1
|
Iwata A, Shimizu K, Kawasaki H, Okada A, Inoshima Y. Lipopolysaccharide and lipoteichoic acid enhance serum amyloid A3 mRNA expression in murine alveolar epithelial cells. J Vet Med Sci 2019; 81:1409-1412. [PMID: 31391358 PMCID: PMC6863727 DOI: 10.1292/jvms.19-0154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Serum amyloid A (SAA) is an acute-phase protein indicative of inflammation. In murine
colonic epithelial cells, lipopolysaccharide (LPS), a gram-negative bacterial antigen,
strongly enhanced mRNA expression of SAA3, but not SAA1 or SAA2, suggesting that SAA3
might respond to bacterial infection in other epithelia. We examined SAA1/2 and SAA3 mRNA
expression in murine alveolar epithelial cells exposed to LPS or the gram-positive
bacterial antigen, lipoteichoic acid (LTA), using real-time PCR. LPS enhanced SAA3 mRNA
expression at lower concentrations than did LTA, whereas SAA1/2 mRNA expression was not
enhanced by either LPS or LTA. These results suggest that SAA3 expression is enhanced in
lung epithelium upon bacterial infection as part of innate immunity, with higher
sensitivity to LPS than to LTA.
Collapse
Affiliation(s)
- Ami Iwata
- Laboratory of Food and Environmental Hygiene, Cooperative Department of Veterinary Medicine, Gifu University, Gifu 501-1193, Japan
| | - Kaori Shimizu
- Laboratory of Food and Environmental Hygiene, Cooperative Department of Veterinary Medicine, Gifu University, Gifu 501-1193, Japan
| | - Haruka Kawasaki
- Laboratory of Food and Environmental Hygiene, Cooperative Department of Veterinary Medicine, Gifu University, Gifu 501-1193, Japan
| | - Ayaka Okada
- Laboratory of Food and Environmental Hygiene, Cooperative Department of Veterinary Medicine, Gifu University, Gifu 501-1193, Japan.,Education and Research Center for Food Animal Health, Gifu University (GeFAH), Gifu 501-1193, Japan
| | - Yasuo Inoshima
- Laboratory of Food and Environmental Hygiene, Cooperative Department of Veterinary Medicine, Gifu University, Gifu 501-1193, Japan.,Education and Research Center for Food Animal Health, Gifu University (GeFAH), Gifu 501-1193, Japan.,The United Graduate School of Veterinary Sciences, Gifu University, Gifu 501-1193, Japan.,Joint Graduate School of Veterinary Sciences, Gifu University, Gifu 501-1193, Japan
| |
Collapse
|
2
|
C22-bronchial and T7-alveolar epithelial cell lines of the immortomouse are excellent murine cell culture model systems to study pulmonary peroxisome biology and metabolism. Histochem Cell Biol 2015; 145:287-304. [DOI: 10.1007/s00418-015-1385-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2015] [Indexed: 10/22/2022]
|
3
|
Libreros S, Garcia-Areas R, Keating P, Gazaniga N, Robinson P, Humbles A, Iragavarapu-Charyulu VL. Allergen induced pulmonary inflammation enhances mammary tumor growth and metastasis: Role of CHI3L1. J Leukoc Biol 2015; 97:929-940. [PMID: 25765679 DOI: 10.1189/jlb.3a0214-114rr] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 02/16/2015] [Accepted: 02/17/2015] [Indexed: 12/22/2022] Open
Abstract
Metastasis is the primary cause of mortality in women with breast cancer. Metastasis to the lungs is greater in patients with pulmonary inflammatory illnesses. It is unknown how pre-existing pulmonary inflammation affects mammary tumor progression. We developed a novel breast cancer model in which pulmonary inflammation is induced in mice prior to tumor cell implantation. In the present study, we determined how pre-existing allergen-induced inflammation changes the pulmonary microenvironment to exacerbate tumor metastasis. We showed that pre-existing pulmonary inflammation in mammary tumor bearers is associated with: 1) an increase in growth of the primary tumor and metastasis; 2) an increase in the expression of a glycoprotein known as CHI3L1; and 3) increase in the levels of myeloid populations in their lungs. We also showed that myeloid derived cells from the lungs of allergic tumor bearers produce higher amounts of CHI3L1 than the saline controls. We previously showed that CHI3L1 induces the expression of proinflammatory and protumorigenic molecules. In this study, we show that CHI3L1 knockout tumor bearers with pre-existing allergic pulmonary inflammation had decreased levels of myeloid-derived cells, decreased levels of proinflammatory mediators, and a significant reduction in tumor volume and metastasis compared with the wild-type controls. Pre-existing inflammation and CHI3L1 might be driving the establishment of a premetastatic milieu in the lungs and aiding in the support of metastatic foci. Understanding the role of allergen-induced CHI3L1 and inflammation in tumor bearers and its effects on the pulmonary microenvironment could result in targeted therapies for breast cancer.
Collapse
Affiliation(s)
- Stephania Libreros
- *Department of Biomedical Sciences, Charles E. Schmidt College of Medicine, Department of Biological Sciences, Charles E. Schmidt College of Science, and Department of Clinical Sciences, Florida Atlantic University, Boca Raton, Florida, USA; and MedImmune LLC, Gaithersburg, Maryland, USA
| | - Ramon Garcia-Areas
- *Department of Biomedical Sciences, Charles E. Schmidt College of Medicine, Department of Biological Sciences, Charles E. Schmidt College of Science, and Department of Clinical Sciences, Florida Atlantic University, Boca Raton, Florida, USA; and MedImmune LLC, Gaithersburg, Maryland, USA
| | - Patricia Keating
- *Department of Biomedical Sciences, Charles E. Schmidt College of Medicine, Department of Biological Sciences, Charles E. Schmidt College of Science, and Department of Clinical Sciences, Florida Atlantic University, Boca Raton, Florida, USA; and MedImmune LLC, Gaithersburg, Maryland, USA
| | - Nathalia Gazaniga
- *Department of Biomedical Sciences, Charles E. Schmidt College of Medicine, Department of Biological Sciences, Charles E. Schmidt College of Science, and Department of Clinical Sciences, Florida Atlantic University, Boca Raton, Florida, USA; and MedImmune LLC, Gaithersburg, Maryland, USA
| | - Philip Robinson
- *Department of Biomedical Sciences, Charles E. Schmidt College of Medicine, Department of Biological Sciences, Charles E. Schmidt College of Science, and Department of Clinical Sciences, Florida Atlantic University, Boca Raton, Florida, USA; and MedImmune LLC, Gaithersburg, Maryland, USA
| | - Alison Humbles
- *Department of Biomedical Sciences, Charles E. Schmidt College of Medicine, Department of Biological Sciences, Charles E. Schmidt College of Science, and Department of Clinical Sciences, Florida Atlantic University, Boca Raton, Florida, USA; and MedImmune LLC, Gaithersburg, Maryland, USA
| | - Vijaya L Iragavarapu-Charyulu
- *Department of Biomedical Sciences, Charles E. Schmidt College of Medicine, Department of Biological Sciences, Charles E. Schmidt College of Science, and Department of Clinical Sciences, Florida Atlantic University, Boca Raton, Florida, USA; and MedImmune LLC, Gaithersburg, Maryland, USA
| |
Collapse
|
4
|
Cholera toxin induces a shift from inactive to active cyclooxygenase 2 in alveolar macrophages activated by Mycobacterium bovis BCG. Infect Immun 2012; 81:373-80. [PMID: 23147035 DOI: 10.1128/iai.01031-12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Intranasal vaccination stimulates formation of cyclooxygenases (COX) and release of prostaglandin E(2) (PGE(2)) by lung cells, including alveolar macrophages. PGE(2) plays complex pro- or anti-inflammatory roles in facilitating mucosal immune responses, but the relative contributions of COX-1 and COX-2 remain unclear. Previously, we found that Mycobacterium bovis BCG, a human tuberculosis vaccine, stimulated increased release of PGE(2) by macrophages activated in vitro; in contrast, intranasal BCG activated no PGE(2) release in the lungs, because COX-1 and COX-2 in alveolar macrophages were subcellularly dissociated from the nuclear envelope (NE) and catalytically inactive. This study tested the hypothesis that intranasal administration of BCG with cholera toxin (CT), a mucosal vaccine component, would shift the inactive, NE-dissociated COX-1/COX-2 to active, NE-associated forms. The results showed increased PGE(2) release in the lungs and NE-associated COX-2 in the majority of COX-2(+) macrophages. These COX-2(+) macrophages were the primary source of PGE(2) release in the lungs, since there was only slight enhancement of NE-associated COX-1 and there was no change in COX-1/COX-2 levels in alveolar epithelial cells following treatment with CT and/or BCG. To further understand the effect of CT, we investigated the timing of BCG versus CT administration for in vivo and in vitro macrophage activations. When CT followed BCG treatment, macrophages in vitro had elevated COX-2-mediated PGE(2) release, but macrophages in vivo exhibited less activation of NE-associated COX-2. Our results indicate that inclusion of CT in the intranasal BCG vaccination enhances COX-2-mediated PGE(2) release by alveolar macrophages and further suggest that the effect of CT in vivo is mediated by other lung cells.
Collapse
|
5
|
Chuquimia OD, Petursdottir DH, Rahman MJ, Hartl K, Singh M, Fernández C. The role of alveolar epithelial cells in initiating and shaping pulmonary immune responses: communication between innate and adaptive immune systems. PLoS One 2012; 7:e32125. [PMID: 22393384 PMCID: PMC3290547 DOI: 10.1371/journal.pone.0032125] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 01/19/2012] [Indexed: 11/19/2022] Open
Abstract
Macrophages and dendritic cells have been recognized as key players in the defense against mycobacterial infection. However, more recently, other cells in the lungs such as alveolar epithelial cells (AEC) have been found to play important roles in the defense and pathogenesis of infection. In the present study we first compared AEC with pulmonary macrophages (PuM) isolated from mice in their ability to internalize and control Bacillus Calmette-Guérin (BCG) growth and their capacity as APCs. AEC were able to internalize and control bacterial growth as well as present antigen to primed T cells. Secondly, we compared both cell types in their capacity to secrete cytokines and chemokines upon stimulation with various molecules including mycobacterial products. Activated PuM and AEC displayed different patterns of secretion. Finally, we analyzed the profile of response of AEC to diverse stimuli. AEC responded to both microbial and internal stimuli exemplified by TLR ligands and IFNs, respectively. The response included synthesis by AEC of several factors, known to have various effects in other cells. Interestingly, TNF could stimulate the production of CCL2/MCP-1. Since MCP-1 plays a role in the recruitment of monocytes and macrophages to sites of infection and macrophages are the main producers of TNF, we speculate that both cell types can stimulate each other. Also, another cell-cell interaction was suggested when IFNs (produced mainly by lymphocytes) were able to induce expression of chemokines (IP-10 and RANTES) by AEC involved in the recruitment of circulating lymphocytes to areas of injury, inflammation, or viral infection. In the current paper we confirm previous data on the capacity of AEC regarding internalization of mycobacteria and their role as APC, and extend the knowledge of AEC as a multifunctional cell type by assessing the secretion of a broad array of factors in response to several different types of stimuli.
Collapse
Affiliation(s)
- Olga D Chuquimia
- Department of Immunology, Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
6
|
Saiga H, Nishimura J, Kuwata H, Okuyama M, Matsumoto S, Sato S, Matsumoto M, Akira S, Yoshikai Y, Honda K, Yamamoto M, Takeda K. Lipocalin 2-dependent inhibition of mycobacterial growth in alveolar epithelium. THE JOURNAL OF IMMUNOLOGY 2009; 181:8521-7. [PMID: 19050270 DOI: 10.4049/jimmunol.181.12.8521] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mycobacterium tuberculosis invades alveolar epithelial cells as well as macrophages. However, the role of alveolar epithelial cells in the host defense against M. tuberculosis remains unknown. In this study, we report that lipocalin 2 (Lcn2)-dependent inhibition of mycobacterial growth within epithelial cells is required for anti-mycobacterial innate immune responses. Lcn2 is secreted into the alveolar space by alveolar macrophages and epithelial cells during the early phase of respiratory mycobacterial infection. Lcn2 inhibits the in vitro growth of mycobacteria through sequestration of iron uptake. Lcn2-deficient mice are highly susceptible to intratracheal infection with M. tuberculosis. Histological analyses at the early phase of mycobacterial infection in Lcn2-deficient mice reveal increased numbers of mycobacteria in epithelial cell layers, but not in macrophages, in the lungs. Increased intracellular mycobacterial growth is observed in alveolar epithelial cells, but not in alveolar macrophages, from Lcn2-deficient mice. The inhibitory action of Lcn2 is blocked by the addition of endocytosis inhibitors, suggesting that internalization of Lcn2 into the epithelial cells is a prerequisite for the inhibition of intracellular mycobacterial growth. Taken together, these findings highlight a pivotal role for alveolar epithelial cells during mycobacterial infection, in which Lcn2 mediates anti-mycobacterial innate immune responses within the epithelial cells.
Collapse
Affiliation(s)
- Hiroyuki Saiga
- Department of Microbiology and Immunology, Laboratory of Immune Regulation, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Nishimura J, Saiga H, Sato S, Okuyama M, Kayama H, Kuwata H, Matsumoto S, Nishida T, Sawa Y, Akira S, Yoshikai Y, Yamamoto M, Takeda K. Potent Antimycobacterial Activity of Mouse Secretory Leukocyte Protease Inhibitor. THE JOURNAL OF IMMUNOLOGY 2008; 180:4032-9. [DOI: 10.4049/jimmunol.180.6.4032] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Farberman MM, Demello DE, Hoffmann JW, Ryerse JS. Morphologic changes in alveolar macrophages in response to UVEC-activated pulmonary Type II epithelial cells. Tissue Cell 2006; 37:213-22. [PMID: 15885728 DOI: 10.1016/j.tice.2005.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2005] [Revised: 01/27/2005] [Accepted: 01/31/2005] [Indexed: 11/15/2022]
Abstract
We hypothesize that Type II epithelial cells, which line the distal airspaces of the lung, are early responders to invading pathogens and release a signal, which activates and alters the phenotype and phagocytosis properties of alveolar macrophages even at a distance. The T(7) cell line is a conditionally immortalized murine Type II epithelial cell line developed in our laboratory. Using an in vitro transwell model we have previously shown that UV-irradiated Escherichia coli (UVEC)-stimulated T(7) cells cultured in the lower transwell chamber, release a diffusible signal which activates MH-S cells (immortalized murine alveolar macrophages) cultured in the upper transwell chamber, to produce nitric oxide. Using scanning electron microscopy, we show that MH-S cells activated in this manner exhibit increased cell surface ruffling, numerous long filopodia, increased lamellipodia and cell flattening. DynaBead uptake studies show that these morphologic changes are accompanied by increased phagocytosis. These findings indicate that a diffusible signal released at a distance by UVEC-stimulated Type II epithelial cells initiates changes in morphology and phagocytosis reflective of macrophage activation concomitant with the functional activation we previously reported.
Collapse
Affiliation(s)
- M M Farberman
- Department of Pathology, Saint Louis University Health Sciences Center, 1402 South Grand Avenue, St. Louis, MO 63105, USA
| | | | | | | |
Collapse
|
9
|
Perlman S, Holmes KV. Development of vaccines and passive immunotherapy against SARS coronavirus using mouse and SCID-PBL/hu mouse models. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 581:561-6. [PMID: 17037598 PMCID: PMC7123019 DOI: 10.1007/978-0-387-33012-9_102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
We have investigated novel vaccines strategies against severe acute respiratory syndrome (SARS) CoV infection using cDNA constructs encoding the structural antigens; spike (S), membrane (M), envelope (E), or nucleocapsid (N) protein, derived from SARS CoV (strain HKU39849, TW1, or FFM-1). As SARS-CoV is thought to infect the alveolar epithelial cell of the lung,in the present study, a type II alveolar epithelial cell clone, T7, was used to analyze the mechanism of CTL against SARS CoV membrane antigens. Mice vaccinated with SARS CoV (N) DNA or (M) DNA using pcDNA 3.1 (+) plasmid vector showed T-cell immune responses (CTL induction and proliferation) against type II alveolar epithelial cells (T7) transfected with SARS (N) or (M) DNA, respectively. To determine whether these DNA vaccines could induce T-cell immune responses in humans as well as in mice, SCID-PBL/hu mice were immunized with these DNA vaccines. PBL from healthy human volunteers were administered i.p. into IL-2 receptor gamma-chain-disrupted NOD-SCID mice [IL-2R(-/-) NOD-SCID]. SCID-PBL/hu mice thus constructed can be used to analyze the human immune response in vivo. The SCID-PBL/hu mice were immunized with SARS (N) DNA or (M) DNA and analyzed for a human T-cell immune response. The M DNA vaccine enhanced CTL activity and proliferation in the presence of M peptide in SCID-PBL/hu mice. Furthermore, the SARS N DNA vaccine induced CTL activity (IFN-gamma production by recombinant N protein or N protein-pulsed autologous B blast cells) and proliferation of spleen cells in SCID-PBL/hu mice. These results, demonstrate that SARS M and N DNA vaccines induced human CTL and human T-cell proliferative responses. On the other hand, we have developed SARS DNA vaccines that induce human neutralizing antibodies and human monoclonal antibodies against SARS CoV. Transgenic mice expressing SARS-CoV receptor (angiotensin converting enzyme 2) are also under development. These vaccines are expected to induce immune responses specific for SARS CoV in human and should provide useful tool for development of protective vaccines.
Collapse
Affiliation(s)
- Stanley Perlman
- Department of Pediatrics, University of Iowa, 52242 Iowa City, IA USA
| | - Kathryn V. Holmes
- Department of Microbiology, University of Colorado Health Sciences Center at Fitzsimons, 80045-8333 Aurora, CO USA
| |
Collapse
|
10
|
Hu Y, Nguyen TT, Bui KC, Demello DE, Smith JB. A novel inflammation-induced ubiquitin E3 ligase in alveolar type II cells. Biochem Biophys Res Commun 2005; 333:253-63. [PMID: 15936721 DOI: 10.1016/j.bbrc.2005.05.102] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2005] [Accepted: 05/13/2005] [Indexed: 11/17/2022]
Abstract
LINCR was identified as a glucocorticoid-attenuated response gene induced in the lung during endotoxemia. The LINCR protein has structural similarities to Drosophila Neuralized, which regulates the developmentally important Notch signaling pathway. Endotoxemia-induced LINCR expression in vivo was localized by in situ hybridization to alveolar epithelial type II cells, and shown to be induced by LPS and inflammatory cytokines in the T7 alveolar epithelial type II cell line. RING domain-dependent ubiquitin E3 ligase activity of LINCR was demonstrated using full-length FLAG-LINCR or a deletion mutant lacking the RING domain expressed in 293T cells, and using a GST-LINCR RING fusion protein expressed in Escherichia coli. LINCR preferentially interacted with the ubiquitin-conjugating enzyme UbcH6 and preferentially generated polyubiquitin chains linked via non-canonical lysine residues. We conclude that LINCR is a novel inflammation-induced ubiquitin E3 ligase expressed in alveolar epithelial type II cells, and discuss its potential role in the lung response to inflammation.
Collapse
Affiliation(s)
- Yan Hu
- Department of Pediatrics, Mattel Children's Hospital at UCLA and David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | | | | | | | | |
Collapse
|
11
|
Debbabi H, Ghosh S, Kamath AB, Alt J, Demello DE, Dunsmore S, Behar SM. Primary type II alveolar epithelial cells present microbial antigens to antigen-specific CD4+T cells. Am J Physiol Lung Cell Mol Physiol 2005; 289:L274-9. [PMID: 15833765 DOI: 10.1152/ajplung.00004.2005] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Type II alveolar epithelial cells (AEC) can produce various antimicrobial and proinflammatory effector molecules. This, together with their abundance and strategic location, suggests a role in host defense against pulmonary pathogens. We report that murine type II AEC, like their human counterparts, express class II major histocompatibility complex (MHC). Using a murine model of pulmonary tuberculosis, we find that type II AEC become activated and have increased cell surface expression of class II MHC, CD54, and CD95 following infection. Type II AEC use the class II MHC pathway to process and present mycobacterial antigens to immune CD4+T cells isolated from mice infected with Mycobacterium tuberculosis. Therefore, not only can type II AEC contribute to the pulmonary immunity by secreting chemokines that recruit inflammatory cells to the lung, but they can also serve as antigen-presenting cells. Although type II AEC are unlikely to prime naïve T cells, their ability to present antigens to T cells demonstrates that they can participate in the effector phase of the immune response. This represents a novel role for type II AEC in the immunological response to pulmonary pathogens.
Collapse
Affiliation(s)
- Hajer Debbabi
- Division of Rheumatology, Brigham and Women's Hospital, Smith Bldg., Rm. 516, 1 Jimmy Fund Way, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Okada M, Takemoto Y, Okuno Y, Hashimoto S, Yoshida S, Fukunaga Y, Tanaka T, Kita Y, Kuwayama S, Muraki Y, Kanamaru N, Takai H, Okada C, Sakaguchi Y, Furukawa I, Yamada K, Matsumoto M, Kase T, Demello DE, Peiris JSM, Chen PJ, Yamamoto N, Yoshinaka Y, Nomura T, Ishida I, Morikawa S, Tashiro M, Sakatani M. The development of vaccines against SARS corona virus in mice and SCID-PBL/hu mice. Vaccine 2005; 23:2269-72. [PMID: 15755609 PMCID: PMC7115605 DOI: 10.1016/j.vaccine.2005.01.036] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We have investigated to develop novel vaccines against SARS CoV using cDNA constructs encoding the structural antigen; spike protein (S), membrane protein (M), envelope protein (E), or nucleocapsid (N) protein, derived from SARS CoV. Mice vaccinated with SARS-N or -M DNA using pcDNA 3.1(+) plasmid vector showed T cell immune responses (CTL induction and proliferation) against N or M protein, respectively. CTL responses were also detected to SARS DNA-transfected type II alveolar epithelial cells (T7 cell clone), which are thought to be initial target cells for SARS virus infection in human. To determine whether these DNA vaccines could induce T cell immune responses in humans as well as in mice, SCID-PBL/hu mice was immunized with these DNA vaccines. As expected, virus-specific CTL responses and T cell proliferation were induced from human T cells. SARS-N and SARS-M DNA vaccines and SCID-PBL/hu mouse model will be important in the development of protective vaccines.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/blood
- Antigens, Viral/genetics
- Female
- Humans
- In Vitro Techniques
- Lymphocyte Activation
- Lymphocyte Transfusion
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice, Knockout
- Mice, SCID
- Neutralization Tests
- Severe acute respiratory syndrome-related coronavirus/genetics
- Severe acute respiratory syndrome-related coronavirus/immunology
- T-Lymphocytes, Cytotoxic/immunology
- Transplantation, Heterologous
- Vaccines, DNA/genetics
- Vaccines, DNA/pharmacology
- Viral Proteins/genetics
- Viral Proteins/immunology
- Viral Vaccines/genetics
- Viral Vaccines/isolation & purification
Collapse
Affiliation(s)
- Masaji Okada
- Clinical Research Center, National Hospital Organization Kinki-Chuo Chest Medical Center, 1180 Nagasone, Sakai, Osaka 591-8555, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Nanjundan M, Possmayer F. Pulmonary phosphatidic acid phosphatase and lipid phosphate phosphohydrolase. Am J Physiol Lung Cell Mol Physiol 2003; 284:L1-23. [PMID: 12471011 DOI: 10.1152/ajplung.00029.2002] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The lung contains two distinct forms of phosphatidic acid phosphatase (PAP). PAP1 is a cytosolic enzyme that is activated through fatty acid-induced translocation to the endoplasmic reticulum, where it converts phosphatidic acid (PA) to diacylglycerol (DAG) for the biosynthesis of phospholipids and neutral lipids. PAP1 is Mg(2+) dependent and sulfhydryl reagent sensitive. PAP2 is a six-transmembrane-domain integral protein localized to the plasma membrane. Because PAP2 degrades sphingosine-1-phosphate (S1P) and ceramide-1-phosphate in addition to PA and lyso-PA, it has been renamed lipid phosphate phosphohydrolase (LPP). LPP is Mg(2+) independent and sulfhydryl reagent insensitive. This review describes LPP isoforms found in the lung and their location in signaling platforms (rafts/caveolae). Pulmonary LPPs likely function in the phospholipase D pathway, thereby controlling surfactant secretion. Through lowering the levels of lyso-PA and S1P, which serve as agonists for endothelial differentiation gene receptors, LPPs regulate cell division, differentiation, apoptosis, and mobility. LPP activity could also influence transdifferentiation of alveolar type II to type I cells. It is considered likely that these lipid phosphohydrolases have critical roles in lung morphogenesis and in acute lung injury and repair.
Collapse
Affiliation(s)
- Meera Nanjundan
- Department of Obstetrics and Gynaecology, Canadian Institutes of Health Research Group in Fetal and Neonatal Health and Development, The University of Western Ontario, 339 Windermere Road, London, Ontario, Canada N6A 5A5
| | | |
Collapse
|
14
|
Aidinis V, Plows D, Haralambous S, Armaka M, Papadopoulos P, Kanaki MZ, Koczan D, Thiesen HJ, Kollias G. Functional analysis of an arthritogenic synovial fibroblast. Arthritis Res Ther 2003; 5:R140-57. [PMID: 12723986 PMCID: PMC165045 DOI: 10.1186/ar749] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2002] [Revised: 02/13/2003] [Accepted: 02/20/2003] [Indexed: 12/21/2022] Open
Abstract
Increasing attention has been directed towards identifying non-T-cell mechanisms as potential therapeutic targets in rheumatoid arthritis. Synovial fibroblast (SF) activation, a hallmark of rheumatoid arthritis, results in inappropriate production of chemokines and matrix components, which in turn lead to bone and cartilage destruction. We have demonstrated that SFs have an autonomous pathogenic role in the development of the disease, by showing that they have the capacity to migrate throughout the body and cause pathology specifically to the joints. In order to decipher the pathogenic mechanisms that govern SF activation and pathogenic potential, we used the two most prominent methods of differential gene expression analysis, differential display and DNA microarrays, in a search for deregulated cellular pathways in the arthritogenic SF. Functional clustering of differentially expressed genes, validated by dedicated in vitro functional assays, implicated a number of cellular pathways in SF activation. Among them, diminished adhesion to the extracellular matrix was shown to correlate with increased proliferation and migration to this matrix. Our findings support an aggressive role for the SF in the development of the disease and reinforce the perspective of a transformed-like character of the SF.
Collapse
MESH Headings
- Adjuvants, Immunologic/pharmacology
- Animals
- Arthritis, Experimental/immunology
- Arthritis, Experimental/pathology
- Arthritis, Rheumatoid/immunology
- Arthritis, Rheumatoid/pathology
- B-Lymphocytes/physiology
- Cell Line, Transformed
- Cell Movement/immunology
- Cells, Cultured
- Disease Models, Animal
- Fibroblasts/pathology
- Gene Expression Profiling/methods
- Gene Expression Regulation/immunology
- Genes, RAG-1/genetics
- H-2 Antigens/genetics
- Humans
- Mice
- Mice, Inbred C57BL
- Mice, Inbred CBA
- Mice, Mutant Strains
- Mice, Transgenic
- Synovial Membrane/pathology
- T-Lymphocytes/physiology
- Tumor Necrosis Factor-alpha/genetics
- Tumor Necrosis Factor-alpha/immunology
Collapse
Affiliation(s)
- Vassilis Aidinis
- Institute of Immunology, Biomedical Sciences Research Center 'Alexander Fleming', Athens, Greece
| | - David Plows
- Laboratory of Molecular Genetics, Hellenic Pasteur Institute, Athens, Greece
| | - Sylva Haralambous
- Laboratory of Molecular Genetics, Hellenic Pasteur Institute, Athens, Greece
| | - Maria Armaka
- Institute of Immunology, Biomedical Sciences Research Center 'Alexander Fleming', Athens, Greece
| | - Petros Papadopoulos
- Institute of Immunology, Biomedical Sciences Research Center 'Alexander Fleming', Athens, Greece
| | - Maria Zambia Kanaki
- Institute of Immunology, Biomedical Sciences Research Center 'Alexander Fleming', Athens, Greece
| | - Dirk Koczan
- Institute of Immunology, University of Rostock, Rostock, Germany
| | | | - George Kollias
- Institute of Immunology, Biomedical Sciences Research Center 'Alexander Fleming', Athens, Greece
| |
Collapse
|
15
|
Demello DE, Mahmoud S, Ryerse J, Hoffmann JW. Generation and characterization of a conditionally immortalized lung clara cell line from the H-2Kb-tsA58 transgenic mouse. In Vitro Cell Dev Biol Anim 2002; 38:154-64. [PMID: 12026164 DOI: 10.1290/1071-2690(2002)038<0154:gacoac>2.0.co;2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The Clara cell is believed to be the progenitor of the peripheral airway epithelium, and it produces the surfactant proteins SP-A and SP-B, in addition to the 10-kDa Clara cell secretory protein (CCSP or CC10). To date, attempts to develop Clara cell lines have been unsuccessful. Most such attempts have involved the in vitro insertion of a transforming viral oncogene. We have reported previously the characterization of a differentiated conditionally immortalized murine lung Type II epithelial cell line, T7, from the H-2Kb-tsA58 transgenic mouse. We have also used this mouse model to derive Clara cell lines. In this model, the need for in vitro gene insertion is circumvented by the creation of a transgene, in which the large tumor antigen of a temperature-sensitive strain (tsA58) of the simian virus 40 (SV40) is fused with the major histocompatibility complex promoter H-2Kb. The promoter is active in a wide range of tissues and is induced by interferons (IFN). From the lungs of animals harboring the hybrid construct, we isolated and characterized Clara cells. The cells contain dense secretory granules and mitochondria typical of Clara cells, and express SP-A, SP-B, SP-D, and the Clara cell secretory protein, CC10. Withdrawal of the IFN and elevation of the incubation temperature permit normal cell differentiation similar to that of Clara cells in vivo. This cell line should be very useful for the investigation of normal Clara cell function and gene expression.
Collapse
Affiliation(s)
- Daphne E Demello
- Department of Pathology, St. Louis University Health Sciences Center and Pediatric Research Institute, Cardinal Glennon Children's Hospital, Missouri 63104, USA.
| | | | | | | |
Collapse
|
16
|
Tabuchi Y. Characterization and application of a gastric surface mucous cell line GSM06 established from temperature-sensitive simian virus 40 large T-antigen transgenic mice. JAPANESE JOURNAL OF PHARMACOLOGY 2001; 85:117-23. [PMID: 11286392 DOI: 10.1254/jjp.85.117] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
It has been indicated that transgenic mouse harboring a temperature-sensitive simian virus 40 large T-antigen gene is useful for establishing cell lines from tissues that have proved difficult to culture in vitro. The gastric surface mucous cell line GSM06 was established from a primary culture of gastric fundic mucosal cells of the transgenic mice. GSM06 cells showed temperature-sensitive growth in culture and expressed large T-antigen at a permissive temperature (33 degrees C) but not at a nonpermissive temperature (39 degrees C). At 39 degrees C, the cells produced periodic acid-Schiff positive glycoconjugates that formed a mucous sheet like the gastric surface mucosa in the stomach. Insulin markedly increased the production of glycoconjugates. In addition, proprotein-processing endoprotease furin suppression retarded cell growth, but accelerated cell differentiation. An air-liquid interface promoted the differentiation of GSM06 cells in a reconstruction culture with nitrocellulose membrane and collagen gel. The gastric surface mucous cell line GSM06 with unique characteristics, therefore, should be useful as an in vitro model of the gastric mucosa for physiological and pharmacological investigations. Moreover, experiments using immortalized cells established in vitro and having specific functions may offer an alternative to experiments using living animals and thereby offer a solution to this ethical issue.
Collapse
Affiliation(s)
- Y Tabuchi
- Molecular Genetics Research Center, Toyama Medical and Pharmaceutical University, Toyama City, Japan.
| |
Collapse
|