1
|
Taylor MD, Langdon KA, Smith JA, Stevenson G, Edge K. Polychlorinated dibenzodioxins/furans and dioxin-like polychlorinated biphenyls in fish and crustaceans of a recreationally fished estuary, following targeted remediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171089. [PMID: 38387567 DOI: 10.1016/j.scitotenv.2024.171089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/24/2024] [Accepted: 02/17/2024] [Indexed: 02/24/2024]
Abstract
Polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs) and dioxin-like polychlorinated biphenyls (dl-PCBs) are a suite of harmful chemicals (hereafter collectively referred to as 'dioxins'), and their emission into aquatic habitats leads to persistent contamination of sediments, aquatic food-webs, and seafoods. Quantifying contaminant levels in seafood species is important for the ongoing management of exposure risk by fishers, particularly after any remediation actions. We present dioxin concentrations in four seafood species (Yellowfin Bream Acanthopagrus australis, Sea Mullet Mugil cephalus, Eastern School Prawn Metapenaeus macleayi, and Eastern King Prawn Penaeus plebejus) in a recreationally fished estuary, in relation to a contaminated site that has undergone a remediation process, partially removing contaminated sediments (Homebush Bay, Port Jackson, New South Wales, Australia). Dioxin concentrations in these species were measured before (2005/6) and after (2015/16) remediation at a range of locations in and around the remediated site. Dioxin concentrations and congener profiles differed substantially among taxa, and concentrations were frequently higher than Australian screening criteria. The two prawn species showed evidence of a decline in dioxin concentrations after remediation, but the fish species only showed a declining dioxin concentration with distance from the contaminated site (not between periods). There were some minor changes in the congener profile for some species following remediation. While there was evidence for greatly reduced dioxin concentrations in prawn species following remediation, the complex patterns for fish were likely affected by environmental changes, species-specific and temporal changes in lipid content, and animal movement patterns. Future monitoring may aid interpretation of the patterns and modelling of exposure risk associated with seafood consumption into the future.
Collapse
Affiliation(s)
- Matthew D Taylor
- Port Stephens Fisheries Institute, New South Wales Department of Primary Industries, Locked Bag 1, Nelson Bay, New South Wales 2315, Australia; School of Environmental and Life Sciences, University of Newcastle, New South Wales 2308, Australia; The University of Queensland, Queensland Alliance for Environmental Health Sciences, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia.
| | - Kate A Langdon
- Environment Protection Science, New South Wales Department of Planning and Environment, 480 Weeroona Road, Lidcombe, New South Wales 2141, Australia
| | - James A Smith
- Port Stephens Fisheries Institute, New South Wales Department of Primary Industries, Locked Bag 1, Nelson Bay, New South Wales 2315, Australia
| | - Gavin Stevenson
- National Measurement Institute, Department of Industry, Science and Resources, 105 Delhi Road, Sydney, New South Wales 2113, Australia
| | - Katelyn Edge
- Environment Protection Science, New South Wales Department of Planning and Environment, 480 Weeroona Road, Lidcombe, New South Wales 2141, Australia
| |
Collapse
|
2
|
Morantes G, Jones B, Molina C, Sherman MH. Harm from Residential Indoor Air Contaminants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:242-257. [PMID: 38150532 PMCID: PMC10785761 DOI: 10.1021/acs.est.3c07374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/29/2023]
Abstract
This study presents a health-centered approach to quantify and compare the chronic harm caused by indoor air contaminants using disability-adjusted life-year (DALY). The aim is to understand the chronic harm caused by airborne contaminants in dwellings and identify the most harmful. Epidemiological and toxicological evidence of population morbidity and mortality is used to determine harm intensities, a metric of chronic harm per unit of contaminant concentration. Uncertainty is evaluated in the concentrations of 45 indoor air contaminants commonly found in dwellings. Chronic harm is estimated from the harm intensities and the concentrations. The most harmful contaminants in dwellings are PM2.5, PM10-2.5, NO2, formaldehyde, radon, and O3, accounting for over 99% of total median harm of 2200 DALYs/105 person/year. The chronic harm caused by all airborne contaminants in dwellings accounts for 7% of the total global burden from all diseases.
Collapse
Affiliation(s)
- Giobertti Morantes
- Department
of Architecture and Built Environment, University
of Nottingham, Nottingham NG7 2RD, U.K.
| | - Benjamin Jones
- Department
of Architecture and Built Environment, University
of Nottingham, Nottingham NG7 2RD, U.K.
| | - Constanza Molina
- Escuela
de Construcción Civil, Pontificia
Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile
| | - Max H. Sherman
- Department
of Architecture and Built Environment, University
of Nottingham, Nottingham NG7 2RD, U.K.
| |
Collapse
|
3
|
Grundy JS, Lambert MK, Burgess RM. Passive Sampling-Based versus Conventional-Based Metrics for Evaluating Remediation Efficacy at Contaminated Sediment Sites: A Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:10151-10172. [PMID: 37364241 PMCID: PMC10404352 DOI: 10.1021/acs.est.3c00232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Passive sampling devices (PSDs) are increasingly used at contaminated sites to improve the characterization of contaminant transport and assessment of ecological and human health risk at sediment sites and to evaluate the effectiveness of remedial actions. The use of PSDs after full-scale remediation remains limited, however, in favor of evaluation based on conventional metrics, such as bulk sediment concentrations or bioaccumulation. This review has three overall aims: (1) identify sites where PSDs have been used to support cleanup efforts, (2) assess how PSD-derived remedial end points compare to conventional metrics, and (3) perform broad semiquantitative and selective quantitative concurrence analyses to evaluate the magnitude of agreement between metrics. Contaminated sediment remedies evaluated included capping, in situ amendment, dredging and monitored natural recovery (MNR). We identify and discuss 102 sites globally where PSDs were used to determine remedial efficacy resulting in over 130 peer-reviewed scientific publications and numerous technical reports and conference proceedings. The most common conventional metrics assessed alongside PSDs in the peer-reviewed literature were bioaccumulation (39%), bulk sediments (40%), toxicity (14%), porewater grab samples (16%), and water column grab samples (16%), while about 25% of studies used PSDs as the sole metric. In a semiquantitative concurrence analysis, the PSD-based metrics agreed with conventional metrics in about 68% of remedy assessments. A more quantitative analysis of reductions in bioaccumulation after remediation (i.e., remediation was successful) showed that decreases in uptake into PSDs agreed with decreases in bioaccumulation (within a factor of 2) 61% of the time. Given the relatively good agreement between conventional and PSD-based metrics, we propose several practices and areas for further study to enhance the utilization of PSDs throughout the remediation of contaminated sediment sites.
Collapse
Affiliation(s)
- James S Grundy
- Oak Ridge Institute for Science and Education c/o U.S. Environmental Protection Agency, ORD/CEMM, Atlantic Coastal Environmental Sciences Division, Narragansett, Rhode Island 02882, United States
- U.S. Environmental Protection Agency, OLEM, Office of Superfund Remediation and Technology Innovation, Edison, New Jersey 08837, United States
| | - Matthew K Lambert
- U.S. Environmental Protection Agency, OLEM, Office of Superfund Remediation and Technology Innovation, Washington, District of Columbia 20460, United States
| | - Robert M Burgess
- U.S. Environmental Protection Agency, ORD/CEMM, Atlantic Coastal Environmental Sciences Division, Narragansett, Rhode Island 02882, United States
| |
Collapse
|
4
|
Matson PG, Stevenson LM, Efroymson RA, Jett RT, Jones MW, Peterson MJ, Mathews TJ. Variation in natural attenuation rates of polychlorinated biphenyls (PCBs) in fish from streams and reservoirs in East Tennessee observed over a 35-year period. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129427. [PMID: 35797787 DOI: 10.1016/j.jhazmat.2022.129427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/14/2022] [Accepted: 06/18/2022] [Indexed: 06/15/2023]
Abstract
Environmental contamination due to human activities is a major concern, particularly for persistent chemicals. Within catchments, persistent chemicals linked to negative health outcomes such as polychlorinated biphenyls (PCBs) have great potential to be transported, through adsorption or biological uptake, with downstream locations acting as sinks for accumulation. Here we present long-term trends in PCB bioaccumulation in fish found in lower-order tributaries on the Oak Ridge Reservation, an impacted US Department of Energy property in East Tennessee, USA, and a large reservoir system adjacent to it composed of parts of the Clinch and Tennessee Rivers. Given that the reservoir system has experienced no direct PCB mitigation activities, this record offers an opportunity to explore potential natural attenuation of PCBs within a large lotic ecosystem. Attenuation rates ranged from 0% to 8% yr-1 in minnows and sunfish at stream sites and 5.4-11.3% yr-1 in catfish at reservoir sites. These rates are comparable to findings from similar studies in other regions, suggesting a consistency in responses since the banning of PCB production in 1979. Further, results suggest that PCB sources from discharge outfalls are important locally but are not primarily responsible for sustaining PCB contamination in downstream reservoirs.
Collapse
Affiliation(s)
- Paul G Matson
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Louise M Stevenson
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Rebecca A Efroymson
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - R Trent Jett
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Michael W Jones
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Mark J Peterson
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Teresa J Mathews
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
5
|
Bako CM, Mattes TE, Marek RF, Hornbuckle KC, Schnoor JL. Biodegradation of PCB congeners by Paraburkholderia xenovorans LB400 in presence and absence of sediment during lab bioreactor experiments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 271:116364. [PMID: 33412450 PMCID: PMC8183161 DOI: 10.1016/j.envpol.2020.116364] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 12/04/2020] [Accepted: 12/19/2020] [Indexed: 05/21/2023]
Abstract
Experiments were conducted to measure biodegradation of polychlorinated biphenyl (PCB) congeners contained in mixture Aroclor 1248 and congeners present in wastewater lagoon sediment contaminated decades earlier at Altavista, Virginia. A well-characterized strain of aerobic PCB-degrading bacteria, Paraburkholderia xenovorans LB400 was incubated in laboratory bioreactors with PCB-contaminated sediment collected at the site. The experiments evaluated strain LB400's ability to degrade PCBs in absence of sediment and in PCB-contaminated sediment slurry. In absence of sediment, LB400 transformed 76% of Aroclor 1248 within seven days, spanning all homolog groups present in the mixture. In sediment slurry, only mono- and di-chlorinated PCB congeners were transformed. These results show that LB400 is capable of rapidly biodegrading most PCB congeners when they are freely dissolved in liquid but cannot degrade PCB congeners having three or more chlorine substituents in sediment slurry. Finally, using GC/MS-MS triple quadrupole spectrometry, this work distinguishes between physical (sorption to cells) and biological removal mechanisms, illuminates the process by which microorganisms with LB400-type congener specificity can selectively transform lower-chlorinated congeners over time, and makes direct comparisons to other studies where individual congener data is reported.
Collapse
Affiliation(s)
- Christian M Bako
- The Department of Civil & Environmental Engineering, 4105 Seamans Center for the Engineering Arts & Sciences, University of Iowa, Iowa City, IA, USA, 52245
| | - Timothy E Mattes
- The Department of Civil & Environmental Engineering, 4105 Seamans Center for the Engineering Arts & Sciences, University of Iowa, Iowa City, IA, USA, 52245
| | - Rachel F Marek
- The Department of Civil & Environmental Engineering, 4105 Seamans Center for the Engineering Arts & Sciences, University of Iowa, Iowa City, IA, USA, 52245
| | - Keri C Hornbuckle
- The Department of Civil & Environmental Engineering, 4105 Seamans Center for the Engineering Arts & Sciences, University of Iowa, Iowa City, IA, USA, 52245
| | - Jerald L Schnoor
- The Department of Civil & Environmental Engineering, 4105 Seamans Center for the Engineering Arts & Sciences, University of Iowa, Iowa City, IA, USA, 52245.
| |
Collapse
|
6
|
Muthukumar J, Selvasekaran P, Lokanadham M, Chidambaram R. Food and food products associated with food allergy and food intolerance – An overview. Food Res Int 2020; 138:109780. [DOI: 10.1016/j.foodres.2020.109780] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/01/2020] [Accepted: 10/04/2020] [Indexed: 02/07/2023]
|
7
|
Sun YC, Han SC, Yao MZ, Wang YM, Geng LW, Wang P, Lu WH, Liu HB. High-throughput metabolomics method based on liquid chromatography-mass spectrometry: Insights into the underlying mechanisms of salinity-alkalinity exposure-induced metabolites changes in Barbus capito. J Sep Sci 2020; 44:497-512. [PMID: 33164302 DOI: 10.1002/jssc.202000861] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 11/01/2020] [Accepted: 11/04/2020] [Indexed: 01/13/2023]
Abstract
It is critical to investigate the adaptive development and the physiological mechanism of fish in external stimulation. In this study, the response of Barbus capito to salinity-alkalinity exposure was explored by high-throughput nontargeted and liquid chromatography-mass spectrometry-based metabolomics to investigate metabolic biomarker and pathway changes. Meanwhile, the biochemical indexes of Barbus capito were measured to discover the chronic impairment response to salinity-alkalinity exposures. A total of 29 tissue metabolites were determined to deciphering the endogenous metabolic changes of fishes during the different concentration salinity-alkalinity exposures environment, which were mainly involved in the key metabolism including the phenylalanine, tyrosine, and tryptophan biosynthesis, arachidonic acid metabolism, pyruvate metabolism, citrate cycle, and glycerophospholipid metabolism. Finally, we found the amino acid metabolism as key target was associated with the endogenous metabolites and metabolic pathways of Barbus capito to salinity-alkalinity exposures. In conclusion, metabolomics is a potentially powerful tool to reveal the mechanism information of fish in various exposure environments.
Collapse
Affiliation(s)
- Yan-Chun Sun
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences/Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Ministry of Agriculture and Rural Areas, Harbin, P. R. China
| | - Shi-Cheng Han
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences/Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Ministry of Agriculture and Rural Areas, Harbin, P. R. China
| | - Ming-Zhu Yao
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences/Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Ministry of Agriculture and Rural Areas, Harbin, P. R. China.,Department of Food Science and Engineering, College of Food Science and Technology, Shanghai Ocean University, Shanghai, P. R. China
| | - Yu-Mei Wang
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences/Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Ministry of Agriculture and Rural Areas, Harbin, P. R. China
| | - Long-Wu Geng
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences/Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Ministry of Agriculture and Rural Areas, Harbin, P. R. China
| | - Peng Wang
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences/Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Ministry of Agriculture and Rural Areas, Harbin, P. R. China
| | - Wei-Hong Lu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, P. R. China
| | - Hong-Bai Liu
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences/Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Ministry of Agriculture and Rural Areas, Harbin, P. R. China
| |
Collapse
|
8
|
Nicole W. Unbalanced Burden? Potential Population-Level Health Risks and Benefits of Superfund Cleanup. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:84003. [PMID: 32840394 PMCID: PMC7446771 DOI: 10.1289/ehp7050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 03/17/2020] [Indexed: 06/11/2023]
|
9
|
Kvasnicka J, Burton GA, Semrau J, Jolliet O. Dredging Contaminated Sediments: Is it Worth the Risks? ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:515. [PMID: 31995839 DOI: 10.1002/etc.4679] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 01/14/2020] [Accepted: 01/27/2020] [Indexed: 06/10/2023]
Affiliation(s)
- Jacob Kvasnicka
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - G Allen Burton
- School for Environment and Sustainability, University of Michigan, Ann Arbor, Michigan, USA
| | - Jeremy Semrau
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Olivier Jolliet
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|