1
|
Mann V, Grimm D, Corydon TJ, Krüger M, Wehland M, Riwaldt S, Sahana J, Kopp S, Bauer J, Reseland JE, Infanger M, Mari Lian A, Okoro E, Sundaresan A. Changes in Human Foetal Osteoblasts Exposed to the Random Positioning Machine and Bone Construct Tissue Engineering. Int J Mol Sci 2019; 20:ijms20061357. [PMID: 30889841 PMCID: PMC6471706 DOI: 10.3390/ijms20061357] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/04/2019] [Accepted: 03/13/2019] [Indexed: 12/15/2022] Open
Abstract
Human cells, when exposed to both real and simulated microgravity (s-µg), form 3D tissue constructs mirroring in vivo architectures (e.g., cartilage, intima constructs, cancer spheroids and others). In this study, we exposed human foetal osteoblast (hFOB 1.19) cells to a Random Positioning Machine (RPM) for 7 days and 14 days, with the purpose of investigating the effects of s-µg on biological processes and to engineer 3D bone constructs. RPM exposure of the hFOB 1.19 cells induces alterations in the cytoskeleton, cell adhesion, extra cellular matrix (ECM) and the 3D multicellular spheroid (MCS) formation. In addition, after 7 days, it influences the morphological appearance of these cells, as it forces adherent cells to detach from the surface and assemble into 3D structures. The RPM-exposed hFOB 1.19 cells exhibited a differential gene expression of the following genes: transforming growth factor beta 1 (TGFB1, bone morphogenic protein 2 (BMP2), SRY-Box 9 (SOX9), actin beta (ACTB), beta tubulin (TUBB), vimentin (VIM), laminin subunit alpha 1 (LAMA1), collagen type 1 alpha 1 (COL1A1), phosphoprotein 1 (SPP1) and fibronectin 1 (FN1). RPM exposure also induced a significantly altered release of the cytokines and bone biomarkers sclerostin (SOST), osteocalcin (OC), osteoprotegerin (OPG), osteopontin (OPN), interleukin 1 beta (IL-1β) and tumour necrosis factor 1 alpha (TNF-1α). After the two-week RPM exposure, the spheroids presented a bone-specific morphology. In conclusion, culturing cells in s-µg under gravitational unloading represents a novel technology for tissue-engineering of bone constructs and it can be used for investigating the mechanisms behind spaceflight-related bone loss as well as bone diseases such as osteonecrosis or bone injuries.
Collapse
Affiliation(s)
- Vivek Mann
- Osteoimmunology and Integrative Physiology Laboratory, Department of Biology, Texas Southern University, Cleburne, Houston, TX 77004, USA.
| | - Daniela Grimm
- Department for Biomedicine, Aarhus University, Wilhelm Meyers Allé 4, DK-8000 Aarhus C, Denmark.
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany.
| | - Thomas J Corydon
- Department for Biomedicine, Aarhus University, Wilhelm Meyers Allé 4, DK-8000 Aarhus C, Denmark.
- Department of Ophthalmology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, DK-8200 Aarhus N, Denmark.
| | - Marcus Krüger
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany.
| | - Markus Wehland
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany.
| | - Stefan Riwaldt
- Department for Biomedicine, Aarhus University, Wilhelm Meyers Allé 4, DK-8000 Aarhus C, Denmark.
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany.
| | - Jayashree Sahana
- Department for Biomedicine, Aarhus University, Wilhelm Meyers Allé 4, DK-8000 Aarhus C, Denmark.
| | - Sascha Kopp
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany.
| | - Johann Bauer
- Max Planck Institute of Biochemistry, Martinsried, Am Klopferspitz 18, 82152 Planegg, Germany.
| | - Janne E Reseland
- Clinical Oral Research Laboratory, Institute of Clinical Dentistry, UiO, University of Oslo, Geitmyrsveien 71 0455 Oslo, Norway.
| | - Manfred Infanger
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany.
| | - Aina Mari Lian
- Clinical Oral Research Laboratory, Institute of Clinical Dentistry, UiO, University of Oslo, Geitmyrsveien 71 0455 Oslo, Norway.
| | - Elvis Okoro
- Osteoimmunology and Integrative Physiology Laboratory, Department of Biology, Texas Southern University, Cleburne, Houston, TX 77004, USA.
| | - Alamelu Sundaresan
- Osteoimmunology and Integrative Physiology Laboratory, Department of Biology, Texas Southern University, Cleburne, Houston, TX 77004, USA.
| |
Collapse
|
2
|
Baylan N, Bhat S, Ditto M, Lawrence JG, Lecka-Czernik B, Yildirim-Ayan E. Polycaprolactone nanofiber interspersed collagen type-I scaffold for bone regeneration: a unique injectable osteogenic scaffold. Biomed Mater 2013; 8:045011. [PMID: 23804651 DOI: 10.1088/1748-6041/8/4/045011] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
There is an increasing demand for an injectable cell coupled three-dimensional (3D) scaffold to be used as bone fracture augmentation material. To address this demand, a novel injectable osteogenic scaffold called PN-COL was developed using cells, a natural polymer (collagen type-I), and a synthetic polymer (polycaprolactone (PCL)). The injectable nanofibrous PN-COL is created by interspersing PCL nanofibers within pre-osteoblast cell embedded collagen type-I. This simple yet novel and powerful approach provides a great benefit as an injectable bone scaffold over other non-living bone fracture stabilization polymers, such as polymethylmethacrylate and calcium content resin-based materials. The advantages of injectability and the biomimicry of collagen was coupled with the structural support of PCL nanofibers, to create cell encapsulated injectable 3D bone scaffolds with intricate porous internal architecture and high osteoconductivity. The effects of PCL nanofiber inclusion within the cell encapsulated collagen matrix has been evaluated for scaffold size retention and osteocompatibility, as well as for MC3T3-E1 cells osteogenic activity. The structural analysis of novel bioactive material proved that the material is chemically stable enough in an aqueous solution for an extended period of time without using crosslinking reagents, but it is also viscous enough to be injected through a syringe needle. Data from long-term in vitro proliferation and differentiation data suggests that novel PN-COL scaffolds promote the osteoblast proliferation, phenotype expression, and formation of mineralized matrix. This study demonstrates for the first time the feasibility of creating a structurally competent, injectable, cell embedded bone tissue scaffold. Furthermore, the results demonstrate the advantages of mimicking the hierarchical architecture of native bone with nano- and micro-size formation through introducing PCL nanofibers within macron-size collagen fibers and in promoting osteoblast phenotype progression for bone regeneration.
Collapse
Affiliation(s)
- Nuray Baylan
- Department of Bioengineering, College of Engineering, University of Toledo, Toledo, OH 43606, USA
| | | | | | | | | | | |
Collapse
|
3
|
Salerno-Goncalves R, Fasano A, Sztein MB. Engineering of a multicellular organotypic model of the human intestinal mucosa. Gastroenterology 2011; 141:e18-20. [PMID: 21723866 PMCID: PMC3328095 DOI: 10.1053/j.gastro.2011.04.062] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 03/17/2011] [Accepted: 04/01/2011] [Indexed: 12/02/2022]
Affiliation(s)
- Rosângela Salerno-Goncalves
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, 685 West Baltimore Street, Health Science Facility 1, Room 480, Baltimore, MD 21201, USA,Correspondence: Center for Vaccine Development, University of Maryland School of Medicine, 685 West Baltimore Street, HSF 480, Baltimore, MD 21201, Tel.: 410 706 3374, Fax: 410 706 6205,
| | - Alessio Fasano
- Mucosal Biology Research Center, University of Maryland, Baltimore, 20 Penn Street, Health Science Facility 2, Room 351, Baltimore, Maryland 21201, USA
| | - Marcelo B. Sztein
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, 685 West Baltimore Street, Health Science Facility 1, Room 480, Baltimore, MD 21201, USA
| |
Collapse
|
4
|
Chen J, Chen R, Gao S. Morphological characteristics and proliferation of keratocytes cultured under simulated microgravity. Artif Organs 2007; 31:722-31. [PMID: 17725700 DOI: 10.1111/j.1525-1594.2007.00440.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
This study probed the changes of keratocytes cultured under simulated microgravity. Keratocytes were isolated from rabbit corneas using collagenase digestion method. Cells were seeded in a 55-mL capacity high-aspect-ratio vessel (HARV) of rotary cell culture system (RCCS) at a density of 1 x 10(4) cells/mL. Dehydrated bovine acellular corneal stroma (5 x 5 x 1 mm, n = 30) was used as a carrier for keratocyte culture. Rotational speed was set at 15, 20, and 30 rpm in the first, second, and third week of culture, respectively. Histological evaluation showed that keratocytes in simulated microgravity culture grew into carriers, but those under conventional gravity grew on the surface of carriers. Scanning electron microscopic evaluation showed that after 19 days in culture, keratocytes on the carriers were spherical and spread in the spaces among the collagen fibers. Cells were dendritic or spindle shaped, and they developed many foot processes linked with surrounding cells. The absorbance values of the simulated microgravity group were significantly higher (P < 0.01) than that of the conventional group from 10 to 19 days of culture. The RCCS obviously enhanced the proliferation of rabbit keratocytes and facilitated the cells' growth into or on the dehydrated bovine acellular corneal stroma. Cells showed more natural morphology.
Collapse
Affiliation(s)
- Jiansu Chen
- Ophthalmology Department, Medical College, Jinan University, Guangzhou, China.
| | | | | |
Collapse
|
5
|
Hidaka M, Su GNC, Chen JKH, Mukaisho KI, Hattori T, Yamamoto G. Transplantation of engineered bone tissue using a rotary three-dimensional culture system. In Vitro Cell Dev Biol Anim 2007; 43:49-58. [PMID: 17570019 DOI: 10.1007/s11626-006-9005-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2006] [Accepted: 11/13/2006] [Indexed: 11/26/2022]
Abstract
Bone is a complex, highly structured, mechanically active, three-dimensional (3-D) tissue composed of cellular and matrix elements. We previously published a report on in situ collagen gelation using a rotary 3-D culture system (CG-RC system) for the construction of large tissue specimens. The objective of the current study was to evaluate the feasibility of bone tissue engineering using our CG-RC system. Osteoblasts from the calvaria of newborn Wistar rats were cultured in the CG-RC system for up to 3 wk. The engineered 3-D tissues were implanted into the backs of nude mice and calvarial round bone defects in Wistar rats. Cell metabolic activity, mineralization, and bone-related proteins were measured in vitro in the engineered 3-D tissues. Also, the in vivo histological features of the transplanted, engineered 3-D tissues were evaluated in the animal models. We found that metabolic activity increased in the engineered 3-D tissues during cultivation, and that sufficient mineralization occurred during the 3 wk in the CG-RC system in vitro. One mo posttransplantation, the transplants to nude mice remained mineralized and were well invaded by host vasculature. Of particular interest, 2 mo posttransplantation, the transplants into the calvarial bone defects of rats were replaced by new mature bone. Thus, this study shows that large 3-D osseous tissue could be produced in vitro and that the engineered 3-D tissue had in vivo osteoinductive potential when transplanted into ectopic locations and into bone defects. Therefore, this system should be a useful model for bone tissue engineering.
Collapse
Affiliation(s)
- Miyoko Hidaka
- Department of Oral and Maxillofacial Surgery, Shiga University of Medical Science, Seta-tsukinowa-cho, Otsu, Shiga, 520-2192, Japan.
| | | | | | | | | | | |
Collapse
|
6
|
Wang R, Xu J, Juliette L, Castilleja A, Love J, Sung SY, Zhau HE, Goodwin TJ, Chung LWK. Three-dimensional co-culture models to study prostate cancer growth, progression, and metastasis to bone. Semin Cancer Biol 2005; 15:353-64. [PMID: 15982899 DOI: 10.1016/j.semcancer.2005.05.005] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cancer-stromal interaction results in the co-evolution of both the cancer cells and the surrounding host stromal cells. As a consequence of this interaction, cancer cells acquire increased malignant potential and stromal cells become more inductive. In this review we suggest that cancer-stromal interaction can best be investigated by three-dimensional (3D) co-culture models with the results validated by clinical specimens. We showed that 3D culture promoted bone formation in vitro, and explored for the first time, with the help of the astronauts of the Space Shuttle Columbia, the co-culture of human prostate cancer and bone cells to further understand the interactions between these cells. Continued exploration of cancer growth under 3D conditions will rapidly lead to new discoveries and ultimately to improvements in the treatment of men with hormonal refractory prostate cancer.
Collapse
Affiliation(s)
- Ruoxiang Wang
- Department of Urology, Molecular Urology and Therapeutics Program, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | | | |
Collapse
|