
Collapse
|
4
|
Yoo EH, Cooke A, Eum Y. Examining the geographical distribution of air pollution disparities across different racial and ethnic groups: Incorporating workplace addresses. Health Place 2023; 84:103112. [PMID: 37776713 DOI: 10.1016/j.healthplace.2023.103112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 09/07/2023] [Accepted: 09/07/2023] [Indexed: 10/02/2023]
Abstract
BACKGROUND Most previous studies on air pollution exposure disparities among racial and ethnic groups in the US have been limited to residence-based exposure and have given little consideration to population mobility and spatial patterns of residences, workplaces, and air pollution. This study aimed to examine air pollution exposure disparities by racial and ethnic groups while explicitly accounting for both the work-related activity of the population and localized spatial patterns of residential segregation, clustering of workplaces, and variability of air pollutant concentration. METHOD In the present study, we assessed population-level exposure to air pollution using tabulated residence and workplace addresses of formally employed workers from LEHD Origin-Destination Employment Statistics (LODES) data at the census tract level across eight Metropolitan Statistical Areas (MSAs). Combined with annual-averaged predictions for three air pollutants (PM2.5, NO2, O3), we investigated racial and ethnic disparities in air pollution exposures at home and workplaces using pooled (i.e., across eight MSAs) and regional (i.e., with each MSA) data. RESULTS We found that non-White groups consistently had the highest levels of exposure to all three air pollutants, at both their residential and workplace locations. Narrower exposure disparities were found at workplaces than residences across all three air pollutants in the pooled estimates, due to substantially lower workplace segregation than residential segregation. We also observed that racial disparities in air pollution exposure and the effect of considering work-related activity in the exposure assessment varied by region, due to both the levels and patterns of segregation in the environments where people spend their time and the local heterogeneity of air pollutants. CONCLUSIONS The results indicated that accounting for workplace activity illuminates important variation between home- and workplace-based air pollution exposure among racial and ethnic groups, especially in the case of NO2. Our findings suggest that consideration of both activity patterns and place-based exposure is important to improve our understanding of population-level air pollution exposure disparities, and consequently to health disparities that are closely linked to air pollution exposure.
Collapse
Affiliation(s)
- Eun-Hye Yoo
- Department of Geography, State University of New York at Buffalo, Buffalo, NY, USA.
| | - Abigail Cooke
- Department of Geography, State University of New York at Buffalo, Buffalo, NY, USA
| | - Youngseob Eum
- Department of Geography & Earth Sciences, The University of North Carolina at Charlotte, Charlotte, NC, USA
| |
Collapse
|
5
|
Bechle M, Millet DB, Marshall JD. Ambient NO 2 Air Pollution and Public Schools in the United States: Relationships with Urbanicity, Race-Ethnicity, and Income. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2023; 10:844-850. [PMID: 37840817 PMCID: PMC10569168 DOI: 10.1021/acs.estlett.3c00507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 10/17/2023]
Abstract
Schools may have important impacts on children's exposure to ambient air pollution, yet ambient air quality at schools is not consistently tracked. We characterize ambient air quality at home and school locations in the United States using satellite-based empirical model (i.e., land use regression) estimates of outdoor annual nitrogen dioxide (NO2). We report disparities by race-ethnicity and impoverishment status, and investigate differences by level of urbanicity. Average NO2 levels at home and school for racial-ethnic minoritized students are 18-22% higher than average (and 37-39% higher than for non-Hispanic, white students). Minoritized students are less likely than their white peers to live (0.55 times) and attend school (0.58 times) in areas below the World Health Organization's NO2 guideline. Predominantly minoritized schools (i.e., >50% minoritized students) are less likely than predominantly white schools (0.43 times) to be in locations below the guideline. Income and race-ethnicity impacts are intertwined, yet in large cities, racial disparities persist after controlling for income.
Collapse
Affiliation(s)
- Matthew
J. Bechle
- Department
of Civil & Environmental Engineering, University of Washington, 201 More Hall, Seattle, Washington 98195, United States
| | - Dylan B. Millet
- Department
of Soil, Water, and Climate, University
of Minnesota, 439 Borlaug
Hall, St. Paul, Minnesota 55108, United States
| | - Julian D. Marshall
- Department
of Civil & Environmental Engineering, University of Washington, 201 More Hall, Seattle, Washington 98195, United States
| |
Collapse
|
6
|
Buxton MA, Fleischer NL, Ro A, O’Neill MS. Structural racism, air pollution and the association with adverse birth outcomes in the United States: the value of examining intergenerational associations. FRONTIERS IN EPIDEMIOLOGY 2023; 3:1190407. [PMID: 38455927 PMCID: PMC10910959 DOI: 10.3389/fepid.2023.1190407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/26/2023] [Indexed: 03/09/2024]
Abstract
Structurally racist policies and practices of the past are likely to be a driving factor in current day differences in exposure to air pollution and may contribute to observed racial and ethnic disparities in adverse birth outcomes in the United States (U.S.). Non-Hispanic Black women in the U.S. experience poorer health outcomes during pregnancy and throughout the life course compared to non-Hispanic White women. This disparity holds even among non-Hispanic Black women with higher socioeconomic status. Reasons for this finding remain unclear, but long-term environmental exposure, either historical exposure or both historical and ongoing exposure, may contribute. Structural racism likely contributes to differences in social and environmental exposures by race in the U.S. context, and these differences can affect health and wellbeing across multiple generations. In this paper, we briefly review current knowledge and recommendations on the study of race and structural racism in environmental epidemiology, specifically focused on air pollution. We describe a conceptual framework and opportunities to use existing historical data from multiple sources to evaluate multi-generational influences of air pollution and structurally racist policies on birth and other relevant health outcomes. Increased analysis of this kind of data is critical for our understanding of structural racism's impact on multiple factors, including environmental exposures and adverse health outcomes, and identifying how past policies can have enduring legacies in shaping health and well-being in the present day. The intended purpose of this manuscript is to provide an overview of the widespread reach of structural racism, its potential association with health disparities and a comprehensive approach in environmental health research that may be required to study and address these problems in the U.S. The collaborative and methodological approaches we highlight have the potential to identify modifiable factors that can lead to effective interventions for health equity.
Collapse
Affiliation(s)
- Miatta A. Buxton
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, United States
| | - Nancy L. Fleischer
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, United States
| | - Annie Ro
- Department of Health, Society, and Behavior, Program in Public Health, University of California, Irvine, Irvine, CA, United States
| | - Marie S. O’Neill
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, United States
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
7
|
Gallagher CL, Holloway T, Tessum CW, Jackson CM, Heck C. Combining Satellite-Derived PM 2.5 Data and a Reduced-Form Air Quality Model to Support Air Quality Analysis in US Cities. GEOHEALTH 2023; 7:e2023GH000788. [PMID: 37181009 PMCID: PMC10169548 DOI: 10.1029/2023gh000788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 05/16/2023]
Abstract
Air quality models can support pollution mitigation design by simulating policy scenarios and conducting source contribution analyses. The Intervention Model for Air Pollution (InMAP) is a powerful tool for equitable policy design as its variable resolution grid enables intra-urban analysis, the scale of which most environmental justice inquiries are levied. However, InMAP underestimates particulate sulfate and overestimates particulate ammonium formation, errors that limit the model's relevance to city-scale decision-making. To reduce InMAP's biases and increase its relevancy for urban-scale analysis, we calculate and apply scaling factors (SFs) based on observational data and advanced models. We consider both satellite-derived speciated PM2.5 from Washington University and ground-level monitor measurements from the U.S. Environmental Protection Agency, applied with different scaling methodologies. Relative to ground-monitor data, the unscaled InMAP model fails to meet a normalized mean bias performance goal of <±10% for most of the PM2.5 components it simulates (pSO4: -48%, pNO3: 8%, pNH4: 69%), but with city-specific SFs it achieves the goal benchmarks for every particulate species. Similarly, the normalized mean error performance goal of <35% is not met with the unscaled InMAP model (pSO4: 53%, pNO3: 52%, pNH4: 80%) but is met with the city-scaling approach (15%-27%). The city-specific scaling method also improves the R 2 value from 0.11 to 0.59 (ranging across particulate species) to the range of 0.36-0.76. Scaling increases the percent pollution contribution of electric generating units (EGUs) (nationwide 4%) and non-EGU point sources (nationwide 6%) and decreases the agriculture sector's contribution (nationwide -6%).
Collapse
Affiliation(s)
- Ciaran L. Gallagher
- Nelson Institute Center for Sustainability and the Global EnvironmentUniversity of Wisconsin—MadisonMadisonWIUSA
| | - Tracey Holloway
- Nelson Institute Center for Sustainability and the Global EnvironmentUniversity of Wisconsin—MadisonMadisonWIUSA
- Department of Atmospheric and Oceanic SciencesUniversity of Wisconsin—MadisonMadisonWIUSA
| | - Christopher W. Tessum
- Department of Civil and Environmental EngineeringUniversity of Illinois—Urbana‐ChampaignUrbanaILUSA
| | - Clara M. Jackson
- Nelson Institute Center for Sustainability and the Global EnvironmentUniversity of Wisconsin—MadisonMadisonWIUSA
| | - Colleen Heck
- Nelson Institute Center for Sustainability and the Global EnvironmentUniversity of Wisconsin—MadisonMadisonWIUSA
| |
Collapse
|
8
|
Jia C, Fu X, Smith L. Dataset of atmospheric concentrations of polycyclic aromatic hydrocarbons in the Memphis Tri-state Area. Data Brief 2023; 47:108923. [PMID: 36747981 PMCID: PMC9898583 DOI: 10.1016/j.dib.2023.108923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023] Open
Abstract
This dataset contains concentrations (in ng/m3) of 32 polycyclic aromatic hydrocarbons (PAHs) in the ambient air in the Memphis Tri-state Area (MTA). In the atmosphere, PAHs are toxic pollutants emitted from incomplete combustion sources. This monitoring campaign was conducted at 19 sites in three neighboring counties in Tennessee, Mississippi, and Arkansas, i.e., MTA, over one year. The monitoring sites represented industrial, urban, suburban, and remote land types. Total suspended particulate (TSP) samples were collected at each site using a high-volume sampler every 12 days from March 13th, 2018, to May 25th, 2019. The collection media consisted of a quartz fiber filter (QFF) and a glass thimble containing polyurethane foam (PUF) and XAD-4 resin that collected particulate- and gas-phase PAHs. Approximately 288 m3 of ambient air was drawn over 24 h. The QFF and sorbents were extracted together in an accelerated solvent extraction (ASE) system, and the extract was then nitrogen blown down to 1 ml in an automatic evaporator, and the final extract was analyzed for 32 target PAHs on a gas chromatography/mass spectrometry (GC/MS) system operated in the select-ion-monitoring (SIM) mode. The US Environmental Protection Agency (EPA) reviewed and approved the sampling and analytical protocols. The dataset also has site descriptions, sampling information, and analytical performance. This PAH dataset can be used to explore atmospheric chemistry and sources of PAHs, estimate population exposures to airborne PAHs and the associated health risks, and address environmental health disparities.
Collapse
Affiliation(s)
- Chunrong Jia
- School of Public Health, University of Memphis, Memphis, TN 38152, USA
| | - Xianqiang Fu
- School of Public Health, University of Memphis, Memphis, TN 38152, USA
| | - Larry Smith
- Shelby County Health Department, Memphis, TN 38134, USA
| |
Collapse
|
9
|
Liu J, Marshall JD. Spatial Decomposition of Air Pollution Concentrations Highlights Historical Causes for Current Exposure Disparities in the United States. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2023; 10:280-286. [PMID: 36938149 PMCID: PMC10019334 DOI: 10.1021/acs.estlett.2c00826] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Racial-ethnic disparities in exposure to air pollution in the United States (US) are well documented. Studies on the causes of these disparities highlight unequal systems of power and longstanding systemic racism-for example, redlining, white flight, and racial covenants-which reinforced racial segregation and wealth gaps and which concentrated polluting land uses in communities of color. Our analysis is based on empirical estimates of ambient concentrations for two important pollutants (NO2 and PM2.5). We show that spatially decomposed concentrations can be used to infer and quantify types of root causes for local- to national-scale disparities. Urban-scale segregation is important yet reflects less than half of the overall national disparities. Other historical causes of national exposure disparities include those that led current populations of Black, Asian, and Hispanic Americans to live in larger cities; those outcomes are consistent with, for example, greater economic opportunity in large cities, land-takings from non-White farmers, and racism in homesteading and between-state migration. Our results suggest that contemporary national exposure disparities in the US reflect a broad set of historical local- to national-scale mechanisms-including racist laws and actions that include, but also extend beyond, urban-scale aspects-and offer a first attempt to quantify their relative importance.
Collapse
Affiliation(s)
- Jiawen Liu
- Department
of Civil and Environmental Engineering, University of Washington, Seattle, Washington 98125, United States
| | - Julian D. Marshall
- Department
of Civil and Environmental Engineering, University of Washington, Seattle, Washington 98125, United States
| |
Collapse
|
10
|
Hicken MT, Payne-Sturges D, McCoy E. Evaluating Race in Air Pollution and Health Research: Race, PM 2.5 Air Pollution Exposure, and Mortality as a Case Study. Curr Environ Health Rep 2023; 10:1-11. [PMID: 36689136 PMCID: PMC10947792 DOI: 10.1007/s40572-023-00390-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2022] [Indexed: 01/24/2023]
Abstract
PURPOSE OF REVIEW Racial inequities in air pollution exposure have been documented. There is also interest in documenting the modifying role of race in the link between air pollution and health. However, the empirical literature in this area has yielded mixed results with potentially unclear policy implications. We critically evaluate recent empirical papers on the interactive association between race and air pollution exposure on adult mortality in the USA as a case study of the race, pollution, and health literature. Specifically, we evaluate these studies for the conceptualization and discussion of race and the use of race variables that may contribute to the ambiguous results and policy implications both in this specific literature and in the broader literature. RECENT FINDINGS We evaluate ten empirical studies from 2016 to 2022 on the modifying role of race in the association between short- and long-term PM2.5 exposure and specific types of adult mortality (all cause, non-accidental, and heart or cardiovascular diseases) in the USA. In addition to comparing and contrasting the empirical results, we focus our review on the conceptualization, measurement, modeling, and discussion of race and the race variables. Overall, the results indicate no consistent role of race in the association between PM2.5 exposure and mortality. Moreover, conceptualization and discussion of race was often brief and incomplete, even when the empirical results were unexpected or counterintuitive. To build on recent discussions in the epidemiology and environmental epidemiology literature more specifically, we provide a detailed discussion of the meaning of race, the race variables, and the cultural and structural racism that some argue are proxied by race variables. We use theoretical scholarship from the humanities and social sciences along with empirical work from the environmental literature to provide recommendations for future research that can provide an evidence base to inform both social and environmental policy.
Collapse
Affiliation(s)
- Margaret T Hicken
- Institute for Social Research, University of Michigan, 426 Thompson Street3358 ISR, Ann Arbor, MI, 48106, USA.
| | - Devon Payne-Sturges
- School of Public Health, Maryland Institute for Applied Environmental Health, University of Maryland, 255 Valley Drive, College Park, MD, 20742, USA
| | - Ember McCoy
- School for Environment and Sustainability, University of Michigan, 440 Church Street; 4503 Dana, Ann Arbor, MI, 48109, USA
| |
Collapse
|