1
|
Muric M, Nikolic M, Todorovic A, Jakovljevic V, Vucicevic K. Comparative Cardioprotective Effectiveness: NOACs vs. Nattokinase-Bridging Basic Research to Clinical Findings. Biomolecules 2024; 14:956. [PMID: 39199344 PMCID: PMC11352257 DOI: 10.3390/biom14080956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 09/01/2024] Open
Abstract
The use of non-vitamin K antagonist oral anticoagulants (NOACs) has brought a significant progress in the management of cardiovascular diseases, considered clinically superior to vitamin K antagonists (VKAs) particularly in the prevention and treatment of thromboembolic events. In addition, numerous advantages such as fixed dosing, lack of laboratory monitoring, and fewer food and drug-to-drug interactions make the use of NOACs superior to VKAs. While NOACs are synthetic drugs prescribed for specific conditions, nattokinase (NK) is a natural enzyme derived from food that has potential health benefits. Various experimental and clinical studies reported the positive effects of NK on the circulatory system, including the thinning of blood and the dissolution of blood clots. This enzyme showed not only fibrinolytic activity due to its ability to degrade fibrin, but also an affinity as a substrate for plasmin. Recent studies have shown that NK has additional cardioprotective effects, such as antihypertensive and anti-atherosclerotic effects. In this narrative review, we presented the cardioprotective properties of two different approaches that go beyond anticoagulation: NOACs and NK. By combining evidence from basic research with clinical findings, we aim to elucidate the comparative cardioprotective efficacy of these interventions and highlight their respective roles in modern cardiovascular care.
Collapse
Affiliation(s)
- Maja Muric
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (M.M.); (V.J.)
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, 34000 Kragujevac, Serbia;
| | - Marina Nikolic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (M.M.); (V.J.)
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, 34000 Kragujevac, Serbia;
| | - Andreja Todorovic
- Department of Cardiology, General Hospital Ćuprija, 35230 Ćuprija, Serbia;
| | - Vladimir Jakovljevic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (M.M.); (V.J.)
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, 34000 Kragujevac, Serbia;
- Department of Human Pathology, First Moscow State Medical, University IM Sechenov, 119991 Moscow, Russia
| | - Ksenija Vucicevic
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, 34000 Kragujevac, Serbia;
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| |
Collapse
|
2
|
Kuwahara K. The natriuretic peptide system in heart failure: Diagnostic and therapeutic implications. Pharmacol Ther 2021; 227:107863. [PMID: 33894277 DOI: 10.1016/j.pharmthera.2021.107863] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/05/2021] [Indexed: 12/12/2022]
Abstract
Natriuretic peptides, which are activated in heart failure, play an important cardioprotective role. The most notable of the cardioprotective natriuretic peptides are atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP), which are abundantly expressed and secreted in the atrium and ventricles, respectively, and C-type natriuretic peptide (CNP), which is expressed mainly in the vasculature, central nervous system, and bone. ANP and BNP exhibit antagonistic effects against angiotensin II via diuretic/natriuretic actions, vasodilatory actions, and inhibition of aldosterone secretion, whereas CNP is involved in the regulation of vascular tone and blood pressure, among other roles. ANP and BNP are of particular interest with respect to heart failure, as their levels, most notably BNP and N-terminal proBNP-a cleavage product produced when proBNP is processed to mature BNP-are increased in patients with heart failure. Furthermore, the identification of natriuretic peptides as sensitive markers of cardiac load has driven significant research into their physiological roles in cardiovascular homeostasis and disease, as well as their potential use as both biomarkers and therapeutics. In this review, I discuss the physiological functions of the natriuretic peptide family, with a particular focus on the basic research that has led to our current understanding of its roles in maintaining cardiovascular homeostasis, and the pathophysiological implications for the onset and progression of heart failure. The clinical significance and potential of natriuretic peptides as diagnostic and/or therapeutic agents are also discussed.
Collapse
Affiliation(s)
- Koichiro Kuwahara
- Department of Cardiovascular Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan.
| |
Collapse
|
3
|
Kato J. Natriuretic peptides and neprilysin inhibition in hypertension and hypertensive organ damage. Peptides 2020; 132:170352. [PMID: 32610060 DOI: 10.1016/j.peptides.2020.170352] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 01/22/2023]
Abstract
The family of natriuretic peptides (NPs) discovered in mammalian tissues including cardiac atrium and brain consists of three members, namely, atrial, B- and C-type natriuretic peptides (ANP, BNP, CNP). Since the discovery, basic and clinical studies have been vigorously performed to explore the biological functions and pathophysiological roles of NPs in a wide range of diseases including hypertension and heart failure. These studies revealed that ANP and BNP are hormones secreted from the heart into the blood stream in response to pre- or after-load, counteracting blood pressure (BP) elevation and fluid retention through specific receptors. Meanwhile, CNP was found to be produced by the vascular endothelium, acting as a local mediator potentially serving protective functions for the blood vessels. Because NPs not only exert blood pressure lowering actions but also alleviate hypertensive organ damage, attempts have been made to develop therapeutic agents for hypertension by utilizing this family of NPs. One strategy is to inhibit neprilysin, an enzyme degrading NPs, thereby enhancing the actions of endogenous peptides. Recently, a dual inhibitor of angiotensin receptor-neprilysin was approved for heart failure, and neprilysin inhibition has also been shown to be beneficial in treating patients with hypertension. This review summarizes the roles of NPs in regulating BP, with special references to hypertension and hypertensive organ damage, and discusses the therapeutic implications of neprilysin inhibition.
Collapse
Affiliation(s)
- Johji Kato
- Frontier Science Research Center, University of Miyazaki Faculty of Medicine, Cardiovascular Medicine, University of Miyazaki Hospital, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan.
| |
Collapse
|
4
|
Krylatov AV, Tsibulnikov SY, Mukhomedzyanov AV, Boshchenko AA, Goldberg VE, Jaggi AS, Erben RG, Maslov LN. The Role of Natriuretic Peptides in the Regulation of Cardiac Tolerance to Ischemia/Reperfusion and Postinfarction Heart Remodeling. J Cardiovasc Pharmacol Ther 2020; 26:131-148. [PMID: 32840121 DOI: 10.1177/1074248420952243] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In the past 10 years, mortality from acute myocardial infarction has not decreased despite the widespread introduction of percutaneous coronary intervention. The reason for this situation is the absence in clinical practice of drugs capable of preventing reperfusion injury of the heart with high efficiency. In this regard, noteworthy natriuretic peptides (NPs) which have the infarct-limiting effect, prevent reperfusion cardiac injury, prevent adverse post-infarction remodeling of the heart. Atrial natriuretic peptide does not have the infarct-reducing effect in rats with alloxan-induced diabetes mellitus. NPs have the anti-apoptotic and anti-inflammatory effects. There is indirect evidence that NPs inhibit pyroptosis and autophagy. Published data indicate that NPs inhibit reactive oxygen species production in cardiomyocytes, aorta, heart, kidney and the endothelial cells. NPs can suppress aldosterone, angiotensin II, endothelin-1 synthesize and secretion. NPs inhibit the effects aldosterone, angiotensin II on the post-receptor level through intracellular signaling events. NPs activate guanylyl cyclase, protein kinase G and protein kinase A, and reduce phosphodiesterase 3 activity. NO-synthase and soluble guanylyl cyclase are involved in the cardioprotective effect of NPs. The cardioprotective effect of natriuretic peptides is mediated via activation of kinases (AMPK, PKC, PI3 K, ERK1/2, p70s6 k, Akt) and inhibition of glycogen synthase kinase 3β. The cardioprotective effect of NPs is mediated via sarcolemmal KATP channel and mitochondrial KATP channel opening. The cardioprotective effect of brain natriuretic peptide is mediated via MPT pore closing. The anti-fibrotic effect of NPs may be mediated through inhibition TGF-β1 expression. Natriuretic peptides can inhibit NF-κB activity and activate GATA. Hemeoxygenase-1 and peroxisome proliferator-activated receptor γ may be involved in the infarct-reducing effect of NPs. NPs exhibit the infarct-limiting effect in patients with acute myocardial infarction. NPs prevent post-infarction remodeling of the heart. To finally resolve the question of the feasibility of using NPs in AMI, a multicenter, randomized, blind, placebo-controlled study is needed to assess the effect of NPs on the mortality of patients after AMI.
Collapse
Affiliation(s)
- Andrey V Krylatov
- Cardiology Research Institute, 164253Tomsk National Research Medical Center of the RAS, Tomsk, Russia
| | - Sergey Y Tsibulnikov
- Cardiology Research Institute, 164253Tomsk National Research Medical Center of the RAS, Tomsk, Russia
| | | | - Alla A Boshchenko
- Cardiology Research Institute, 164253Tomsk National Research Medical Center of the RAS, Tomsk, Russia
| | - Victor E Goldberg
- Cancer Research Institute, 164253Tomsk National Research Medical Center of the RAS, Tomsk, Russia
| | - Amteshwar S Jaggi
- 429174Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | - Reinhold G Erben
- Department of Biomedical Research, Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine, Vienna, Austria
| | - Leonid N Maslov
- Cardiology Research Institute, 164253Tomsk National Research Medical Center of the RAS, Tomsk, Russia
| |
Collapse
|
5
|
Nakanishi N, Kaikita K, Ishii M, Oimatsu Y, Mitsuse T, Ito M, Yamanaga K, Fujisue K, Kanazawa H, Sueta D, Takashio S, Arima Y, Araki S, Nakamura T, Sakamoto K, Suzuki S, Yamamoto E, Soejima H, Tsujita K. Cardioprotective Effects of Rivaroxaban on Cardiac Remodeling After Experimental Myocardial Infarction in Mice. Circ Rep 2020; 2:158-166. [PMID: 33693223 PMCID: PMC7921351 DOI: 10.1253/circrep.cr-19-0117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Background:
Direct-activated factor X (FXa) plays an important role in thrombosis and is also involved in inflammation via the protease-activated receptor (PAR)-1 and PAR-2 pathway. We hypothesized that rivaroxaban protects against cardiac remodeling after myocardial infarction (MI). Methods and Results:
MI was induced in wild-type mice by permanent ligation of the left anterior descending coronary artery. At day 1 after MI, mice were randomly assigned to the rivaroxaban and vehicle groups. Mice in the rivaroxaban group were provided with a regular chow diet plus rivaroxaban. We evaluated cardiac function by echocardiography, pathology, expression of mRNA and protein at day 7 after MI. Rivaroxaban significantly improved cardiac systolic function, decreased infarct size and cardiac mass compared with the vehicle. Rivaroxaban also downregulated the mRNA expression levels of tumor necrosis factor-α, transforming growth factor-β, PAR-1 and PAR-2 in the infarcted area, and both A-type and B-type natriuretic peptides in the non-infarcted area compared with the vehicle. Furthermore, rivaroxaban attenuated cardiomyocyte hypertrophy and the phosphorylation of extracellular signal-regulated kinase in the non-infarcted area compared with the vehicle. Conclusions:
Rivaroxaban protected against cardiac dysfunction in MI model mice. Reduction of PAR-1, PAR-2 and proinflammatory cytokines in the infarcted area may be involved in its cardioprotective effects.
Collapse
Affiliation(s)
- Nobuhiro Nakanishi
- Department of Cardiovascular Medicine and Center for Metabolic Regulation of Healthy Aging, Graduate School of Medical Sciences, Kumamoto University Kumamoto Japan
| | - Koichi Kaikita
- Department of Cardiovascular Medicine and Center for Metabolic Regulation of Healthy Aging, Graduate School of Medical Sciences, Kumamoto University Kumamoto Japan
| | - Masanobu Ishii
- Department of Cardiovascular Medicine and Center for Metabolic Regulation of Healthy Aging, Graduate School of Medical Sciences, Kumamoto University Kumamoto Japan
| | - Yu Oimatsu
- Department of Cardiovascular Medicine and Center for Metabolic Regulation of Healthy Aging, Graduate School of Medical Sciences, Kumamoto University Kumamoto Japan
| | - Tatsuro Mitsuse
- Department of Cardiovascular Medicine and Center for Metabolic Regulation of Healthy Aging, Graduate School of Medical Sciences, Kumamoto University Kumamoto Japan
| | - Miwa Ito
- Department of Cardiovascular Medicine and Center for Metabolic Regulation of Healthy Aging, Graduate School of Medical Sciences, Kumamoto University Kumamoto Japan
| | - Kenshi Yamanaga
- Department of Cardiovascular Medicine and Center for Metabolic Regulation of Healthy Aging, Graduate School of Medical Sciences, Kumamoto University Kumamoto Japan
| | - Koichiro Fujisue
- Department of Cardiovascular Medicine and Center for Metabolic Regulation of Healthy Aging, Graduate School of Medical Sciences, Kumamoto University Kumamoto Japan
| | - Hisanori Kanazawa
- Department of Cardiovascular Medicine and Center for Metabolic Regulation of Healthy Aging, Graduate School of Medical Sciences, Kumamoto University Kumamoto Japan
| | - Daisuke Sueta
- Department of Cardiovascular Medicine and Center for Metabolic Regulation of Healthy Aging, Graduate School of Medical Sciences, Kumamoto University Kumamoto Japan
| | - Seiji Takashio
- Department of Cardiovascular Medicine and Center for Metabolic Regulation of Healthy Aging, Graduate School of Medical Sciences, Kumamoto University Kumamoto Japan
| | - Yuichiro Arima
- Department of Cardiovascular Medicine and Center for Metabolic Regulation of Healthy Aging, Graduate School of Medical Sciences, Kumamoto University Kumamoto Japan
| | - Satoshi Araki
- Department of Cardiovascular Medicine and Center for Metabolic Regulation of Healthy Aging, Graduate School of Medical Sciences, Kumamoto University Kumamoto Japan
| | - Taishi Nakamura
- Department of Cardiovascular Medicine and Center for Metabolic Regulation of Healthy Aging, Graduate School of Medical Sciences, Kumamoto University Kumamoto Japan
| | - Kenji Sakamoto
- Department of Cardiovascular Medicine and Center for Metabolic Regulation of Healthy Aging, Graduate School of Medical Sciences, Kumamoto University Kumamoto Japan
| | - Satoru Suzuki
- Department of Cardiovascular Medicine and Center for Metabolic Regulation of Healthy Aging, Graduate School of Medical Sciences, Kumamoto University Kumamoto Japan
| | - Eiichiro Yamamoto
- Department of Cardiovascular Medicine and Center for Metabolic Regulation of Healthy Aging, Graduate School of Medical Sciences, Kumamoto University Kumamoto Japan
| | - Hirofumi Soejima
- Department of Cardiovascular Medicine and Center for Metabolic Regulation of Healthy Aging, Graduate School of Medical Sciences, Kumamoto University Kumamoto Japan
| | - Kenichi Tsujita
- Department of Cardiovascular Medicine and Center for Metabolic Regulation of Healthy Aging, Graduate School of Medical Sciences, Kumamoto University Kumamoto Japan
| |
Collapse
|
6
|
Tourki B, Matéo P, Morand J, Elayeb M, Godin-Ribuot D, Marrakchi N, Belaidi E, Messadi E. Lebetin 2, a Snake Venom-Derived Natriuretic Peptide, Attenuates Acute Myocardial Ischemic Injury through the Modulation of Mitochondrial Permeability Transition Pore at the Time of Reperfusion. PLoS One 2016; 11:e0162632. [PMID: 27618302 PMCID: PMC5019389 DOI: 10.1371/journal.pone.0162632] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/25/2016] [Indexed: 12/28/2022] Open
Abstract
Cardiac ischemia is one of the leading causes of death worldwide. It is now well established that natriuretic peptides can attenuate the development of irreversible ischemic injury during myocardial infarction. Lebetin 2 (L2) is a new discovered peptide isolated from Macrovipera lebetina venom with structural similarity to B-type natriuretic peptide (BNP). Our objectives were to define the acute cardioprotective actions of L2 in isolated Langendorff-perfused rat hearts after regional or global ischemia-reperfusion (IR). We studied infarct size, left ventricular contractile recovery, survival protein kinases and mitochondrial permeability transition pore (mPTP) opening in injured myocardium. L2 dosage was determined by preliminary experiments at its ability to induce cyclic guanosine monophosphate (cGMP) release without changing hemodynamic effects in normoxic hearts. L2 was found to be as effective as BNP in reducing infarct size after the induction of either regional or global IR. Both peptides equally improved contractile recovery after regional IR, but only L2 increased coronary flow and reduced severe contractile dysfunction after global ischemia. Cardioprotection afforded by L2 was abolished after isatin or 5-hydroxydecanote pretreatment suggesting the involvement of natriuretic peptide receptors and mitochondrial KATP (mitoKATP) channels in the L2-induced effects. L2 also increased survival protein expression in the reperfused myocardium as evidenced by phosphorylation of signaling pathways PKCε/ERK/GSK3β and PI3K/Akt/eNOS. IR induced mitochondrial pore opening, but this effect was markedly prevented by L2 treatment. These data show that L2 has strong cardioprotective effect in acute ischemia through stimulation of natriuretic peptide receptors. These beneficial effects are mediated, at least in part, by mitoKATP channel opening and downstream activated survival kinases, thus delaying mPTP opening and improving IR-induced mitochondrial dysfunction.
Collapse
Affiliation(s)
- Bochra Tourki
- Laboratoire des Venins et Biomolécules Thérapeutiques (LR11IPT08) et Plateforme de Physiologie et de Physiopathologie Cardiovasculaires (P2C), Institut Pasteur de Tunis, Université Tunis El Manar, Tunis, Tunisia
- Université Carthage Tunis, Bizerte, Tunisia
| | - Philippe Matéo
- Laboratoire de Signalisation et Physiopathologie Cardiovasculaire, UMR-S 1180, Faculté de Pharmacie, Université Paris Sud, Paris, France
| | - Jessica Morand
- Laboratoire d’Hypoxie et Physiopathologie Cardiaque, Inserm U1042, Faculté de Pharmacie, Université Grenoble Alpes, Grenoble, France
| | - Mohamed Elayeb
- Laboratoire des Venins et Biomolécules Thérapeutiques (LR11IPT08) et Plateforme de Physiologie et de Physiopathologie Cardiovasculaires (P2C), Institut Pasteur de Tunis, Université Tunis El Manar, Tunis, Tunisia
| | - Diane Godin-Ribuot
- Laboratoire d’Hypoxie et Physiopathologie Cardiaque, Inserm U1042, Faculté de Pharmacie, Université Grenoble Alpes, Grenoble, France
| | - Naziha Marrakchi
- Laboratoire des Venins et Biomolécules Thérapeutiques (LR11IPT08) et Plateforme de Physiologie et de Physiopathologie Cardiovasculaires (P2C), Institut Pasteur de Tunis, Université Tunis El Manar, Tunis, Tunisia
| | - Elise Belaidi
- Laboratoire d’Hypoxie et Physiopathologie Cardiaque, Inserm U1042, Faculté de Pharmacie, Université Grenoble Alpes, Grenoble, France
| | - Erij Messadi
- Laboratoire des Venins et Biomolécules Thérapeutiques (LR11IPT08) et Plateforme de Physiologie et de Physiopathologie Cardiovasculaires (P2C), Institut Pasteur de Tunis, Université Tunis El Manar, Tunis, Tunisia
- * E-mail:
| |
Collapse
|
7
|
Cantinotti M. B-Type Cardiac Natriuretic Peptides in the Neonatal and Pediatric Intensive Care Units. J Pediatr Intensive Care 2016; 5:189-197. [PMID: 31110904 DOI: 10.1055/s-0036-1583543] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 11/11/2015] [Indexed: 01/29/2023] Open
Abstract
During the last decade, interest in the brain natriuretic peptide (BNP) and N-terminal probrain natriuretic peptide (NT-proBNP) in the pediatric population has progressively increased. The aim of this article is to provide an up to date review of evidences regarding the use of BNP/NT-proBNP in pediatrics, with a particular focus on neonatal intensive care and congenital heart disease. The potentialities of the BNP have been demonstrated in multiple settings, particularly: the screening of congenital/acquired heart disease (CHD) versus pulmonary disease; the evaluation of CHD severity (grade of heart failure, degree of left-to-right shunts); the management of children undergoing cardiac surgery; and monitoring premature infants with patent arterial duct. BNP/NT-proBNP values may be considered an easy and relatively low cost additional diagnostic and prognostic tool. Interpretation of BNP values in children requires attention to important factors, including: laboratory methods, the type of cardiac defect, its severity, and the presence of extracardiac conditions. Of these, the hemodynamic characteristic of CHD and physiologic variations of BNP values occurring during the first weeks of life play a major role. The current evidences in favor of BNP use are mainly derived from single-center, nonrandomized studies, and cost-effectiveness analysis are still lacking. As such, despite sufficient evidences supporting the diagnostic and prognostic potentialities of BNP, these findings should be reinforced by multicenter, randomized studies specifically designed to evaluate outcomes and cost-effectiveness. In addition, standard consensus documents/guidelines, that are currently lacking, are warranted for a more systematic use of BNP in the pediatric age.
Collapse
Affiliation(s)
- Massimiliano Cantinotti
- Fondazione Toscana G. Monasterio, Massa, Pisa, Italy.,Insititute of Clinical Physiology, IFC_CNR, Pisa, Italy
| |
Collapse
|
8
|
Suematsu Y, Miura SI, Goto M, Matsuo Y, Arimura T, Kuwano T, Imaizumi S, Iwata A, Yahiro E, Saku K. LCZ696, an angiotensin receptor-neprilysin inhibitor, improves cardiac function with the attenuation of fibrosis in heart failure with reduced ejection fraction in streptozotocin-induced diabetic mice. Eur J Heart Fail 2016; 18:386-93. [DOI: 10.1002/ejhf.474] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 11/06/2015] [Accepted: 11/29/2015] [Indexed: 11/09/2022] Open
Affiliation(s)
- Yasunori Suematsu
- Department of Cardiology; Fukuoka University School of Medicine; Fukuoka Japan
| | - Shin-ichiro Miura
- Department of Cardiology; Fukuoka University School of Medicine; Fukuoka Japan
- Department of Molecular Cardiovascular Therapeutics; Fukuoka University School of Medicine; Fukuoka Japan
| | - Masaki Goto
- Department of Cardiology; Fukuoka University School of Medicine; Fukuoka Japan
| | - Yoshino Matsuo
- Department of Cardiology; Fukuoka University School of Medicine; Fukuoka Japan
| | - Tadaaki Arimura
- Department of Cardiology; Fukuoka University School of Medicine; Fukuoka Japan
| | - Takashi Kuwano
- Department of Cardiology; Fukuoka University School of Medicine; Fukuoka Japan
| | - Satoshi Imaizumi
- Department of Cardiology; Fukuoka University School of Medicine; Fukuoka Japan
| | - Atsushi Iwata
- Department of Cardiology; Fukuoka University School of Medicine; Fukuoka Japan
| | - Eiji Yahiro
- Department of Cardiology; Fukuoka University School of Medicine; Fukuoka Japan
| | - Keijiro Saku
- Department of Cardiology; Fukuoka University School of Medicine; Fukuoka Japan
- Department of Molecular Cardiovascular Therapeutics; Fukuoka University School of Medicine; Fukuoka Japan
| |
Collapse
|
9
|
Kerkelä R, Ulvila J, Magga J. Natriuretic Peptides in the Regulation of Cardiovascular Physiology and Metabolic Events. J Am Heart Assoc 2015; 4:e002423. [PMID: 26508744 PMCID: PMC4845118 DOI: 10.1161/jaha.115.002423] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Risto Kerkelä
- Department of Pharmacology and Toxicology, Research Unit of Biomedicine, University of Oulu, Finland (R.K., J.U., J.M.) Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Finland (R.K.)
| | - Johanna Ulvila
- Department of Pharmacology and Toxicology, Research Unit of Biomedicine, University of Oulu, Finland (R.K., J.U., J.M.)
| | - Johanna Magga
- Department of Pharmacology and Toxicology, Research Unit of Biomedicine, University of Oulu, Finland (R.K., J.U., J.M.)
| |
Collapse
|
10
|
Abstract
Interest in brain natriuretic peptide (BNP) and N-terminal pro-brain natriuretic peptide (NT-proBNP) in the management of children with CHD has increased. There are, however, no current guidelines for their routine use. The aim of this review article is to provide an update on the data regarding the use of BNP/NT-proBNP in the evaluation and surgical treatment of children with CHD. BNP/NT-proBNP levels in children with CHD vary substantially according to age, laboratory assay methods, and the specific haemodynamics associated with the individual congenital heart lesion. The accuracy of BNP/NT-proBNP as supplemental markers in the integrated screening, diagnosis, management, and follow-up of CHD has been established. In particular, the use of BNP/NT-proBNP as a prognostic indicator in paediatric cardiac surgery has been widely demonstrated, as well as its role in the subsequent follow-up of surgical patients. Most of the data, however, are derived from single-centre retrospective studies using multivariable analysis; prospective, randomised clinical trials designed to evaluate the clinical utility and cost-effectiveness of routine BNP/NT-proBNP use in CHD are lacking. The results of well-designed, prospective clinical trials should assist in formulating guidelines and expert consensus recommendations for its use in patients with CHD. Finally, the use of new point-of-care testing methods that use less invasive sampling techniques - capillary blood specimens - may contribute to a more widespread use of the BNP assay, especially in neonates and infants, as well as contribute to the development of screening programmes for CHD using this biomarker.
Collapse
|
11
|
The protective effects of 17beta-estradiol against ischemia-reperfusion injury and its effect on pacing postconditioning protection to the heart. J Physiol Biochem 2013; 70:151-62. [PMID: 24037795 DOI: 10.1007/s13105-013-0289-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Accepted: 09/05/2013] [Indexed: 01/15/2023]
Abstract
The role of pacing postconditioning (PPC) in the heart protection against ischemia-reperfusion injury is not completely understood. The aim of this study was to investigated if 17-β-estradiol (estrogen, E2), endogenous atrial natriuretic peptide (ANP), endogenous brain natriuretic peptide (BNP), and tumor necrosis factor-alpha (TNF-α) are involved in PPC-mediated protection. Langendorff perfused female Wistar rat hearts were used for this study. Hearts challenged with regional ischemia for 30 min subjected to no further treatment served as a control. The PPC protocol was 3 cycles of 30 s pacing alternated between the right atrium and left ventricle (LV). Protection was assessed by recovery of LV contractility and coronary vascular-hemodynamics. Ischemia induced a significant (P < 0.05) deterioration in the heart function compared with baseline data. PPC alone or in combination with short-term E2 treatment (E2 infusion at the beginning of reperfusion) significantly (P < 0.05) improved the heart functions. Short-term E2 treatment post-ischemically afforded protection similar to that of PPC. However, long-term E2 substitution for 6 weeks completely attenuated the protective effects of PPC. Although no changes were noted in endogenous ANP levels, PPC significantly increased BNP expression level and decreased TNF-α in the cardiomyocyte lysate and coronary effluent compared to ischemia and controls. Our data suggested a protective role for short-term E2 treatment similar to that of PPC mediated by a pathway recruiting BNP and downregulating TNF-α. Our study further suggested a bad influence for long-term E2 substitution on the heart as it completely abrogated the protective effects of PPC.
Collapse
|
12
|
Ogawa Y, Mukoyama M, Yokoi H, Kasahara M, Mori K, Kato Y, Kuwabara T, Imamaki H, Kawanishi T, Koga K, Ishii A, Tokudome T, Kishimoto I, Sugawara A, Nakao K. Natriuretic peptide receptor guanylyl cyclase-A protects podocytes from aldosterone-induced glomerular injury. J Am Soc Nephrol 2012; 23:1198-209. [PMID: 22652704 DOI: 10.1681/asn.2011100985] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Natriuretic peptides produced by the heart in response to cardiac overload exert cardioprotective and renoprotective effects by eliciting natriuresis, reducing BP, and inhibiting cell proliferation and fibrosis. These peptides also antagonize the renin-angiotensin-aldosterone system, but whether this mechanism contributes to their renoprotective effect is unknown. Here, we examined the kidneys of mice lacking the guanylyl cyclase-A (GC-A) receptor for natriuretic peptides under conditions of high aldosterone and high dietary salt. After 4 weeks of administering aldosterone and a high-salt diet, GC-A knockout mice, but not wild-type mice, exhibited accelerated hypertension with massive proteinuria. Aldosterone-infused GC-A knockout mice had marked mesangial expansion, segmental sclerosis, severe podocyte injury, and increased oxidative stress. Reducing the BP with hydralazine failed to lessen such changes; in contrast, blockade of the renin-angiotensin-aldosterone system markedly reduced albuminuria, ameliorated podocyte injury, and reduced oxidative stress. Furthermore, treatment with the antioxidant tempol significantly reduced albuminuria and abrogated the histologic changes. In cultured podocytes, natriuretic peptides inhibited aldosterone-induced mitogen-activated protein kinase phosphorylation. Taken together, these results suggest that renoprotective properties of the endogenous natriuretic peptide/GC-A system may result from the local inhibition of the renin-angiotensin-aldosterone system and oxidative stress in podocytes.
Collapse
Affiliation(s)
- Yoshihisa Ogawa
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
|
14
|
Kinoshita H, Kuwahara K, Nishida M, Jian Z, Rong X, Kiyonaka S, Kuwabara Y, Kurose H, Inoue R, Mori Y, Li Y, Nakagawa Y, Usami S, Fujiwara M, Yamada Y, Minami T, Ueshima K, Nakao K. Inhibition of TRPC6 channel activity contributes to the antihypertrophic effects of natriuretic peptides-guanylyl cyclase-A signaling in the heart. Circ Res 2010; 106:1849-60. [PMID: 20448219 DOI: 10.1161/circresaha.109.208314] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Atrial and brain natriuretic peptides (ANP and BNP, respectively) exert antihypertrophic effects in the heart via their common receptor, guanylyl cyclase (GC)-A, which catalyzes the synthesis of cGMP, leading to activation of protein kinase (PK)G. Still, much of the network of molecular mediators via which ANP/BNP-GC-A signaling inhibit cardiac hypertrophy remains to be characterized. OBJECTIVE We investigated the effect of ANP-GC-A signaling on transient receptor potential subfamily C (TRPC)6, a receptor-operated Ca(2+) channel known to positively regulate prohypertrophic calcineurin-nuclear factor of activated T cells (NFAT) signaling. METHODS AND RESULTS In cardiac myocytes, ANP induced phosphorylation of TRPC6 at threonine 69, the PKG phosphorylation site, and significantly inhibited agonist-evoked NFAT activation and Ca(2+) influx, whereas in HEK293 cells, it dramatically inhibited agonist-evoked TRPC6 channel activity. These inhibitory effects of ANP were abolished in the presence of specific PKG inhibitors or by substituting an alanine for threonine 69 in TRPC6. In model mice lacking GC-A, the calcineurin-NFAT pathway is constitutively activated, and BTP2, a selective TRPC channel blocker, significantly attenuated the cardiac hypertrophy otherwise seen. Conversely, overexpression of TRPC6 in mice lacking GC-A exacerbated cardiac hypertrophy. BTP2 also significantly inhibited angiotensin II-induced cardiac hypertrophy in mice. CONCLUSIONS Collectively, these findings suggest that TRPC6 is a critical target of antihypertrophic effects elicited via the cardiac ANP/BNP-GC-A pathway and suggest TRPC6 blockade could be an effective therapeutic strategy for preventing pathological cardiac remodeling.
Collapse
Affiliation(s)
- Hideyuki Kinoshita
- Department of Medicine and Clinical Science, Kyoto University Graduated School of Medicine, Kyoto 606-8507, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Klaiber M, Kruse M, Völker K, Schröter J, Feil R, Freichel M, Gerling A, Feil S, Dietrich A, Londoño JEC, Baba HA, Abramowitz J, Birnbaumer L, Penninger JM, Pongs O, Kuhn M. Novel insights into the mechanisms mediating the local antihypertrophic effects of cardiac atrial natriuretic peptide: role of cGMP-dependent protein kinase and RGS2. Basic Res Cardiol 2010; 105:583-95. [PMID: 20352235 PMCID: PMC2916114 DOI: 10.1007/s00395-010-0098-z] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Revised: 02/17/2010] [Accepted: 03/16/2010] [Indexed: 01/12/2023]
Abstract
Cardiac atrial natriuretic peptide (ANP) locally counteracts cardiac hypertrophy via the guanylyl cyclase-A (GC-A) receptor and cGMP production, but the downstream signalling pathways are unknown. Here, we examined the influence of ANP on β-adrenergic versus Angiotensin II (Ang II)-dependent (Gs vs. Gαq mediated) modulation of Ca2+i-handling in cardiomyocytes and of hypertrophy in intact hearts. L-type Ca2+ currents and Ca2+i transients in adult isolated murine ventricular myocytes were studied by voltage-clamp recordings and fluorescence microscopy. ANP suppressed Ang II-stimulated Ca2+ currents and transients, but had no effect on isoproterenol stimulation. Ang II suppression by ANP was abolished in cardiomyocytes of mice deficient in GC-A, in cyclic GMP-dependent protein kinase I (PKG I) or in the regulator of G protein signalling (RGS) 2, a target of PKG I. Cardiac hypertrophy in response to exogenous Ang II was significantly exacerbated in mice with conditional, cardiomyocyte-restricted GC-A deletion (CM GC-A KO). This was concomitant to increased activation of the Ca2+/calmodulin-dependent prohypertrophic signal transducer CaMKII. In contrast, β-adrenoreceptor-induced hypertrophy was not enhanced in CM GC-A KO mice. Lastly, while the stimulatory effects of Ang II on Ca2+-handling were absent in myocytes of mice deficient in TRPC3/TRPC6, the effects of isoproterenol were unchanged. Our data demonstrate a direct myocardial role for ANP/GC-A/cGMP to antagonize the Ca2+i-dependent hypertrophic growth response to Ang II, but not to β-adrenergic stimulation. The selectivity of this interaction is determined by PKG I and RGS2-dependent modulation of Ang II/AT1 signalling. Furthermore, they strengthen published observations in neonatal cardiomyocytes showing that TRPC3/TRPC6 channels are essential for Ang II, but not for β-adrenergic Ca2+i-stimulation in adult myocytes.
Collapse
Affiliation(s)
- Michael Klaiber
- Institute of Physiology, University of Würzburg, Physiologisches Institut der Universität Würzburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Ritchie RH, Irvine JC, Rosenkranz AC, Patel R, Wendt IR, Horowitz JD, Kemp-Harper BK. Exploiting cGMP-based therapies for the prevention of left ventricular hypertrophy: NO* and beyond. Pharmacol Ther 2009; 124:279-300. [PMID: 19723539 DOI: 10.1016/j.pharmthera.2009.08.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Accepted: 08/14/2009] [Indexed: 02/07/2023]
Abstract
Left ventricular hypertrophy (LVH), an increased left ventricular (LV) mass, is common to many cardiovascular disorders, initially developing as an adaptive response to maintain myocardial function. In the longer term, this LV remodelling becomes maladaptive, with progressive decline in LV contractility and diastolic function. Indeed LVH is recognised as an important blood-pressure independent predictor of cardiovascular morbidity and mortality. The clinical efficacy of current treatments for LVH is reduced, however, by their tendency to slow disease progression rather than induce its reversal, and thus the development of new therapies for LVH is paramount. The signalling molecule cyclic guanosine-3',5'-monophosphate (cGMP), well-recognised for its role in regulating vascular tone, is now being increasingly identified as an important anti-hypertrophic mediator. This review is focused on the various means by which cGMP can be stimulated in the heart, such as via the natriuretic peptides, to exert anti-hypertrophic actions. In particular we address the limitations of traditional nitric oxide (NO*) donors in the face of the potential therapeutic advantages offered by novel alternatives; NO* siblings, ligands of the cGMP-generating enzymes, soluble (sGC) and particulate guanylyl cyclases (pGC), and phosphodiesterase inhibitors. Further impact of cGMP within the cardiovascular system is also discussed with a view to representing cGMP-based therapies as innovative pharmacotherapy, alone or concurrent with standard care, for the management of LVH.
Collapse
Affiliation(s)
- Rebecca H Ritchie
- Heart Failure Pharmacology, Baker IDI Heart & Diabetes Institute Melbourne, Victoria, Australia.
| | | | | | | | | | | | | |
Collapse
|
17
|
Mannarino S, Ciardelli L, Garofoli F, Perotti G, Mongini E, Damiano S, Tinelli C, Cerbo RM, Rondini G, Stronati M. Correlation between cord blood, perinatal BNP values and echocardiographic parameters in healthy Italian newborns. Early Hum Dev 2009; 85:13-7. [PMID: 18585874 DOI: 10.1016/j.earlhumdev.2008.05.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 04/23/2008] [Accepted: 05/24/2008] [Indexed: 11/27/2022]
Abstract
We evaluated the correlation between brain natriuretic peptide (BNP) in umbilical cord blood after normal pregnancy, in blood samples of twenty-nine Italian healthy newborns and paired echocardiographic parameters. Plasma BNP was evaluated in UCB (T0) and in blood on day 3 (T1), 30 (T2) of life. Echocardiographic parameters were recorded at T1 and T2. Median of BNP concentrations in cord blood was 8.6 pg/ml. Median BNP concentrations on T1 was 59.2 pg/ml, on T2 was 8.7 pg/ml. Significantly higher BNP concentrations were reported on T1 than T0 and T2 (p<0.0001), while no significant difference resulted between T0 and T2. Plasma BNP at T2 was significantly correlated with mVTI (p=0.006), E wave (p=0.004), LA (p=0.047), LVPW (p=0.004), M (p=0.025). No correlation was found with SF% and E/A. Our results confirm that in healthy and term neonates the cord blood BNP concentrations are low. On T1 BNP values are high with wide ranges because of physiological adjustment to postnatal circulation. When echocardiographic parameters are in normal ranges, BNP concentrations return to low levels on day 30. In healthy newborns left ventricular filling, LA size and M seem to influence BNP levels rather than left ventricular systolic and diastolic function.
Collapse
Affiliation(s)
- Savina Mannarino
- Pediatric Cardiology, Department of Paediatrics, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
The renin-angiotensin system contributes to renal fibrosis through regulation of fibrocytes. J Hypertens 2008; 26:780-90. [PMID: 18327089 DOI: 10.1097/hjh.0b013e3282f3e9e6] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND The renin-angiotensin system is a major pathway in the pathogenesis of cardiovascular and renal diseases. Bone marrow-derived fibrocytes, which are dual positive for CD45 and type I collagen, are now considered to contribute to the pathogenesis of various fibrotic diseases. We hypothesized that fibrocytes might contribute to renal fibrosis by an angiotensin II dependent pathway. RESULTS In murine models of renal fibrosis, angiotensin II type 2 receptor (AT2R)-deficient mice, when compared with wild-type mice, showed increased renal fibrosis and fibrocyte infiltration with a concomitant upregulation of renal transcripts of procollagen type I (alpha) (COL1A1). Fibrocyte numbers in the bone marrow also were increased in AT2R-deficient mice. By contrast, pharmacological inhibition of angiotensin II type 1 receptor (AT1R) with valsartan reduced the degree of renal fibrosis and the number of fibrocytes in both the kidney and the bone marrow. In isolated human fibrocytes, inhibition of AT2R signaling increased the angiotensin II-stimulated expression of type I collagen, whereas inhibition of AT1R decreased collagen synthesis. These results suggest that AT1R/AT2R signaling may contribute to the pathogenesis of renal fibrosis by at least two mechanisms: by regulating the number of fibrocytes in the bone marrow, and by activation of fibrocytes.
Collapse
|
19
|
Baptista MJ, Nogueira-Silva C, Areias JC, Correia-Pinto J. Perinatal profile of ventricular overload markers in congenital diaphragmatic hernia. J Pediatr Surg 2008; 43:627-33. [PMID: 18405707 DOI: 10.1016/j.jpedsurg.2007.08.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Revised: 08/03/2007] [Accepted: 08/11/2007] [Indexed: 10/22/2022]
Abstract
BACKGROUND In congenital diaphragmatic hernia (CDH), pulmonary hypertension increases right ventricle (RV) afterload, which could impair heart function and contribute to poor outcome for most affected infants. Nevertheless, the real significance of vascular pulmonary alterations in perinatal hemodynamics is largely unknown. It is defined that ventricular pressure overload induces increased myocardium gene expression of B-type natriuretic peptide (BNP) and components of the renin-angiotensinogen and endothelin (ET)-1 systems. Our aim was to evaluate perinatal myocardium expression of these genes associated with ventricular pressure overload in a nitrofen-induced CDH rat model. METHODS In the nitrofen-induced CDH rat model, fetuses from dated pregnant Sprague-Dawley rats at 15.5, 17.5, 19.5 and 21.5 days postcoitum as well as newborn pups were assigned to 3 experimental groups: control, nitrofen (exposed to nitrofen, without CDH), and CDH (exposed to nitrofen, with CDH). Myocardial samples collected from the RV and left ventricle (LV) were processed for quantification of messenger RNA (mRNA) of BNP, angiotensinogen, and ET-1. RESULTS The perinatal expression of BNP, angiotensinogen, and ET-1 mRNA in the RV and LV of the control group revealed daily changes. During gestation, the expression of BNP and angiotensinogen mRNA underwent significant oscillation compared with control in both nitrofen-exposed fetuses, although we cannot identify significant differences between the nitrofen and CDH groups. After birth, we found a significant increasing expression of all studied genes only in the RV of CDH pups. CONCLUSIONS Perinatal myocardial quantification of BNP, angiotensinogen, and ET-1 mRNA levels suggests that both nitrofen-exposed and control pups revealed prenatal variations of expression of the studied genes. Moreover, CDH is associated with significant molecular alterations only in the RV after birth.
Collapse
Affiliation(s)
- Maria João Baptista
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
| | | | | | | |
Collapse
|
20
|
Kilić A, Bubikat A, Gassner B, Baba HA, Kuhn M. Local actions of atrial natriuretic peptide counteract angiotensin II stimulated cardiac remodeling. Endocrinology 2007; 148:4162-9. [PMID: 17510245 DOI: 10.1210/en.2007-0182] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The cardiac hormones atrial and brain natriuretic peptides (NPs) counteract the systemic, hypertensive, and hypervolemic actions of angiotensin II (Ang II) via their guanylyl cyclase-A (GC-A) receptor. In the present study, we took advantage of genetically modified mice with conditional, cardiomyocyte (CM)-restricted disruption of GC-A (CM GC-A knockout mice) to study whether NPs can moderate not only the endocrine but also the cardiac actions of Ang II in vivo. Fluorometric measurements of [Ca(2+)](i) transients in isolated, electrically paced adult CMs showed that atrial NP inhibits the stimulatory effects of Ang II on free cytosolic Ca(2+) transients via GC-A. Remarkably, GC-A-deficient CMs exhibited greatly enhanced [Ca(2+)](i) responses to Ang II, which was partly related to increased activation of the Na(+)/H(+)-exchanger NHE-1. Chronic administration of Ang II to control and CM GC-A knockout mice (300 ng/kg body weight per minute via osmotic minipumps during 2 wk) provoked significant cardiac hypertrophy, which was markedly exacerbated in the later genotype. This was concomitant to increased cardiac expression of NHE-1 and enhanced activation of the Ca(2+)/calmodulin-dependent prohypertrophic signal transducers Ca(2+)/calmodulin-dependent kinase II and calcineurin. On the basis of these results, we conclude that NPs exert direct local, GC-A-mediated myocardial effects to antagonize the [Ca(2+)](i)-dependent hypertrophic growth response to Ang II.
Collapse
Affiliation(s)
- Ana Kilić
- Physiologisches Institut der Universität Würzburg, Röntgenring 9, D-97070 Würzburg, Germany
| | | | | | | | | |
Collapse
|
21
|
Khan R. Examining potential therapies targeting myocardial fibrosis through the inhibition of transforming growth factor-beta 1. Cardiology 2007; 108:368-80. [PMID: 17308385 DOI: 10.1159/000099111] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2005] [Accepted: 10/20/2006] [Indexed: 01/25/2023]
Abstract
After injury, the heart undergoes a remodeling process consisting primarily of myocyte hypertrophy, apoptosis and interstitial fibrosis. Although initially beneficial, excess fibrosis gradually results in alteration of left ventricular properties and cardiac dysfunction. Transforming growth factor-beta 1 (TGF-beta(1)) is thought to be a primary mediator of fibrosis within the heart after injury. Currently, angiotensin II blockade is used to inhibit the actions of TGF-beta(1). However, recent studies indicate that angiotensin II blockade alone may not be sufficient to prevent TGF-beta(1)-induced fibrosis. Thus far, both in vivo and in vitro models have shown that direct TGF-beta(1) inhibition, NAPDH oxidase inhibitors, growth factors and hormonal treatment regimens targeting TGF-beta(1) may significantly reduce cardiac fibrosis after injury. This study attempts to underline these alternatives to angiotensin II blockade in combating TGF-beta(1)-induced cardiac dysfunction.
Collapse
Affiliation(s)
- Razi Khan
- McGill University, Faculty of Medicine, Montreal, Canada.
| |
Collapse
|
22
|
Potter LR, Abbey-Hosch S, Dickey DM. Natriuretic peptides, their receptors, and cyclic guanosine monophosphate-dependent signaling functions. Endocr Rev 2006; 27:47-72. [PMID: 16291870 DOI: 10.1210/er.2005-0014] [Citation(s) in RCA: 704] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Natriuretic peptides are a family of structurally related but genetically distinct hormones/paracrine factors that regulate blood volume, blood pressure, ventricular hypertrophy, pulmonary hypertension, fat metabolism, and long bone growth. The mammalian members are atrial natriuretic peptide, B-type natriuretic peptide, C-type natriuretic peptide, and possibly osteocrin/musclin. Three single membrane-spanning natriuretic peptide receptors (NPRs) have been identified. Two, NPR-A/GC-A/NPR1 and NPR-B/GC-B/NPR2, are transmembrane guanylyl cyclases, enzymes that catalyze the synthesis of cGMP. One, NPR-C/NPR3, lacks intrinsic enzymatic activity and controls the local concentrations of natriuretic peptides through constitutive receptor-mediated internalization and degradation. Single allele-inactivating mutations in the promoter of human NPR-A are associated with hypertension and heart failure, whereas homozygous inactivating mutations in human NPR-B cause a form of short-limbed dwarfism known as acromesomelic dysplasia type Maroteaux. The physiological effects of natriuretic peptides are elicited through three classes of cGMP binding proteins: cGMP-dependent protein kinases, cGMP-regulated phosphodiesterases, and cyclic nucleotide-gated ion channels. In this comprehensive review, the structure, function, regulation, and biological consequences of natriuretic peptides and their associated signaling proteins are described.
Collapse
Affiliation(s)
- Lincoln R Potter
- Department of Biochemistry, Molecular Biology, and Biophysics, 6-155 Jackson Hall, 321 Church Street SE, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | | | | |
Collapse
|
23
|
Clerico A, Recchia FA, Passino C, Emdin M. Cardiac endocrine function is an essential component of the homeostatic regulation network: physiological and clinical implications. Am J Physiol Heart Circ Physiol 2006; 290:H17-29. [PMID: 16373590 DOI: 10.1152/ajpheart.00684.2005] [Citation(s) in RCA: 192] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The discovery of cardiac natriuretic hormones required a profound revision of the concept of heart function. The heart should no longer be considered only as a pump but rather as a multifunctional and interactive organ that is part of a complex network and active component of the integrated systems of the body. In this review, we first consider the cross-talk between endocrine and contractile function of the heart. Then, based on the existing literature, we propose the hypothesis that cardiac endocrine function is an essential component of the integrated systems of the body and thus plays a pivotal role in fluid, electrolyte, and hemodynamic homeostasis. We highlight those studies indicating how alterations in cardiac endocrine function can better explain the pathophysiology of cardiovascular diseases and, in particular of heart failure, in which several target organs develop a resistance to the biological action of cardiac natriuretic peptides. Finally, we emphasize the concept that a complete knowledge of the cardiac endocrine function and of its relation with other neurohormonal regulatory systems of the body is crucial to correctly interpret changes in circulating natriuretic hormones, especially the brain natriuretic peptide.
Collapse
Affiliation(s)
- Aldo Clerico
- Laboratory of Cardiovascular Endocrinology and Cell Biology, CNR Institute of Clinical Physiology, Via Trieste 41, 56126 Pisa, Italy.
| | | | | | | |
Collapse
|
24
|
Aizawa K, Hanaoka T, Kasai H, Kogashi K, Kumazaki S, Koyama J, Tsutsui H, Yazaki Y, Watanabe N, Kinoshita O, Ikeda U. Long-Term Vardenafil Therapy Improves Hemodynamics in Patients with Pulmonary Hypertension. Hypertens Res 2006; 29:123-8. [PMID: 16755146 DOI: 10.1291/hypres.29.123] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The phosphodiesterase-5 (PDE-5) inhibitor, sildenafil, has been reported to produce sustained pulmonary vasodilatation in patients with pulmonary hypertension (PH). Recently, vardenafil, a more potent and selective PDE-5 inhibitor than sildenafil, has been approved for the treatment of erectile dysfunction. However, the long-term effects of oral vardenafil in patients with PH are unknown. We studied five consecutive patients with PH; one with primary pulmonary hypertension, two with chronic pulmonary thromboembolism, one with Eisenmenger syndrome (ventricular septal defect) and one with secondary pulmonary hypertension after a ventricular septal defect closure operation. In an acute hemodynamic trial, vardenafil (5 mg) significantly decreased both the pulmonary vascular resistance (PVR) and systemic vascular resistance (SVR) with an increase in cardiac output. In a chronic hemodynamic trial, the maintenance dose of vardenafil (10 to 15 mg) for 3 months significantly decreased the PVR, but not the SVR, with a 20.7% reduction of the PVR/ SVR ratio. Plasma brain natriuretic peptide (BNP) levels were also significantly decreased after 3 months. This pilot study demonstrates that long-term oral vardenafil therapy may be a safe and effective treatment for patients with PH.
Collapse
Affiliation(s)
- Kazunori Aizawa
- Division of Cardiovascular Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto 390-8621, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Left ventricular hypertrophy (LVH) and diastolic dysfunction (CHF-D) are the early manifestations of cardiovascular target organ damage in patients with arterial hypertension and signify hypertensive heart disease. Identification of hypertensive heart disease is critical, as these individuals are more prone to congestive heart failure, arrhythmias, myocardial infarction and sudden cardiac death. Regression of left ventricular (LV) mass with antihypertensive therapy decreases the risk of future cardiovascular events. The goal of antihypertensive therapy is to both lower blood pressure (BP) and interrupt BP-independent pathophysiologic processes that promote LVH and CHF-D. The purpose of this review is to summarize current and emerging approaches to the pathophysiology and treatment of hypertensive heart disease.
Collapse
Affiliation(s)
- Joseph A Diamond
- Division of Cardiology, Long Island Jewish Hospital, New Hyde Park, New York 10040, USA.
| | | |
Collapse
|
26
|
Diedrichs H, Mei C, Frank KF, Boelck B, Schwinger RHG. Calcineurin independent development of myocardial hypertrophy in transgenic rats overexpressing the mouse renin gene, TGR(mREN2)27. J Mol Med (Berl) 2004; 82:688-95. [PMID: 15322704 DOI: 10.1007/s00109-004-0581-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2003] [Accepted: 07/01/2004] [Indexed: 10/26/2022]
Abstract
Myocardial hypertrophy is an independent risk factor for development of heart failure. The intracellular calcium homeostasis is altered in myocardial hypertrophy, and recent studies in animal models have confirmed an interaction between the Ca2+/calmodulin-dependent calcineurin signaling cascade and development of cardiac hypertrophy. There is evidence for the involvement of various pathways in development of hypertrophy. A transgenic rat model overexpressing the mouse renin gene, TGR(mREN2)27 has been shown to progress profound cardiac hypertrophy, possibly due to a monogenetic disorder. However, the exact mode of action is not known. To study a possible involvement of calcineurin and its downstream pathway in development of cardiac hypertrophy in this transgenic rat model we measured the protein expression of marker proteins of the calcineurin cascade (calcineurin, NFAT-3, GATA-4) and calcineurin phosphatase activity and GATA-4 DNA binding in TGR ( n=10) compared to age-matched Sprague-Dawley rats ( n=10). In our study there was no significant difference in calcineurin activity between the transgenic hearts and the hearts of Sprague-Dawley rats. Furthermore, we found neither an increase in protein expression of calcineurin B nor a rise in nuclear translocated NFAT-3 DU. Interestingly, the protein expression of GATA-4 and its DNA binding activity were significantly higher in hypertrophied myocardium than in control hearts. In transgenic rats overexpressing the mouse renin gene and thereby developing pronounced cardiac hypertrophy [TGR(mREN2)27] we thus found no activation of calcineurin or its downstream pathway. However, the expression of the transcriptional factor GATA-4 and its DNA binding activity were significantly increased in hearts of transgenic rats. Thus GATA-4 seems to be a marker of hypertrophy independently of calcineurin activation, possibly activated by various pathways.
Collapse
Affiliation(s)
- H Diedrichs
- Laboratory for Muscle Research and Molecular Cardiology, Department of Internal Medicine III, University of Cologne, Joseph-Stelzmann-Strasse 9, 50924 Cologne, Germany.
| | | | | | | | | |
Collapse
|