1
|
Angeli E, Jordan M, Otto M, Stojanović SD, Karsdal M, Bauersachs J, Thum T, Fiedler J, Genovese F. The role of fibrosis in cardiomyopathies: An opportunity to develop novel biomarkers of disease activity. Matrix Biol 2024; 128:65-78. [PMID: 38423395 DOI: 10.1016/j.matbio.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/22/2024] [Accepted: 02/25/2024] [Indexed: 03/02/2024]
Abstract
Cardiomyopathies encompass a spectrum of heart disorders with diverse causes and presentations. Fibrosis stands out as a shared hallmark among various cardiomyopathies, reflecting a common thread in their pathogenesis. This prevalent fibrotic response is intricately linked to the consequences of dysregulated extracellular matrix (ECM) remodeling, emphasizing its significance in the development and progression the disease. This review explores the ECM involvement in various cardiomyopathies and its impact on myocardial stiffness and fibrosis. Additionally, we discuss the potential of ECM fragments as early diagnosis, prognosis, and risk stratification. Biomarkers deriving from turnover of collagens and other ECM proteins hold promise in clinical applications. We outline current clinical management, future directions, and the potential for personalized ECM-targeted therapies with specific focus on microRNAs. In summary, this review examines the role of the fibrosis in cardiomyopathies, highlighting the potential of ECM-derived biomarkers in improving disease management with implications for precision medicine.
Collapse
Affiliation(s)
- Elisavet Angeli
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark; Nordic Bioscience A/S, Herlev, Denmark.
| | - Maria Jordan
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hanover, Federal Republic of Germany; Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), Hanover, Federal Republic of Germany
| | - Mandy Otto
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hanover, Federal Republic of Germany; Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), Hanover, Federal Republic of Germany
| | - Stevan D Stojanović
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Federal Republic of Germany; Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Federal Republic of Germany
| | | | - Johann Bauersachs
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Federal Republic of Germany
| | - Thomas Thum
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hanover, Federal Republic of Germany; Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), Hanover, Federal Republic of Germany; Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Federal Republic of Germany
| | - Jan Fiedler
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hanover, Federal Republic of Germany; Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), Hanover, Federal Republic of Germany
| | - Federica Genovese
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Bertaud A, Joshkon A, Heim X, Bachelier R, Bardin N, Leroyer AS, Blot-Chabaud M. Signaling Pathways and Potential Therapeutic Strategies in Cardiac Fibrosis. Int J Mol Sci 2023; 24:ijms24021756. [PMID: 36675283 PMCID: PMC9866199 DOI: 10.3390/ijms24021756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/06/2023] [Accepted: 01/11/2023] [Indexed: 01/17/2023] Open
Abstract
Cardiac fibrosis constitutes irreversible necrosis of the heart muscle as a consequence of different acute (myocardial infarction) or chronic (diabetes, hypertension, …) diseases but also due to genetic alterations or aging. Currently, there is no curative treatment that is able to prevent or attenuate this phenomenon that leads to progressive cardiac dysfunction and life-threatening outcomes. This review summarizes the different targets identified and the new strategies proposed to fight cardiac fibrosis. Future directions, including the use of exosomes or nanoparticles, will also be discussed.
Collapse
|
3
|
Targeting Myocardial Fibrosis—A Magic Pill in Cardiovascular Medicine? Pharmaceutics 2022; 14:pharmaceutics14081599. [PMID: 36015225 PMCID: PMC9414721 DOI: 10.3390/pharmaceutics14081599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022] Open
Abstract
Fibrosis, characterized by an excessive accumulation of extracellular matrix, has long been seen as an adaptive process that contributes to tissue healing and regeneration. More recently, however, cardiac fibrosis has been shown to be a central element in many cardiovascular diseases (CVDs), contributing to the alteration of cardiac electrical and mechanical functions in a wide range of clinical settings. This paper aims to provide a comprehensive review of cardiac fibrosis, with a focus on the main pathophysiological pathways involved in its onset and progression, its role in various cardiovascular conditions, and on the potential of currently available and emerging therapeutic strategies to counteract the development and/or progression of fibrosis in CVDs. We also emphasize a number of questions that remain to be answered, and we identify hotspots for future research.
Collapse
|
4
|
Adapala RK, Katari V, Teegala LR, Thodeti S, Paruchuri S, Thodeti CK. TRPV4 Mechanotransduction in Fibrosis. Cells 2021; 10:cells10113053. [PMID: 34831281 PMCID: PMC8619244 DOI: 10.3390/cells10113053] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/29/2021] [Accepted: 11/04/2021] [Indexed: 12/11/2022] Open
Abstract
Fibrosis is an irreversible, debilitating condition marked by the excessive production of extracellular matrix and tissue scarring that eventually results in organ failure and disease. Differentiation of fibroblasts to hypersecretory myofibroblasts is the key event in fibrosis. Although both soluble and mechanical factors are implicated in fibroblast differentiation, much of the focus is on TGF-β signaling, but to date, there are no specific drugs available for the treatment of fibrosis. In this review, we describe the role for TRPV4 mechanotransduction in cardiac and lung fibrosis, and we propose TRPV4 as an alternative therapeutic target for fibrosis.
Collapse
Affiliation(s)
- Ravi K. Adapala
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (R.K.A.); (V.K.); (L.R.T.); (S.P.)
| | - Venkatesh Katari
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (R.K.A.); (V.K.); (L.R.T.); (S.P.)
| | - Lakshminarayan Reddy Teegala
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (R.K.A.); (V.K.); (L.R.T.); (S.P.)
| | | | - Sailaja Paruchuri
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (R.K.A.); (V.K.); (L.R.T.); (S.P.)
| | - Charles K. Thodeti
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (R.K.A.); (V.K.); (L.R.T.); (S.P.)
- Correspondence:
| |
Collapse
|
5
|
Cardiac Fibrosis and Fibroblasts. Cells 2021; 10:cells10071716. [PMID: 34359886 PMCID: PMC8306806 DOI: 10.3390/cells10071716] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/05/2021] [Accepted: 07/05/2021] [Indexed: 12/24/2022] Open
Abstract
Cardiac fibrosis is the excess deposition of extracellular matrix (ECM), such as collagen. Myofibroblasts are major players in the production of collagen, and are differentiated primarily from resident fibroblasts. Collagen can compensate for the dead cells produced by injury. The appropriate production of collagen is beneficial for preserving the structural integrity of the heart, and protects the heart from cardiac rupture. However, excessive deposition of collagen causes cardiac dysfunction. Recent studies have demonstrated that myofibroblasts can change their phenotypes. In addition, myofibroblasts are found to have functions other than ECM production. Myofibroblasts have macrophage-like functions, in which they engulf dead cells and secrete anti-inflammatory cytokines. Research into fibroblasts has been delayed due to the lack of selective markers for the identification of fibroblasts. In recent years, it has become possible to genetically label fibroblasts and perform sequencing at single-cell levels. Based on new technologies, the origins of fibroblasts and myofibroblasts, time-dependent changes in fibroblast states after injury, and fibroblast heterogeneity have been demonstrated. In this paper, recent advances in fibroblast and myofibroblast research are reviewed.
Collapse
|
6
|
Blessing WA, Williamson AK, Kirsch JR, Grinstaff MW. The Prognosis of Arthrofibroses: Prevalence, Clinical Shortcomings, and Future Prospects. Trends Pharmacol Sci 2021; 42:398-415. [PMID: 33795150 DOI: 10.1016/j.tips.2021.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 02/18/2021] [Accepted: 02/28/2021] [Indexed: 02/06/2023]
Abstract
Fibrosis is the dysregulated biosynthesis of connective tissue that results from persistent infection, high serum cholesterol, surgery, trauma, or prolonged joint immobilization. As a disease that impacts connective tissue, it is prevalent across the body and disrupts normal extracellular and tissue organization. Ultimately, fibrosis impairs the tissue structural, mechanical, or biochemical function. This review describes the clinical landscape of joint fibrosis, that is, arthrofibrosis, including the risk factors and causes, as well as current clinical treatments and their shortcomings. Because treating arthrofibrosis remains an unmet clinical challenge, we present several animal models used for exploration of the physiopathology of arthrofibrosis and summarize their use for testing novel treatments. We then discuss therapeutics for the prevention or treatment of arthrofibrosis that are in preclinical development and in ongoing clinical trials. We conclude with recent findings from molecular biological studies of arthrofibroses that shed insight on future areas of research for improved treatments.
Collapse
Affiliation(s)
- William A Blessing
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| | - Amanda K Williamson
- Departments of Biomedical Engineering, Chemistry, and Medicine, Boston University, Boston, MA 02215, USA
| | - Jack R Kirsch
- Departments of Biomedical Engineering, Chemistry, and Medicine, Boston University, Boston, MA 02215, USA
| | - Mark W Grinstaff
- Departments of Biomedical Engineering, Chemistry, and Medicine, Boston University, Boston, MA 02215, USA.
| |
Collapse
|
7
|
Baker JV, Wolfson J, Collins G, Morse C, Rhame F, Liappis AP, Rizza S, Temesgen Z, Mystakelis H, Deeks S, Neaton J, Schacker T, Sereti I, Tracy RP. Losartan to reduce inflammation and fibrosis endpoints in HIV disease. AIDS 2021; 35:575-583. [PMID: 33252490 PMCID: PMC8062089 DOI: 10.1097/qad.0000000000002773] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Persistent inflammation and incomplete immune recovery among persons with HIV (PHIV) are associated with increased disease risk. We hypothesized that the angiotensin receptor blocker (ARB) losartan would reduce inflammation by mitigating nuclear factor (NF)κB responses and promote T-cell recovery via inhibition of transforming growth factor-beta (TGFβ)-mediated fibrosis. METHODS Losartan (100 mg) versus placebo over 12 months was investigated in a randomized (1 : 1) placebo-controlled trial, among PHIV age at least 50 years, receiving antiretroviral therapy (ART), with HIV RNA less than 200 copies/ml and CD4+ cell count 600 cells/μl or less. Inflammation, fibrosis and myocardial biomarkers were measured in blood using ELISA, electrochemiluminescence and immunoturbidimetric methods, and T-cell and monocyte phenotypes were assessed with flow cytometry among a subset of participants. Changes over follow-up in (log-2 transformed) biomarkers and cell phenotypes (untransformed) were compared between losartan and placebo arms using linear mixed models. RESULTS Among 108 PHIV (n = 52 to losartan; n = 56 to placebo), 97% had a month 12 visit. Median age was 57 years and baseline CD4+ cell count was 408 cells/μl. Losartan treatment was not associated with an improvement in interleukin-6 levels, or other blood measures of inflammation, immune activation, fibrosis activity or myocardial function. CD4+ and CD8+ T cells also did not differ by treatment group. Losartan reduced SBP and DBP by 6 and 5 mmHg, respectively. CONCLUSION Among older PHIV with viral suppression, losartan did not improve blood measures of inflammation nor T-cell immune recovery. Losartan treatment is unlikely to reduce inflammation associated comorbidities to a clinically meaningful degree, beyond the benefits from lowering blood pressure. CLINICALTRIALSGOV NCT02049307.
Collapse
Affiliation(s)
- Jason V. Baker
- Hennepin Healthcare Research Institute
- University of Minnesota, Minneapolis, Minnesota
| | | | | | - Caryn Morse
- Wake Forest Baptist Medical Center, Winston Salem, North Carolina
| | | | | | | | | | | | - Steven Deeks
- University of California San Francisco, San Francisco, California
| | | | | | | | | |
Collapse
|
8
|
Zivarpour P, Reiner Ž, Hallajzadeh J, Mirsafaei L. Resveratrol and cardiac fibrosis prevention and treatment. Curr Pharm Biotechnol 2021; 23:190-200. [PMID: 33583368 DOI: 10.2174/1389201022666210212125003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/17/2020] [Accepted: 12/23/2020] [Indexed: 11/22/2022]
Abstract
Cardiovascular diseases are some of the major causes of morbidity and mortality in developed or developing countries but in developed countries as well. Cardiac fibrosis is one of the most often pathological changes of heart tissues. It occurs as a result of extracellular matrix proteins accumulation at myocardia. Cardiac fibrosis results in impaired cardiac systolic and diastolic functions and is associated with other effects. Therapies with medicines have not been sufficiently successful in treating chronic diseases such as CVD. Therefore, the interest for therapeutic potential of natural compounds and medicinal plants has increased. Plants such as grapes, berries and peanuts contain a polyphenolic compound called "resveratrol" which has been reported to have various therapeutic properties for a variety of diseases. Studies on laboratory models that show that resveratrol has beneficial effects on cardiovascular diseases including myocardial infarction, high blood pressure cardiomyopathy, thrombosis, cardiac fibrosis, and atherosclerosis. In vitro animal models using resveratrol indicated protective effects on the heart by neutralizing reactive oxygen species, preventing inflammation, increasing neoangiogenesis, dilating blood vessels, suppressing apoptosis and delaying atherosclerosis. In this review, we are presenting experimental and clinical results of studies concerning resveratrol effects on cardiac fibrosis as a CVD outcome in humans.
Collapse
Affiliation(s)
- Parinaz Zivarpour
- Department of Biological sciences, Faculty of Basic Sciences, Higher Education Institute of Rab-Rashid, Tabriz. Iran
| | - Željko Reiner
- Department of Internal Medicine, University Hospital Centre Zagreb, School of Medicine, University of Zagreb, Zagreb. Croatia
| | - Jamal Hallajzadeh
- Department of Biochemistry and Nutrition, Research Center for Evidence-Based Health Management, Maragheh University of Medical Science, Maragheh. Iran
| | - Liaosadat Mirsafaei
- Department of Cardiology, Ramsar Campus, Mazandaran University of Medical Sciences, Sari. Iran
| |
Collapse
|
9
|
Webber M, Jackson SP, Moon JC, Captur G. Myocardial Fibrosis in Heart Failure: Anti-Fibrotic Therapies and the Role of Cardiovascular Magnetic Resonance in Drug Trials. Cardiol Ther 2020; 9:363-376. [PMID: 32862327 PMCID: PMC7584719 DOI: 10.1007/s40119-020-00199-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Indexed: 12/14/2022] Open
Abstract
All heart muscle diseases that cause chronic heart failure finally converge into one dreaded pathological process that is myocardial fibrosis. Myocardial fibrosis predicts major adverse cardiovascular events and death, yet we are still missing the targeted therapies capable of halting and/or reversing its progression. Fundamentally it is a problem of disproportionate extracellular collagen accumulation that is part of normal myocardial ageing and accentuated in certain disease states. In this article we discuss the role of cardiovascular magnetic resonance (CMR) imaging biomarkers to track fibrosis and collate results from the most promising animal and human trials of anti-fibrotic therapies to date. We underscore the ever-growing role of CMR in determining the efficacy of such drugs and encourage future trialists to turn to CMR when designing their surrogate study endpoints.
Collapse
Affiliation(s)
- Matthew Webber
- UCL MRC Unit for Lifelong Health and Ageing, University College London, Fitzrovia, London, WC1E 7HB, UK
- Cardiology Department, Centre for Inherited Heart Muscle Conditions, The Royal Free Hospital, Pond Street, Hampstead, London, NW3 2QG, UK
- UCL Institute of Cardiovascular Science, University College London, Gower Street, London, WC1E 6BT, UK
| | - Stephen P Jackson
- Department of Biochemistry, The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, CB2 1QN, UK
| | - James C Moon
- UCL Institute of Cardiovascular Science, University College London, Gower Street, London, WC1E 6BT, UK
- Cardiovascular Magnetic Resonance Unit, Barts Heart Centre, West Smithfield, London, UK
| | - Gabriella Captur
- UCL MRC Unit for Lifelong Health and Ageing, University College London, Fitzrovia, London, WC1E 7HB, UK.
- Cardiology Department, Centre for Inherited Heart Muscle Conditions, The Royal Free Hospital, Pond Street, Hampstead, London, NW3 2QG, UK.
- UCL Institute of Cardiovascular Science, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
10
|
Stone RC, Chen V, Burgess J, Pannu S, Tomic-Canic M. Genomics of Human Fibrotic Diseases: Disordered Wound Healing Response. Int J Mol Sci 2020; 21:ijms21228590. [PMID: 33202590 PMCID: PMC7698326 DOI: 10.3390/ijms21228590] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/08/2020] [Accepted: 11/11/2020] [Indexed: 02/06/2023] Open
Abstract
Fibrotic disease, which is implicated in almost half of all deaths worldwide, is the result of an uncontrolled wound healing response to injury in which tissue is replaced by deposition of excess extracellular matrix, leading to fibrosis and loss of organ function. A plethora of genome-wide association studies, microarrays, exome sequencing studies, DNA methylation arrays, next-generation sequencing, and profiling of noncoding RNAs have been performed in patient-derived fibrotic tissue, with the shared goal of utilizing genomics to identify the transcriptional networks and biological pathways underlying the development of fibrotic diseases. In this review, we discuss fibrosing disorders of the skin, liver, kidney, lung, and heart, systematically (1) characterizing the initial acute injury that drives unresolved inflammation, (2) identifying genomic studies that have defined the pathologic gene changes leading to excess matrix deposition and fibrogenesis, and (3) summarizing therapies targeting pro-fibrotic genes and networks identified in the genomic studies. Ultimately, successful bench-to-bedside translation of observations from genomic studies will result in the development of novel anti-fibrotic therapeutics that improve functional quality of life for patients and decrease mortality from fibrotic diseases.
Collapse
Affiliation(s)
- Rivka C. Stone
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami-Miller School of Medicine, Miami, FL 33136, USA; (V.C.); (J.B.)
- Correspondence: (R.C.S.); (M.T.-C.)
| | - Vivien Chen
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami-Miller School of Medicine, Miami, FL 33136, USA; (V.C.); (J.B.)
| | - Jamie Burgess
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami-Miller School of Medicine, Miami, FL 33136, USA; (V.C.); (J.B.)
- Medical Scientist Training Program in Biomedical Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Sukhmani Pannu
- Department of Dermatology, Tufts Medical Center, Boston, MA 02116, USA;
| | - Marjana Tomic-Canic
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami-Miller School of Medicine, Miami, FL 33136, USA; (V.C.); (J.B.)
- John P. Hussman Institute for Human Genomics, University of Miami-Miller School of Medicine, Miami, FL 33136, USA
- Correspondence: (R.C.S.); (M.T.-C.)
| |
Collapse
|
11
|
Calafiore AM, Totaro A, Testa N, Sacra C, Castellano G, Guarracini S, Di Marco M, Prapas S, Gaudino M, Lorusso R, Paparella D, Di Mauro M. The secret life of the mitral valve. J Card Surg 2020; 36:247-259. [PMID: 33135267 DOI: 10.1111/jocs.15151] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 10/13/2020] [Indexed: 01/08/2023]
Abstract
In secondary mitral regurgitation, the concept that the mitral valve (MV) is an innocent bystander, has been challenged by many studies in the last decades. The MV is a living structure with intrinsic plasticity that reacts to changes in stretch or in mechanical stress activating biohumoral mechanisms that have, as purpose, the adaptation of the valve to the new environment. If the adaptation is balanced, the leaflets increase both surface and length and the chordae tendineae lengthen: the result is a valve with different characteristics, but able to avoid or to limit the regurgitation. However, if the adaptation is unbalanced, the leaflets and the chords do not change their size, but become stiffer and rigid, with moderate or severe regurgitation. These changes are mediated mainly by a cytokine, the transforming growth factor-β (TGF-β), which is able to promote the changes that the MV needs to adapt to a new hemodynamic environment. In general, mild TGF-β activation facilitates leaflet growth, excessive TGF-β activation, as after myocardial infarction, results in profibrotic changes in the leaflets, with increased thickness and stiffness. The MV is then a plastic organism, that reacts to the external stimuli, trying to maintain its physiologic integrity. This review has the goal to unveil the secret life of the MV, to understand which stimuli can trigger its plasticity, and to explain why the equation "large heart = moderate/severe mitral regurgitation" and "small heart = no/mild mitral regurgitation" does not work into the clinical practice.
Collapse
Affiliation(s)
| | - Antonio Totaro
- Department of Cardiovascular Sciences, Gemelli Molise, Campobasso, Italy
| | - Nicola Testa
- Department of Cardiovascular Sciences, Gemelli Molise, Campobasso, Italy
| | - Cosimo Sacra
- Department of Cardiovascular Sciences, Gemelli Molise, Campobasso, Italy
| | - Gaetano Castellano
- Division of Anesthesia and Intensive Care, Gemelli Molise, Campobasso, Italy
| | | | - Massimo Di Marco
- Department of Cardiology, "Santo Spirito" Hospital, Pescara, Italy
| | - Sotirios Prapas
- Department of Cardiac Surgery, Henry Durant Hospital, Athens, Greece
| | - Mario Gaudino
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York City, New York, USA
| | - Roberto Lorusso
- Cardio-Thoracic Surgery Unit, Heart and Vascular Centre, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre (MUMC), Maastricht, The Netherlands
| | - Domenico Paparella
- Department of Emergency and Organ Transplants, Santa Maria Hospital, GVM Care & Research, Aldo Moro University of Bari, Bari, Italy
| | - Michele Di Mauro
- Department of Cardiology, "Pierangeli" Hospital, Pescara, Italy.,Cardio-Thoracic Surgery Unit, Heart and Vascular Centre, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre (MUMC), Maastricht, The Netherlands
| |
Collapse
|
12
|
Mugendi GA, Mutua FM, Natale P, Esterhuizen TM, Strippoli GF. Calcium channel blockers for people with chronic kidney disease requiring dialysis. Cochrane Database Syst Rev 2020; 10:CD011064. [PMID: 33000470 PMCID: PMC8094736 DOI: 10.1002/14651858.cd011064.pub2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND Calcium channel blockers (CCBs) are used to manage hypertension which is highly prevalent among people with chronic kidney disease (CKD). The treatment for hypertension is particularly challenging in people undergoing dialysis. OBJECTIVES To assess the benefits and harms of calcium channel blockers in patients with chronic kidney disease requiring dialysis. SEARCH METHODS We searched the Cochrane Kidney and Transplant Register of Studies to 27 April 2020 through contact with the Information Specialist using search terms relevant to this review. Studies in the Specialised Register are identified through searches of CENTRAL, MEDLINE, and EMBASE, conference proceedings, the International Clinical Trials Register (ICTRP) Search Portal and ClinicalTrials.gov. SELECTION CRITERIA All randomised controlled trials (RCTs) and quasi-RCTs that compared any type of CCB with other CCB, different doses of the same CCB, other antihypertensives, control or placebo were included. The minimum study duration was 12 weeks. DATA COLLECTION AND ANALYSIS Two authors independently assessed study quality and extracted data. Statistical analyses were performed using a random-effects model and results expressed as risk ratio (RR), risk difference (RD) or mean difference (MD) with 95% confidence intervals (CI). MAIN RESULTS This review included 13 studies (24 reports) randomising 1459 participants treated with long-term haemodialysis. Nine studies were included in the meta-analysis (622 participants). No studies were performed in children or in those undergoing peritoneal dialysis. Overall, risk of bias was assessed as unclear to high across most domains. Random sequence generation and allocation concealment were at low risk of bias in eight and one studies, respectively. Two studies reported low risk methods for blinding of participants and investigators, and outcome assessment was blinded in 10 studies. Three studies were at low risk of attrition bias, eight studies were at low risk of selective reporting bias, and five studies were at low risk of other potential sources of bias. Overall, the certainty of the evidence was low to very low for all outcomes. No events were reported for cardiovascular death in any of the comparisons. Other side effects were rarely reported and studies were not designed to measure costs. Five studies (451 randomised adults) compared dihydropyridine CCBs to placebo or no treatment. Dihydropyridine CCBs may decrease predialysis systolic (1 study, 39 participants: MD -27.00 mmHg, 95% CI -43.33 to -10.67; low certainty evidence) and diastolic blood pressure level (2 studies, 76 participants; MD -13.56 mmHg, 95% CI -19.65 to -7.48; I2 = 0%, low certainty evidence) compared to placebo or no treatment. Dihydropyridine CCBs may make little or no difference to occurrence of intradialytic hypotension (2 studies, 287 participants; RR 0.54, 95% CI 0.25 to 1.15; I2 = 0%, low certainty evidence) compared to placebo or no treatment. Other side effects were not reported. Eight studies (1037 randomised adults) compared dihydropyridine CCBs to other antihypertensives. Dihydropyridine CCBs may make little or no difference to predialysis systolic (4 studies, 180 participants: MD 2.44 mmHg, 95% CI -3.74 to 8.62; I2 = 0%, low certainty evidence) and diastolic blood pressure (4 studies, 180 participants: MD 1.49 mmHg, 95% CI -2.23 to 5.21; I2 = 0%, low certainty evidence) compared to other antihypertensives. There was no evidence of a difference in the occurrence of intradialytic hypotension (1 study, 92 participants: RR 2.88, 95% CI 0.12 to 68.79; very low certainty evidence) between dihydropyridine CCBs to other antihypertensives. Other side effects were not reported. Dihydropyridine CCB may make little or no difference to predialysis systolic (1 study, 40 participants: MD -4 mmHg, 95% CI -11.99 to 3.99; low certainty evidence) and diastolic blood pressure (1 study, 40 participants: MD -3.00 mmHg, 95% CI -7.06 to 1.06; low certainty evidence) compared to non-dihydropyridine CCB. There was no evidence of a difference in other side effects (1 study, 40 participants: RR 0.13, 95% CI 0.01 to 2.36; very low certainty evidence) between dihydropyridine CCB and non-dihydropyridine CCB. Intradialytic hypotension was not reported. AUTHORS' CONCLUSIONS The benefits of CCBs over other antihypertensives on predialysis blood pressure levels and intradialytic hypotension among people with CKD who required haemodialysis were uncertain. Effects of CCBs on other side effects and cardiovascular death also remain uncertain. Dihydropyridine CCBs may decrease predialysis systolic and diastolic blood pressure level compared to placebo or no treatment. No studies were identified in children or peritoneal dialysis. Available studies have not been designed to measure the effects on costs. The shortcomings of the studies were that they recruited very few participants, had few events, had very short follow-up periods, some outcomes were not reported, and the reporting of outcomes such as changes in blood pressure was not done uniformly across studies. Well-designed RCTs, conducted in both adults and children with CKD requiring both haemodialysis and peritoneal dialysis, evaluating both dihydropyridine and non-dihydropyridine CCBs against other antihypertensives are required. Future research should be focused on outcomes relevant to patients (including death and cardiovascular disease), blood pressure changes, risk of side effects and healthcare costs to assist decision-making in clinical practice.
Collapse
Affiliation(s)
- George A Mugendi
- Pharmaceutics and Pharmacy Practice, School of Pharmacy, University of Nairobi, Nairobi, Kenya
| | - Florence M Mutua
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada
| | - Patrizia Natale
- Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
- Sydney School of Public Health, The University of Sydney, Sydney, Australia
| | - Tonya M Esterhuizen
- Centre for Evidence-based Health Care, Division of Epidemiology and Biostatistics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Giovanni Fm Strippoli
- Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
- Cochrane Kidney and Transplant, Centre for Kidney Research, The Children's Hospital at Westmead, Westmead, Australia
- Sydney School of Public Health, The University of Sydney, Sydney, Australia
| |
Collapse
|
13
|
Motamedi B, Rafiee-Pour HA, Khosravi MR, Kefayat A, Baradaran A, Amjadi E, Goli P. Prolactin receptor expression as a novel prognostic biomarker for triple negative breast cancer patients. Ann Diagn Pathol 2020; 46:151507. [PMID: 32199279 DOI: 10.1016/j.anndiagpath.2020.151507] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 01/15/2020] [Accepted: 03/03/2020] [Indexed: 12/16/2022]
Abstract
Prolactin receptor (PRLR) is a novel emerging prognostic biomarker in different cancers, especially in breast cancer. However, there is limited information about the association of PRLR expression and triple-negative breast cancers (TNBC) prognosis. In this study, 80 TNBC patients were evaluated for PRLR expression by immunohistochemistry. The correlation of PRLR expression with clinicopathological features, patient recurrence, and survival was investigated. PRLR expression was considered positive if >10% of tumor cells were stained. The Fisher's exact test was used to analyze PRLR expression relation with the clinicopathological parameters. Survival distribution was estimated by the Kaplan-Meier method. Positive immunoreactivity for PRLR was observed in 50 out of 80 (62%) specimens. Although expression of PRLR was associated with TNBC patients' stage, no-correlation was observed between its expression and tumor size, grade, lymph node status, and Ki-67 expression. In addition, patients with positive expression of PRLR exhibited lower recurrence (P = 0.0027) and higher overall survival (P = 0.0285) in comparison with negative expression group. In multivariate analyses, positive expression of PRLR was an independent prognostic marker for lower recurrence (P < 0.001) and higher overall survival (P < 0.001). Therefore, PRLR plays a crucial role in TNBC and has to be considered as an independent prognostic biomarker for TNBC patients.
Collapse
Affiliation(s)
- Behnaz Motamedi
- Department of Cell and Molecular Biology, Faculty of Chemistry, University of Kashan, Kashan, Iran
| | - Hossain-Ali Rafiee-Pour
- Department of Cell and Molecular Biology, Faculty of Chemistry, University of Kashan, Kashan, Iran.
| | - Mohammad-Reza Khosravi
- Department of Oncology, Cancer Prevention Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amirhosein Kefayat
- Department of Oncology, Cancer Prevention Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Azar Baradaran
- Department of Pathology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Elham Amjadi
- Poursina Hakim Digestive Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parvin Goli
- Department of Pathology, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
14
|
Eiros R, Romero-González G, Gavira JJ, Beloqui O, Colina I, Fortún Landecho M, López B, González A, Díez J, Ravassa S. Does Chronic Kidney Disease Facilitate Malignant Myocardial Fibrosis in Heart Failure with Preserved Ejection Fraction of Hypertensive Origin? J Clin Med 2020; 9:jcm9020404. [PMID: 32028612 PMCID: PMC7073733 DOI: 10.3390/jcm9020404] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/28/2020] [Accepted: 01/31/2020] [Indexed: 12/28/2022] Open
Abstract
In hypertensive patients with heart failure (HF) a serum biomarker combination of high carboxy-terminal propeptide of procollagen type-I (PICP) and low carboxy-terminal telopeptide of collagen type-I to matrix metalloproteinase-1 (CITP:MMP-1) ratio identifies a histomolecular phenotype of malignant myocardial fibrosis (mMF) associated with severe diastolic dysfunction (DD) and poor outcomes. As chronic kidney disease (CKD) facilitates MF and DD, we investigated the influence of CKD on the mMF biomarker combination in HF patients with preserved ejection fraction (HFpEF). Hypertensives (n = 365), 232 non-HF and 133 HFpEF, were studied, and 35% non-HF and 46% HFpEF patients had CKD (estimated glomerular filtration rate < 60 mL/min/1.73 m2 or urine albumin-to-creatinine ratio ≥ 30 mg/g). Specific immunoassays were performed to determine biomarkers. Medians were used to establish the high PICP and low CITP:MMP-1 combination. A comparison with non-HF showed that the biomarker combination presence was increased in HFpEF patients, being associated with CKD in all patients. CKD influenced the association of the biomarker combination and HFpEF (p for interaction ≤ 0.019). The E:e’ ratio was associated with the biomarker combination in CKD patients. Among CKD patients with HFpEF, those with the biomarker combination exhibited higher (p = 0.016) E:e’ ratio than those without the pattern. These findings suggest that CKD facilitates the development of biomarker-assessed mMF and DD in hypertensive HFpEF patients.
Collapse
Affiliation(s)
- Rocio Eiros
- Department of Cardiology and Cardiac Surgery, Clínica Universidad de Navarra, 31008 Pamplona, Spain; (J.J.G.); (J.D.)
- Correspondence: ; Tel.: +34-948194700
| | | | - Juan Jose Gavira
- Department of Cardiology and Cardiac Surgery, Clínica Universidad de Navarra, 31008 Pamplona, Spain; (J.J.G.); (J.D.)
- Program of Cardiovascular and Renal Diseases, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain; (O.B.); (I.C.); (M.F.L.); (B.L.); (A.G.); (S.R.)
| | - Oscar Beloqui
- Program of Cardiovascular and Renal Diseases, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain; (O.B.); (I.C.); (M.F.L.); (B.L.); (A.G.); (S.R.)
- Department of Internal Medicine, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Inmaculada Colina
- Program of Cardiovascular and Renal Diseases, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain; (O.B.); (I.C.); (M.F.L.); (B.L.); (A.G.); (S.R.)
- Department of Internal Medicine, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Manuel Fortún Landecho
- Program of Cardiovascular and Renal Diseases, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain; (O.B.); (I.C.); (M.F.L.); (B.L.); (A.G.); (S.R.)
- Department of Internal Medicine, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Begoña López
- Program of Cardiovascular and Renal Diseases, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain; (O.B.); (I.C.); (M.F.L.); (B.L.); (A.G.); (S.R.)
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra, 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Arantxa González
- Program of Cardiovascular and Renal Diseases, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain; (O.B.); (I.C.); (M.F.L.); (B.L.); (A.G.); (S.R.)
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra, 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Javier Díez
- Department of Cardiology and Cardiac Surgery, Clínica Universidad de Navarra, 31008 Pamplona, Spain; (J.J.G.); (J.D.)
- Department of Nephrology, Clínica Universidad de Navarra, 31008 Pamplona, Spain;
- Program of Cardiovascular and Renal Diseases, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain; (O.B.); (I.C.); (M.F.L.); (B.L.); (A.G.); (S.R.)
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra, 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Susana Ravassa
- Program of Cardiovascular and Renal Diseases, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain; (O.B.); (I.C.); (M.F.L.); (B.L.); (A.G.); (S.R.)
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra, 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| |
Collapse
|
15
|
Eijgenraam TR, Silljé HHW, de Boer RA. Current understanding of fibrosis in genetic cardiomyopathies. Trends Cardiovasc Med 2019; 30:353-361. [PMID: 31585768 DOI: 10.1016/j.tcm.2019.09.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/13/2019] [Accepted: 09/17/2019] [Indexed: 12/13/2022]
Abstract
Myocardial fibrosis is the excessive deposition of extracellular matrix proteins, including collagens, in the heart. In cardiomyopathies, the formation of interstitial fibrosis and/or replacement fibrosis is almost always part of the pathological cardiac remodeling process. Different forms of cardiomyopathies show particular patterns of myocardial fibrosis that can be considered as distinctive hallmarks. Although formation of fibrosis is initially aimed to be a reparative mechanism, in the long term, on-going and excessive myocardial fibrosis may lead to arrhythmias and stiffening of the heart wall and subsequently to diastolic dysfunction. Ultimately, adverse remodeling with progressive myocardial fibrosis can lead to heart failure. Not surprisingly, the presence of fibrosis in cardiomyopathies, even when subtle, has consistently been associated with complications and adverse outcomes. In the last decade, non-invasive in vivo techniques for visualization of myocardial fibrosis have emerged, and have been increasingly used in research and in the clinic. In this review, we will describe the epidemiology, distribution, and role of myocardial fibrosis in genetic cardiomyopathies, including hypertrophic, dilated, arrhythmogenic, and non-compaction cardiomyopathy, and a few specific forms of genetic cardiomyopathies.
Collapse
Affiliation(s)
- Tim R Eijgenraam
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - Herman H W Silljé
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - Rudolf A de Boer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands.
| |
Collapse
|
16
|
Baranowski A, Schlemmer L, Förster K, Slotina E, Mickan T, Truffel S, Klein A, Mattyasovszky SG, Hofmann A, Ritz U, Rommens PM. Effects of losartan and atorvastatin on the development of early posttraumatic joint stiffness in a rat model. Drug Des Devel Ther 2019; 13:2603-2618. [PMID: 31440039 PMCID: PMC6679684 DOI: 10.2147/dddt.s204135] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/27/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND After a trauma, exuberant tissue healing with fibrosis of the joint capsule can lead to posttraumatic joint stiffness (PTJS). Losartan and atorvastatin have both shown their antifibrotic effects in different organ systems. OBJECTIVE The purpose of this study was the evaluation of the influence of losartan and atorvastatin on the early development of joint contracture. In addition to joint angles, the change in myofibroblast numbers and the distribution of bone sialoprotein (BSP) were assessed. STUDY DESIGN AND METHODS In this randomized and blinded experimental study with 24 rats, losartan and atorvastatin were compared to a placebo. After an initial joint injury, rat knees were immobilized with a Kirschner wire. Rats received either losartan, atorvastatin or a placebo orally daily. After 14 days, joint angle measurements and histological assessments were performed. RESULTS Losartan increased the length of the inferior joint capsule. Joint angle and other capsule length measurements did not reveal significant differences between both drugs and the placebo. At cellular level both losartan and atorvastatin reduced the total number of myofibroblasts (losartan: 191±77, atorvastatin: 98±58, placebo: 319±113 per counting field, p<0.01) and the percentage area of myofibroblasts (losartan: 2.8±1.8% [p<0.05], atorvastatin: 2.5±1.7% [p<0.01], vs control [6.4±4%], respectively). BSP was detectable in equivalent amounts in the joint capsules of all groups with only a trend toward a reduction of the BSP-stained area by atorvastatin. CONCLUSION Both atorvastatin and losartan reduced the number of myofibroblasts in the posterior knee joint capsule of rat knees 2 weeks after trauma and losartan increased the length of the inferior joint capsule. However, these changes at the cellular level did not translate an increase in range of motion of the rats´ knee joints during early contracture development.
Collapse
Affiliation(s)
- Andreas Baranowski
- Department of Orthopaedics and Traumatology, Biomatics Group, University Medical Centre of the Johannes Gutenberg University, Mainz, Germany
| | - Ludwig Schlemmer
- Department of Orthopaedics and Traumatology, Biomatics Group, University Medical Centre of the Johannes Gutenberg University, Mainz, Germany
| | - Katharina Förster
- Department of Orthopaedics and Traumatology, Biomatics Group, University Medical Centre of the Johannes Gutenberg University, Mainz, Germany
| | - Ekaterina Slotina
- Department of Orthopaedics and Traumatology, Biomatics Group, University Medical Centre of the Johannes Gutenberg University, Mainz, Germany
| | - Tim Mickan
- Department of Orthopaedics and Traumatology, Biomatics Group, University Medical Centre of the Johannes Gutenberg University, Mainz, Germany
| | - Sebastian Truffel
- Department of Orthopaedics and Traumatology, Biomatics Group, University Medical Centre of the Johannes Gutenberg University, Mainz, Germany
| | - Anja Klein
- Department of Orthopaedics and Traumatology, Biomatics Group, University Medical Centre of the Johannes Gutenberg University, Mainz, Germany
| | - Stefan G Mattyasovszky
- Department of Orthopaedics and Traumatology, Biomatics Group, University Medical Centre of the Johannes Gutenberg University, Mainz, Germany
| | - Alexander Hofmann
- Department of Orthopaedics and Traumatology, Biomatics Group, University Medical Centre of the Johannes Gutenberg University, Mainz, Germany
- Department of Traumatology and Orthopaedics 1, Westpfalz-Medical Centre Kaiserslautern, Kaiserslautern, Germany
| | - Ulrike Ritz
- Department of Orthopaedics and Traumatology, Biomatics Group, University Medical Centre of the Johannes Gutenberg University, Mainz, Germany
| | - Pol M Rommens
- Department of Orthopaedics and Traumatology, Biomatics Group, University Medical Centre of the Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
17
|
Schreurs M, Suttorp CM, Mutsaers HAM, Kuijpers-Jagtman AM, Von den Hoff JW, Ongkosuwito EM, Carvajal Monroy PL, Wagener FADTG. Tissue engineering strategies combining molecular targets against inflammation and fibrosis, and umbilical cord blood stem cells to improve hampered muscle and skin regeneration following cleft repair. Med Res Rev 2019; 40:9-26. [PMID: 31104334 PMCID: PMC6972684 DOI: 10.1002/med.21594] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/17/2019] [Accepted: 04/19/2019] [Indexed: 12/18/2022]
Abstract
Cleft lip with or without cleft palate is a congenital deformity that occurs in about 1 of 700 newborns, affecting the dentition, bone, skin, muscles and mucosa in the orofacial region. A cleft can give rise to problems with maxillofacial growth, dental development, speech, and eating, and can also cause hearing impairment. Surgical repair of the lip may lead to impaired regeneration of muscle and skin, fibrosis, and scar formation. This may result in hampered facial growth and dental development affecting oral function and lip and nose esthetics. Therefore, secondary surgery to correct the scar is often indicated. We will discuss the molecular and cellular pathways involved in facial and lip myogenesis, muscle anatomy in the normal and cleft lip, and complications following surgery. The aim of this review is to outline a novel molecular and cellular strategy to improve musculature and skin regeneration and to reduce scar formation following cleft repair. Orofacial clefting can be diagnosed in the fetus through prenatal ultrasound screening and allows planning for the harvesting of umbilical cord blood stem cells upon birth. Tissue engineering techniques using these cord blood stem cells and molecular targeting of inflammation and fibrosis during surgery may promote tissue regeneration. We expect that this novel strategy improves both muscle and skin regeneration, resulting in better function and esthetics after cleft repair.
Collapse
Affiliation(s)
- Michaël Schreurs
- Department of Dentistry, Section of Orthodontics and Craniofacial Biology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - C Maarten Suttorp
- Department of Dentistry, Section of Orthodontics and Craniofacial Biology, Radboud University Medical Centre, Nijmegen, The Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | | | | | - Johannes W Von den Hoff
- Department of Dentistry, Section of Orthodontics and Craniofacial Biology, Radboud University Medical Centre, Nijmegen, The Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Edwin M Ongkosuwito
- Department of Dentistry, Section of Orthodontics and Craniofacial Biology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Paola L Carvajal Monroy
- Department of Oral & Maxillofacial Surgery, Special Dental Care and Orthodontics, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Frank A D T G Wagener
- Department of Dentistry, Section of Orthodontics and Craniofacial Biology, Radboud University Medical Centre, Nijmegen, The Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
18
|
Ma ZG, Yuan YP, Wu HM, Zhang X, Tang QZ. Cardiac fibrosis: new insights into the pathogenesis. Int J Biol Sci 2018; 14:1645-1657. [PMID: 30416379 PMCID: PMC6216032 DOI: 10.7150/ijbs.28103] [Citation(s) in RCA: 214] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 08/02/2018] [Indexed: 12/21/2022] Open
Abstract
Cardiac fibrosis is defined as the imbalance of extracellular matrix (ECM) production and degradation, thus contributing to cardiac dysfunction in many cardiac pathophysiologic conditions. This review discusses specific markers and origin of cardiac fibroblasts (CFs), and the underlying mechanism involved in the development of cardiac fibrosis. Currently, there are no CFs-specific molecular markers. Most studies use co-labelling with panels of antibodies that can recognize CFs. Origin of fibroblasts is heterogeneous. After fibrotic stimuli, the levels of myocardial pro-fibrotic growth factors and cytokines are increased. These pro-fibrotic growth factors and cytokines bind to its receptors and then trigger the activation of signaling pathway and transcriptional factors via Smad-dependent or Smad independent-manners. These fibrosis-related transcriptional factors regulate gene expression that are involved in the fibrosis to amplify the fibrotic response. Understanding the mechanisms responsible for initiation, progression, and amplification of cardiac fibrosis are of great clinical significance to find drugs that can prevent the progression of cardiac fibrosis.
Collapse
Affiliation(s)
- Zhen-Guo Ma
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China.,Cardiovascular Research Institute of Wuhan University, Wuhan 430060, RP China.,Hubei Key Laboratory of Cardiology, Wuhan 430060, RP China
| | - Yu-Pei Yuan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China.,Cardiovascular Research Institute of Wuhan University, Wuhan 430060, RP China.,Hubei Key Laboratory of Cardiology, Wuhan 430060, RP China
| | - Hai-Ming Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China.,Cardiovascular Research Institute of Wuhan University, Wuhan 430060, RP China.,Hubei Key Laboratory of Cardiology, Wuhan 430060, RP China
| | - Xin Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China.,Cardiovascular Research Institute of Wuhan University, Wuhan 430060, RP China.,Hubei Key Laboratory of Cardiology, Wuhan 430060, RP China
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China.,Cardiovascular Research Institute of Wuhan University, Wuhan 430060, RP China.,Hubei Key Laboratory of Cardiology, Wuhan 430060, RP China
| |
Collapse
|
19
|
Trial J, Cieslik KA. Changes in cardiac resident fibroblast physiology and phenotype in aging. Am J Physiol Heart Circ Physiol 2018; 315:H745-H755. [PMID: 29906228 DOI: 10.1152/ajpheart.00237.2018] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The cardiac fibroblast plays a central role in tissue homeostasis and in repair after injury. With aging, dysregulated cardiac fibroblasts have a reduced capacity to activate a canonical transforming growth factor-β-Smad pathway and differentiate poorly into contractile myofibroblasts. That results in the formation of an insufficient scar after myocardial infarction. In contrast, in the uninjured aged heart, fibroblasts are activated and acquire a profibrotic phenotype that leads to interstitial fibrosis, ventricular stiffness, and diastolic dysfunction, all conditions that may lead to heart failure. There is an apparent paradox in aging, wherein reparative fibrosis is impaired but interstitial, adverse fibrosis is augmented. This could be explained by analyzing the effectiveness of signaling pathways in resident fibroblasts from young versus aged hearts. Whereas defective signaling by transforming growth factor-β leads to insufficient scar formation by myofibroblasts, enhanced activation of the ERK1/2 pathway may be responsible for interstitial fibrosis mediated by activated fibroblasts. Listen to this article's corresponding podcast at https://ajpheart.podbean.com/e/fibroblast-phenotypic-changes-in-the-aging-heart/ .
Collapse
Affiliation(s)
- JoAnn Trial
- Division of Cardiovascular Sciences, Department of Medicine, Baylor College of Medicine , Houston, Texas
| | - Katarzyna A Cieslik
- Division of Cardiovascular Sciences, Department of Medicine, Baylor College of Medicine , Houston, Texas
| |
Collapse
|
20
|
Effects of calcium channel blockers comparing to angiotensin-converting enzyme inhibitors and angiotensin receptor blockers in patients with hypertension and chronic kidney disease stage 3 to 5 and dialysis: A systematic review and meta-analysis. PLoS One 2017; 12:e0188975. [PMID: 29240784 PMCID: PMC5730188 DOI: 10.1371/journal.pone.0188975] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 11/16/2017] [Indexed: 01/01/2023] Open
Abstract
Background Calcium channel blocker (CCB) or two renin angiotensin aldosterone system blockades (RAAS), angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs), are major potent and prevalently used as initial antihypertensive agents for mild to moderate hypertension, but no uniform agreement as to which antihypertensive drugs should be given for initial therapy, especially among chronic kidney disease (CKD) patients. Design A systematic review and meta-analysis comparing CCBs and the two RAAS blockades for hypertensive patients with CKD stage 3 to 5D. The inclusion criteria for this systematic review was RCT that compared the effects of CCBs and the two RAAS blockades in patients with hypertension and CKD. The exclusion criteria were (1) renal transplantation, (2) CKD stage 1 or 2, (3) combined therapy (data cannot be extracted separately). Outcomes were blood pressure change, mortality, heart failure, stroke or cerebrovascular events, and renal outcomes. Results 21 randomized controlled trials randomized 9,492 patients with hypertensive and CKD into CCBs and the two RAAS blockades treatments. The evidence showed no significant differences in blood presser change, mortality, heart failure, stroke or cerebrovascular events, and renal outcomes between CCBs group and the two RAAS blockades group. The publication bias of pooled mean blood presser change that was detected by Egger’s test was non-significant. Conclusions CCBs has similar effects on long term blood pressure, mortality, heart failure, stroke or cerebrovascular events, and renal function to RAAS blockades in patients CKD stage 3 to 5D and hypertension.
Collapse
|
21
|
Zhao S, Li M, Ju W, Gu L, Zhang F, Chen H, Gu K, Yang B, Chen M. Serum level of transforming growth factor beta 1 is associated with left atrial voltage in patients with chronic atrial fibrillation. Indian Pacing Electrophysiol J 2017; 18:95-99. [PMID: 29155027 PMCID: PMC5986266 DOI: 10.1016/j.ipej.2017.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 11/12/2017] [Accepted: 11/14/2017] [Indexed: 11/26/2022] Open
Abstract
Background Atrial tissue fibrosis can cause electrical or structural remodeling in patients with atrial fibrillation. Transforming growth factor beta 1(TGF-β1) signaling acts as a central role in fibroblast activation. In this report, we aimed to investigate the relationship between serum level of TGF-β1 and mean left atrial voltage in patients with chronic atrial fibrillation (CAF). Methods A total of 16 consecutive adult patients with CAF who underwent catheter ablation were enrolled. Blood samples for measurement of TGF-β1 were collected from periphery veins and coronary sinus before pulmonary vein isolation. The measurement was performed with a commercially available ELISA kit. Cardiac indices were measured using echocardiography. The left atrial electroanatomic mapping was performed after pulmonary vein isolation. Results Serum level of TGF-β1 in peripheral blood was higher than that in coronary sinus (p < 0.001). TGF-β1 serum level in coronary sinus negatively correlated with mean left atrial voltage (r = -0.650, p = 0.012), While periphery TGF-β1 level tended to be negatively correlated with mean left atrial voltage(r = -0.492, p = 0.053). Patients who treated with angiotensin II receptor antagonists had lower coronary sinus TGF-β1 serum level than those who did not treated with angiotensin II receptor antagonists (p = 0.046). Conclusion Level of TGF-β1 in peripheral serum is higher than that in coronary sinus, and serum level of TGF-β1 in coronary sinus is negatively associated with mean left atrial voltage in patients with CAF, angiotensin II receptor antagonists could affect TGF-β1 serum level.
Collapse
Affiliation(s)
- Shilu Zhao
- Cardiology Division, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| | - Mingfang Li
- Cardiology Division, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| | - Weizhu Ju
- Cardiology Division, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| | - Lingyun Gu
- Cardiology Division, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| | - Fengxiang Zhang
- Cardiology Division, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| | - Hongwu Chen
- Cardiology Division, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| | - Kai Gu
- Cardiology Division, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| | - Bing Yang
- Cardiology Division, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| | - Minglong Chen
- Cardiology Division, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China.
| |
Collapse
|
22
|
Fang L, Murphy AJ, Dart AM. A Clinical Perspective of Anti-Fibrotic Therapies for Cardiovascular Disease. Front Pharmacol 2017; 8:186. [PMID: 28428753 PMCID: PMC5382201 DOI: 10.3389/fphar.2017.00186] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 03/22/2017] [Indexed: 12/13/2022] Open
Abstract
Cardiac fibrosis are central to various cardiovascular diseases. Research on the mechanisms and therapeutic targets for cardiac fibrosis has advanced greatly in recent years. However, while many anti-fibrotic treatments have been studied in animal models and seem promising, translation of experimental findings into human patients has been rather limited. Thus, several potential new treatments which have shown to reduce cardiac fibrosis in animal models have either not been tested in humans or proved to be disappointing in clinical trials. A majority of clinical studies are of small size or have not been maintained for long enough periods. In addition, although some conventional therapies, such as renin-angiotensin-aldosterone system (RAAS) inhibitors, have been shown to reduce cardiac fibrosis in humans, cardiac fibrosis persists in patients with heart failure even when treated with these conventional therapies, indicating a need to develop novel and effective anti-fibrotic therapies in cardiovascular disease. In this review article, we summarize anti-fibrotic therapies for cardiovascular disease in humans, discuss the limitations of currently used therapies, along with possible reasons for the failure of so many anti-fibrotic drugs at the clinical level. We will then explore the future directions of anti-fibrotic therapies on cardiovascular disease, and this will include emerging anti-fibrotics that show promise, such as relaxin. A better understanding of the differences between animal models and human pathology, and improved insight into carefully designed trials on appropriate end-points and appropriate dosing need to be considered to identify more effective anti-fibrotics for treating cardiovascular fibrosis in human patients.
Collapse
Affiliation(s)
- Lu Fang
- Baker IDI Heart and Diabetes InstituteMelbourne, VIC, Australia
| | - Andrew J Murphy
- Baker IDI Heart and Diabetes InstituteMelbourne, VIC, Australia
| | - Anthony M Dart
- Baker IDI Heart and Diabetes InstituteMelbourne, VIC, Australia.,Department of Cardiovascular Medicine, The Alfred HospitalMelbourne, VIC, Australia
| |
Collapse
|
23
|
Abstract
The risks associated with hypertension emerge through a series of complex interactions. Myocardial ischemia is the major contributor to this risk. The mechanisms driving ischemia reflect many of the key factors in hypertension, including endothelial and neurohumoral factors, fibrosis, and hemodynamics. Left ventricular hypertrophy and fibrosis are of fundamental importance and together with hemodynamics provide an optimal template for myocardial ischemia. Understanding the pathophysiology has aided a more rational management approach but challenges remain which, if surmounted, will have an impact on the morbidity and mortality caused by myocardial ischemia in patients with hypertension.
Collapse
Affiliation(s)
- Tony Stanton
- Nambour Hospital, School of Medicine, University of Queensland, Medical Suites, Level 2, Nambour, Queensland 4556, Australia
| | | |
Collapse
|
24
|
Novel therapeutic strategies targeting fibroblasts and fibrosis in heart disease. Nat Rev Drug Discov 2016; 15:620-638. [PMID: 27339799 DOI: 10.1038/nrd.2016.89] [Citation(s) in RCA: 221] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Our understanding of the functions of cardiac fibroblasts has moved beyond their roles in heart structure and extracellular matrix generation and now includes their contributions to paracrine, mechanical and electrical signalling during ontogenesis and normal cardiac activity. Fibroblasts also have central roles in pathogenic remodelling during myocardial ischaemia, hypertension and heart failure. As key contributors to scar formation, they are crucial for tissue repair after interventions including surgery and ablation. Novel experimental approaches targeting cardiac fibroblasts are promising potential therapies for heart disease. Indeed, several existing drugs act, at least partially, through effects on cardiac connective tissue. This Review outlines the origins and roles of fibroblasts in cardiac development, homeostasis and disease; illustrates the involvement of fibroblasts in current and emerging clinical interventions; and identifies future targets for research and development.
Collapse
|
25
|
Fan Z, Guan J. Antifibrotic therapies to control cardiac fibrosis. Biomater Res 2016; 20:13. [PMID: 27226899 PMCID: PMC4879750 DOI: 10.1186/s40824-016-0060-8] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 05/13/2016] [Indexed: 12/17/2022] Open
Abstract
Cardiac fibrosis occurs naturally after myocardial infarction. While the initially formed fibrotic tissue prevents the infarcted heart tissue from rupture, the progression of cardiac fibrosis continuously expands the size of fibrotic tissue and causes cardiac function decrease. Cardiac fibrosis eventually evolves the infarcted hearts into heart failure. Inhibiting cardiac fibrosis from progressing is critical to prevent heart failure. However, there is no efficient therapeutic approach currently available. Myofibroblasts are primarily responsible for cardiac fibrosis. They are formed by cardiac fibroblast differentiation, fibrocyte differentiation, epithelial to mesenchymal transdifferentiation, and endothelial to mesenchymal transition, driven by cytokines such as transforming growth factor beta (TGF-β), angiotensin II and platelet-derived growth factor (PDGF). The approaches that inhibit myofibroblast formation have been demonstrated to prevent cardiac fibrosis, including systemic delivery of antifibrotic drugs, localized delivery of biomaterials, localized delivery of biomaterials and antifibrotic drugs, and localized delivery of cells using biomaterials. This review addresses current progresses in cardiac fibrosis therapies.
Collapse
Affiliation(s)
- Zhaobo Fan
- Department of Materials Science and Engineering, The Ohio State University, 2041 College Road, Columbus, OH 43210 USA
| | - Jianjun Guan
- Department of Materials Science and Engineering, The Ohio State University, 2041 College Road, Columbus, OH 43210 USA
| |
Collapse
|
26
|
Ongstad EL, Gourdie RG. Can heart function lost to disease be regenerated by therapeutic targeting of cardiac scar tissue? Semin Cell Dev Biol 2016; 58:41-54. [PMID: 27234380 DOI: 10.1016/j.semcdb.2016.05.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 05/18/2016] [Accepted: 05/23/2016] [Indexed: 01/14/2023]
Abstract
Myocardial infarction results in scar tissue that cannot actively contribute to heart mechanical function and frequently causes lethal arrhythmias. The healing response after infarction involves inflammation, biochemical signaling, changes in cellular phenotype, activity, and organization, and alterations in electrical conduction due to variations in cell and tissue geometry and alterations in protein expression, organization, and function - particularly in membrane channels. The intensive research focus on regeneration of myocardial tissues has, as of yet, only met with modest success, with no near-term prospect of improving standard-of-care for patients with heart disease. An alternative concept for novel therapeutic approach is the rejuvenation of cardiac electrical and mechanical properties through the modification of scar tissue. Several peptide therapeutics, locally applied genetic therapies, or delivery of genetically modified cells have shown promise in improving the characteristics of the fibrous scar and post-myocardial infarction prognosis in experimental models. This review highlights several factors that contribute to arrhythmogenesis in scar formation and how these might be targeted to regenerate some of the electrical and mechanical function of the post-MI scar.
Collapse
Affiliation(s)
- Emily L Ongstad
- Center for Heart and Regenerative Medicine Research, Virginia Tech Carilion Research Institute, 2 Riverside Circle, Roanoke, VA 24016, USA.
| | - Robert G Gourdie
- Center for Heart and Regenerative Medicine Research, Virginia Tech Carilion Research Institute, 2 Riverside Circle, Roanoke, VA 24016, USA; Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, 317 Kelly Hall, Stanger Street, Blacksburg, VA 24061, USA; Department of Emergency Medicine, Carilion Clinic, 1906 Belleview Avenue, Roanoke VA 24014, USA.
| |
Collapse
|
27
|
Rodrigues PG, Leite-Moreira AF, Falcão-Pires I. Myocardial reverse remodeling: how far can we rewind? Am J Physiol Heart Circ Physiol 2016; 310:H1402-22. [PMID: 26993225 DOI: 10.1152/ajpheart.00696.2015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 03/04/2016] [Indexed: 12/19/2022]
Abstract
Heart failure (HF) is a systemic disease that can be divided into HF with reduced ejection fraction (HFrEF) and with preserved ejection fraction (HFpEF). HFpEF accounts for over 50% of all HF patients and is typically associated with high prevalence of several comorbidities, including hypertension, diabetes mellitus, pulmonary hypertension, obesity, and atrial fibrillation. Myocardial remodeling occurs both in HFrEF and HFpEF and it involves changes in cardiac structure, myocardial composition, and myocyte deformation and multiple biochemical and molecular alterations that impact heart function and its reserve capacity. Understanding the features of myocardial remodeling has become a major objective for limiting or reversing its progression, the latter known as reverse remodeling (RR). Research on HFrEF RR process is broader and has delivered effective therapeutic strategies, which have been employed for some decades. However, the RR process in HFpEF is less clear partly due to the lack of information on HFpEF pathophysiology and to the long list of failed standard HF therapeutics strategies in these patient's outcomes. Nevertheless, new proteins, protein-protein interactions, and signaling pathways are being explored as potential new targets for HFpEF remodeling and RR. Here, we review recent translational and clinical research in HFpEF myocardial remodeling to provide an overview on the most important features of RR, comparing HFpEF with HFrEF conditions.
Collapse
Affiliation(s)
- Patrícia G Rodrigues
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, Universidade do Porto, Porto, Portugal
| | - Adelino F Leite-Moreira
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, Universidade do Porto, Porto, Portugal
| | - Inês Falcão-Pires
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, Universidade do Porto, Porto, Portugal
| |
Collapse
|
28
|
May the fibrosis be with you: Is discoidin domain receptor 2 the receptor we have been looking for? J Mol Cell Cardiol 2016; 91:201-3. [PMID: 26772530 DOI: 10.1016/j.yjmcc.2016.01.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 01/03/2016] [Accepted: 01/05/2016] [Indexed: 01/06/2023]
Abstract
In a recent issue of Journal of Molecular and Cellular Cardiology, George et al. [1] identified discoidin domain receptor 2 (DDR2) as a positive modulator of collagen production in cardiac fibroblasts stimulated with angiotensin II (Ang II). DDR2 is a tyrosine kinase collagen receptor and is associated with pathological scarring of multiple organs; nevertheless, the functional role of DDR2 in the myocardium remains unclear. George et al. present evidence for the first time that Ang II induces cardiac fibrosis by enhancing DDR2 expression in cardiac fibroblasts via p38 mitogen activated protein kinase (p38 MAPK)-mediated activation of nuclear factor-κB (NF-κB).
Collapse
|
29
|
George M, Vijayakumar A, Dhanesh SB, James J, Shivakumar K. Molecular basis and functional significance of Angiotensin II-induced increase in Discoidin Domain Receptor 2 gene expression in cardiac fibroblasts. J Mol Cell Cardiol 2015; 90:59-69. [PMID: 26674152 DOI: 10.1016/j.yjmcc.2015.12.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 11/30/2015] [Accepted: 12/04/2015] [Indexed: 01/01/2023]
Abstract
Delineation of mechanisms underlying the regulation of fibrosis-related genes in the heart is an important clinical goal as cardiac fibrosis is a major cause of myocardial dysfunction. This study probed the regulation of Discoidin Domain Receptor 2 (DDR2) gene expression and the regulatory links between Angiotensin II, DDR2 and collagen in Angiotensin II-stimulated cardiac fibroblasts. Real-time PCR and western blot analyses showed that Angiotensin II enhances DDR2 mRNA and protein expression in rat cardiac fibroblasts via NADPH oxidase-dependent reactive oxygen species induction. NF-κB activation, demonstrated by gel shift assay, abolition of DDR2 expression upon NF-κB inhibition, and luciferase and chromatin immunoprecipitation assays confirmed transcriptional control of DDR2 by NF-κB in Angiotensin II-treated cells. Inhibitors of Phospholipase C and Protein kinase C prevented Angiotensin II-dependent p38 MAPK phosphorylation that in turn blocked NF-κB activation. Angiotensin II also enhanced collagen gene expression. Importantly, the stimulatory effects of Angiotensin II on DDR2 and collagen were inter-dependent as siRNA-mediated silencing of one abolished the other. Angiotensin II promoted ERK1/2 phosphorylation whose inhibition attenuated Angiotensin II-stimulation of collagen but not DDR2. Furthermore, DDR2 knockdown prevented Angiotensin II-induced ERK1/2 phosphorylation, indicating that DDR2-dependent ERK1/2 activation enhances collagen expression in cells exposed to Angiotensin II. DDR2 knockdown was also associated with compromised wound healing response to Angiotensin II. To conclude, Angiotensin II promotes NF-κB activation that up-regulates DDR2 transcription. A reciprocal regulatory relationship between DDR2 and collagen, involving cross-talk between the GPCR and RTK pathways, is central to Angiotensin II-induced increase in collagen expression in cardiac fibroblasts.
Collapse
Affiliation(s)
- Mereena George
- Division of Cellular and Molecular Cardiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, 695011, Kerala, India
| | - Anupama Vijayakumar
- Division of Cellular and Molecular Cardiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, 695011, Kerala, India
| | - Sivadasan Bindu Dhanesh
- Neuro Stem Cell Biology, Neurobiology Division, Rajiv Gandhi Center for Biotechnology, Trivandrum, 695014, Kerala, India
| | - Jackson James
- Neuro Stem Cell Biology, Neurobiology Division, Rajiv Gandhi Center for Biotechnology, Trivandrum, 695014, Kerala, India
| | - K Shivakumar
- Division of Cellular and Molecular Cardiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, 695011, Kerala, India.
| |
Collapse
|
30
|
Chen C, Li R, Ross RS, Manso AM. Integrins and integrin-related proteins in cardiac fibrosis. J Mol Cell Cardiol 2015; 93:162-74. [PMID: 26562414 DOI: 10.1016/j.yjmcc.2015.11.010] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 11/07/2015] [Accepted: 11/07/2015] [Indexed: 12/21/2022]
Abstract
Cardiac fibrosis is one of the major components of the healing mechanism following any injury of the heart and as such may contribute to both systolic and diastolic dysfunction in a range of pathophysiologic conditions. Canonically, it can occur as part of the remodeling process that occurs following myocardial infarction or that follows as a response to pressure overload. Integrins are cell surface receptors which act in both cellular adhesion and signaling. Most importantly, in the context of the continuously contracting myocardium, they are recognized as mechanotransducers. They have been implicated in the development of fibrosis in several organs, including the heart. This review will focus on the involvement of integrins and integrin-related proteins, in cardiac fibrosis, outlining the roles of these proteins in the fibrotic responses in specific cardiac pathologies, discuss some of the common end effectors (angiotensin II, transforming growth factor beta 1 and mechanical stress) through which integrins function and finally discuss how manipulation of this set of proteins may lead to new treatments which could prove useful to alter the deleterious effects of cardiac fibrosis.
Collapse
Affiliation(s)
- Chao Chen
- Department of Medicine, Cardiology, UCSD School of Medicine, La Jolla, CA 92093-0613, USA; Veterans Administration San Diego Healthcare System, San Diego, CA 92161, USA.
| | - Ruixia Li
- Department of Medicine, Cardiology, UCSD School of Medicine, La Jolla, CA 92093-0613, USA; Veterans Administration San Diego Healthcare System, San Diego, CA 92161, USA.
| | - Robert S Ross
- Department of Medicine, Cardiology, UCSD School of Medicine, La Jolla, CA 92093-0613, USA; Veterans Administration San Diego Healthcare System, San Diego, CA 92161, USA.
| | - Ana Maria Manso
- Department of Medicine, Cardiology, UCSD School of Medicine, La Jolla, CA 92093-0613, USA; Veterans Administration San Diego Healthcare System, San Diego, CA 92161, USA.
| |
Collapse
|
31
|
Abstract
Fibrotic diseases are a significant global burden for which there are limited treatment options. The effector cells of fibrosis are activated fibroblasts called myofibroblasts, a highly contractile cell type characterized by the appearance of α-smooth muscle actin stress fibers. The underlying mechanism behind myofibroblast differentiation and persistence has been under much investigation and is known to involve a complex signaling network involving transforming growth factor-β, endothelin-1, angiotensin II, CCN2 (connective tissue growth factor), and platelet-derived growth factor. This review addresses the contribution of these signaling molecules to cardiac fibrosis.
Collapse
Affiliation(s)
- Andrew Leask
- From the Departments of Dentistry and Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
32
|
Liu J, Zhuo X, Liu W, Wan Z, Liang X, Gao S, Yuan Z, Wu Y. Resveratrol inhibits high glucose induced collagen upregulation in cardiac fibroblasts through regulating TGF-β1–Smad3 signaling pathway. Chem Biol Interact 2015; 227:45-52. [DOI: 10.1016/j.cbi.2014.12.031] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Revised: 12/13/2014] [Accepted: 12/19/2014] [Indexed: 01/31/2023]
|
33
|
Chen B, Lu D, Fu Y, Zhang J, Huang X, Cao S, Xu D, Bin J, Kitakaze M, Huang Q, Liao Y. Olmesartan prevents cardiac rupture in mice with myocardial infarction by modulating growth differentiation factor 15 and p53. Br J Pharmacol 2014; 171:3741-53. [PMID: 24749959 PMCID: PMC4128070 DOI: 10.1111/bph.12736] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Revised: 04/02/2014] [Accepted: 04/11/2014] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND AND PURPOSE Cardiac rupture is a catastrophic complication that occurs after acute myocardial infarction (MI) and, at present, there are no effective pharmacological strategies for preventing this condition. Here we investigated the effect of the angiotensin II receptor blocker olmesartan (Olm) on post-infarct cardiac rupture and its underlying mechanisms of action. EXPERIMENTAL APPROACH C57Bl/6 mice with MI were treated with Olm, aldosterone (Aldo) or vehicle. Cultured neonatal cardiomyocytes and fibroblasts were exposed to normoxia or anoxia and treated with angiotensin II (Ang II), RNH6270 (active ingredient of Olm) or Aldo. KEY RESULTS The mortality rate and incidence of cardiac rupture in MI mice during the first week in the Olm-treated group were significantly lower than in the vehicle-treated group. Olm or RNH6270 reduced myeloperoxidase staining in the infarcted myocardium, decreased apoptosis in cultured cardiomyocytes and fibroblasts, as assessed by Hoechst staining and TUNEL assay, attenuated the accumulation of p53 and phosphorylated p53 and cleaved caspase 3 induced by MI or Ang II, as assessed by Western blotting, and up-regulated growth differentiation factor-15 (GDF-15). In cultured cardiomyocytes and fibroblasts, treatment with Ang II, Aldo or anoxia significantly down-regulated the expression of GDF-15. CONCLUSIONS AND IMPLICATIONS Olm prevents cardiac rupture through inhibition of apoptosis and inflammation, which is attributable to the down-regulation of p53 activity and up-regulation of GDF-15. Our findings suggest that early administration of an AT1 receptor anatagonist to patients with acute MI is a potential preventive approach for cardiac rupture.
Collapse
Affiliation(s)
- Baihe Chen
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang HospitalGuangzhou, China
| | - Di Lu
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang HospitalGuangzhou, China
| | - Yujuan Fu
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang HospitalGuangzhou, China
| | - Jingwen Zhang
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang HospitalGuangzhou, China
| | - Xiaobo Huang
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang HospitalGuangzhou, China
| | - Shiping Cao
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang HospitalGuangzhou, China
| | - Dingli Xu
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang HospitalGuangzhou, China
| | - Jianping Bin
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang HospitalGuangzhou, China
| | - Masafumi Kitakaze
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang HospitalGuangzhou, China
- Cardiovascular Division of the Department of Medicine, National Cerebral and Cardiovascular CenterSuita, Osaka, Japan
| | - Qiaobing Huang
- Department of Pathophysiology, School of Basic Medicine, Southern Medical UniversityGuangzhou, China
| | - Yulin Liao
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang HospitalGuangzhou, China
| |
Collapse
|
34
|
Szabó Z, Magga J, Alakoski T, Ulvila J, Piuhola J, Vainio L, Kivirikko KI, Vuolteenaho O, Ruskoaho H, Lipson KE, Signore P, Kerkelä R. Connective tissue growth factor inhibition attenuates left ventricular remodeling and dysfunction in pressure overload-induced heart failure. Hypertension 2014; 63:1235-40. [PMID: 24688123 DOI: 10.1161/hypertensionaha.114.03279] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Connective tissue growth factor (CTGF) is involved in the pathogenesis of various fibrotic disorders. However, its role in the heart is not clear. To investigate the role of CTGF in regulating the development of cardiac fibrosis and heart failure, we subjected mice to thoracic aortic constriction (TAC) or angiotensin II infusion, and antagonized the function of CTGF with CTGF monoclonal antibody (mAb). After 8 weeks of TAC, mice treated with CTGF mAb had significantly better preserved left ventricular (LV) systolic function and reduced LV dilatation compared with mice treated with control immunoglobulin G. CTGF mAb-treated mice exhibited significantly smaller cardiomyocyte cross-sectional area and reduced expression of hypertrophic marker genes. CTGF mAb treatment reduced the TAC-induced production of collagen 1 but did not significantly attenuate TAC-induced accumulation of interstitial fibrosis. Analysis of genes regulating extracellular matrix proteolysis showed decreased expression of plasminogen activator inhibitor-1 and matrix metalloproteinase-2 in mice treated with CTGF mAb. In contrast to TAC, antagonizing the function of CTGF had no effect on LV dysfunction or LV hypertrophy in mice subjected to 4-week angiotensin II infusion. Further analysis showed that angiotensin II-induced expression of hypertrophic marker genes or collagens was not affected by treatment with CTGF mAb. In conclusion, CTGF mAb protects from adverse LV remodeling and LV dysfunction in hearts subjected to pressure overload by TAC. Antagonizing the function of CTGF may offer protection from cardiac end-organ damage in patients with hypertension.
Collapse
Affiliation(s)
- Zoltán Szabó
- University of Oulu, Department of Pharmacology and Toxicology, P.O. Box 5000, FIN-90220 Oulu, Finland.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
An anthelmintic drug, pyrvinium pamoate, thwarts fibrosis and ameliorates myocardial contractile dysfunction in a mouse model of myocardial infarction. PLoS One 2013; 8:e79374. [PMID: 24223934 PMCID: PMC3817040 DOI: 10.1371/journal.pone.0079374] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Accepted: 09/26/2013] [Indexed: 11/19/2022] Open
Abstract
Metabolic adaptation to limited supplies of oxygen and nutrients plays a pivotal role in health and disease. Heart attack results from insufficient delivery of oxygen and nutrients to the heart, where cardiomyocytes die and cardiac fibroblasts proliferate--the latter causing scar formation, which impedes regeneration and impairs contractility of the heart. We postulated that cardiac fibroblasts survive metabolic stress by adapting their intracellular metabolism to low oxygen and nutrients, and impeding this metabolic adaptation would thwart their survival and facilitate the repair of scarred heart. Herein, we show that an anthelmintic drug, Pyrvinium pamoate, which has been previously shown to compromise cancer cell survival under glucose starvation condition, also disables cardiac fibroblast survival specifically under glucose deficient condition. Furthermore, Pyrvinium pamoate reduces scar formation and improves cardiac contractility in a mouse model of myocardial infarction. As Pyrvinium pamoate is an FDA-approved drug, our results suggest a therapeutic use of this or other related drugs to repair scarred heart and possibly other organs.
Collapse
|
36
|
Myofibroblasts: trust your heart and let fate decide. J Mol Cell Cardiol 2013; 70:9-18. [PMID: 24189039 DOI: 10.1016/j.yjmcc.2013.10.019] [Citation(s) in RCA: 235] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 10/18/2013] [Accepted: 10/24/2013] [Indexed: 12/27/2022]
Abstract
Cardiac fibrosis is a substantial problem in managing multiple forms of heart disease. Fibrosis results from an unrestrained tissue repair process orchestrated predominantly by the myofibroblast. These are highly specialized cells characterized by their ability to secrete extracellular matrix (ECM) components and remodel tissue due to their contractile properties. This contractile activity of the myofibroblast is ascribed, in part, to the expression of smooth muscle α-actin (αSMA) and other tension-associated structural genes. Myofibroblasts are a newly generated cell type derived largely from residing mesenchymal cells in response to both mechanical and neurohumoral stimuli. Several cytokines, chemokines, and growth factors are induced in the injured heart, and in conjunction with elevated wall tension, specific signaling pathways and downstream effectors are mobilized to initiate myofibroblast differentiation. Here we will review the cell fates that contribute to the myofibroblast as well as nodal molecular signaling effectors that promote their differentiation and activity. We will discuss canonical versus non-canonical transforming growth factor-β (TGFβ), angiotensin II (AngII), endothelin-1 (ET-1), serum response factor (SRF), transient receptor potential (TRP) channels, mitogen-activated protein kinases (MAPKs) and mechanical signaling pathways that are required for myofibroblast transformation and fibrotic disease. This article is part of a Special Issue entitled "Myocyte-Fibroblast Signalling in Myocardium ".
Collapse
|
37
|
He YM, Feng L, Huo DM, Yang ZH, Liao YH. Enalapril versus losartan for adults with chronic kidney disease: A systematic review and meta-analysis. Nephrology (Carlton) 2013; 18:605-14. [PMID: 23869492 DOI: 10.1111/nep.12134] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Yuan-Mei He
- Renal Division; Department of Medicine; First Affiliated Hospital of Guangxi Medical University; Nanning; China
| | - Li Feng
- Renal Division; Department of Medicine; First Affiliated Hospital of Guangxi Medical University; Nanning; China
| | - Dong-Mei Huo
- Renal Division; Department of Medicine; First Affiliated Hospital of Guangxi Medical University; Nanning; China
| | - Zhen-Hua Yang
- Renal Division; Department of Medicine; First Affiliated Hospital of Guangxi Medical University; Nanning; China
| | - Yun-Hua Liao
- Renal Division; Department of Medicine; First Affiliated Hospital of Guangxi Medical University; Nanning; China
| |
Collapse
|
38
|
Ehnert S, Lukoschek T, Bachmann A, Martínez Sánchez JJ, Damm G, Nussler NC, Pscherer S, Stöckle U, Dooley S, Mueller S, Nussler AK. The right choice of antihypertensives protects primary human hepatocytes from ethanol- and recombinant human TGF-β1-induced cellular damage. Hepat Med 2013; 5:31-41. [PMID: 24695967 PMCID: PMC3953738 DOI: 10.2147/hmer.s38754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Background Patients with alcoholic liver disease (ALD) often suffer from high blood pressure and rely on antihypertensive treatment. Certain antihypertensives may influence progression of chronic liver disease. Therefore, the aim of this study is to investigate the impact of the commonly used antihypertensives amlodipine, captopril, furosemide, metoprolol, propranolol, and spironolactone on alcohol-induced damage toward human hepatocytes (hHeps). Methods hHeps were isolated by collagenase perfusion. Reactive oxygen species (ROS) were measured by fluorescence-based assays. Cellular damage was determined by lactate-dehydrogenase (LDH)-leakage. Expression analysis was performed by reverse-transcription polymerase chain reaction and Western blot. Transforming growth factor (TGF)-β signaling was investigated by a Smad3/4-responsive luciferase-reporter assay. Results Ethanol and TGF-β1 rapidly increased ROS in hHeps, causing a release of 40%–60% of total LDH after 72 hours. All antihypertensives dose dependently reduced ethanol-mediated oxidative stress and cellular damage. Similar results were observed for TGF-β1-dependent damage, except for furosemide, which had no effect. As a common mechanism, all antihypertensives increased heme-oxygenase-1 (HO-1) expression, and inhibition of HO-1 activity reversed the protective effect of the drugs. Interestingly, Smad3/4 signaling was reduced by all compounds except furosemide, which even enhanced this profibrotic signaling. This effect was mediated by expressional changes of Smad3 and/or Smad4. Conclusions Our results suggest that antihypertensives may both positively and negatively influence chronic liver disease progression. Therefore, we propose that in future patients with ALD and high blood pressure, they could benefit from an adjusted antihypertensive therapy with additional antifibrotic effects.
Collapse
Affiliation(s)
- Sabrina Ehnert
- Eberhard Karls Universität Tübingen, BG Trauma Center, Tübingen, Germany
| | - Teresa Lukoschek
- Mol Hepatology - Alcohol Associated Diseases, Department of Medicine II, Medical Faculty, Mannheim, Germany
| | - Anastasia Bachmann
- Mol Hepatology - Alcohol Associated Diseases, Department of Medicine II, Medical Faculty, Mannheim, Germany
| | | | - Georg Damm
- Department of General, Visceral, and Transplantation Surgery, Charité University Medicine, Berlin, Germany
| | - Natascha C Nussler
- Clinic for General, Visceral, Endocrine Surgery and Coloproctology, Clinic Neuperlach, Städtisches Klinikum München GmbH, Munich, Germany
| | - Stefan Pscherer
- Department of Diabetology, Klinikum Traunstein, Kliniken Südostbayern AG, Traunstein, Germany
| | - Ulrich Stöckle
- Eberhard Karls Universität Tübingen, BG Trauma Center, Tübingen, Germany
| | - Steven Dooley
- Mol Hepatology - Alcohol Associated Diseases, Department of Medicine II, Medical Faculty, Mannheim, Germany
| | - Sebastian Mueller
- Department of Medicine, Salem Medical Center, Ruprecht-Karls-Universität, Heidelberg, Germany
| | - Andreas K Nussler
- Eberhard Karls Universität Tübingen, BG Trauma Center, Tübingen, Germany
| |
Collapse
|
39
|
Couluris M, Kinder BW, Xu P, Gross-King M, Krischer J, Panos RJ. Treatment of idiopathic pulmonary fibrosis with losartan: a pilot project. Lung 2012; 190:523-7. [PMID: 22810758 DOI: 10.1007/s00408-012-9410-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 07/02/2012] [Indexed: 01/13/2023]
Abstract
BACKGROUND Idiopathic pulmonary fibrosis is a progressive interstitial lung disease with no current effective therapies. Treatment has focused on antifibrotic agents to stop proliferation of fibroblasts and collagen deposition in the lung. We present the first clinical trial data on the use of losartan, an antifibrotic agent, to treat idiopathic pulmonary fibrosis. The primary objective was to evaluate the effect of losartan on progression of idiopathic pulmonary fibrosis measured by the change in percentage of predicted forced vital capacity (%FVC) after 12 months. Secondary outcomes included the change in forced expiratory volume at 1 second, diffusing capacity of carbon monoxide, 6-minute walk test distance, and baseline/transition dyspnea index. METHODS Patients with idiopathic pulmonary fibrosis and a baseline %FVC of ≥50 % were treated with losartan 50 mg by mouth daily for 12 months. Pulmonary function testing, 6-minute walk, and breathlessness indices were measured every 3 months. RESULTS Twenty participants with idiopathic pulmonary fibrosis were enrolled and 17 patients were evaluable for response. Twelve patients had a stable or improved %FVC at study month 12. Similar findings were observed in secondary end-point measures, including 58, 71, and 65 % of patients with stable or improved forced expiratory volume at 1 second, diffusing capacity for carbon monoxide, and 6-minute walk test distance, respectively. No treatment-related adverse events that resulted in early study discontinuation were reported. CONCLUSION Losartan stabilized lung function in patients with idiopathic pulmonary fibrosis over 12 months. Losartan is a promising agent for the treatment of idiopathic pulmonary fibrosis and has a low toxicity profile.
Collapse
Affiliation(s)
- Marisa Couluris
- Division of Pulmonology, Department of Pediatrics, University of South Florida College of Medicine, Tampa, FL, USA.
| | | | | | | | | | | |
Collapse
|
40
|
Kovacic JC, Mercader N, Torres M, Boehm M, Fuster V. Epithelial-to-mesenchymal and endothelial-to-mesenchymal transition: from cardiovascular development to disease. Circulation 2012; 125:1795-808. [PMID: 22492947 DOI: 10.1161/circulationaha.111.040352] [Citation(s) in RCA: 324] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jason C Kovacic
- Zena and Michael A. Wiener Cardiovascular Institute, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1030, New York, NY 10029, USA.
| | | | | | | | | |
Collapse
|
41
|
Suzuki R, Honda H, Niikura K, Akizawa T. Olmesartan Medoxomil Treatment Is Associated with Decreased Plasma B-Type Natriuretic Peptide Levels in Patients on Hemodialysis. Clin Exp Hypertens 2011; 34:125-31. [DOI: 10.3109/10641963.2011.601379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
42
|
Khan BV. The effect of amlodipine besylate, losartan potassium, olmesartan medoxomil, and other antihypertensives on central aortic blood pressure and biomarkers of vascular function. Ther Adv Cardiovasc Dis 2011; 5:241-73. [PMID: 21893558 DOI: 10.1177/1753944711420464] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Biomarkers are being increasingly used in the study of cardiovascular disease because they provide readily quantifiable surrogate endpoints and allow accurate assessment of the effects of therapy on particular pathological processes. However, in order to be useful, biomarkers must be relevant, predictable, accurate, and reproducible. There is compelling evidence from large-scale clinical trials that inhibitors of the renin-angiotensin system [angiotensin-converting enzyme inhibitors and angiotensin type II receptor blockers (ARBs)] and calcium channel blockers (CCBs) may have beneficial effects beyond blood pressure control in the treatment of hypertension. Biomarkers are expected to provide further insight into these beneficial effects and allow for quantitative assessment. This review summarizes the published clinical evidence on the effects of various antihypertensive drugs, particularly ARBs (e.g. losartan and olmesartan medoxomil) and CCBs (e.g. amlodipine), alone and in combination with other agents (e.g. hydrochlorothiazide), on central aortic pressure and the biomarkers high-sensitivity C-reactive protein (hsCRP), adiponectin, cystatin C, homeostasis model assessment of insulin resistance (HOMA-IR), procollagen, tumor necrosis factor-α, and interleukin-6. Of these biomarkers, the benefits of antihypertensive therapy on hsCRP, adiponectin, and HOMA-IR reflect a potential for quantifiable long-term vascular benefits.
Collapse
Affiliation(s)
- Bobby V Khan
- Atlanta Vascular Research Foundation, Saint Joseph's Translational Research Institute, 3562 Habersham at Northlake, Atlanta, GA 30084, USA.
| |
Collapse
|
43
|
Leask A. Potential therapeutic targets for cardiac fibrosis: TGFbeta, angiotensin, endothelin, CCN2, and PDGF, partners in fibroblast activation. Circ Res 2010; 106:1675-80. [PMID: 20538689 DOI: 10.1161/circresaha.110.217737] [Citation(s) in RCA: 541] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Fibrosis is one of the largest groups of diseases for which there is no therapy but is believed to occur because of a persistent tissue repair program. During connective tissue repair, "activated" fibroblasts migrate into the wound area, where they synthesize and remodel newly created extracellular matrix. The specialized type of fibroblast responsible for this action is the alpha-smooth muscle actin (alpha-SMA)-expressing myofibroblast. Abnormal persistence of the myofibroblast is a hallmark of fibrotic diseases. Proteins such as transforming growth factor (TGF)beta, endothelin-1, angiotensin II (Ang II), connective tissue growth factor (CCN2/CTGF), and platelet-derived growth factor (PDGF) appear to act in a network that contributes to myofibroblast differentiation and persistence. Drugs targeting these proteins are currently under consideration as antifibrotic treatments. This review summarizes recent observations concerning the contribution of TGFbeta, endothelin-1, Ang II, CCN2, and PDGF and to fibroblast activation in tissue repair and fibrosis and the potential utility of agents blocking these proteins in affecting the outcome of cardiac fibrosis.
Collapse
Affiliation(s)
- Andrew Leask
- Dental Sciences Building, London ON N6A 5C1, Canada.
| |
Collapse
|
44
|
Nakamura K, Koibuchi N, Nishimatsu H, Higashikuni Y, Hirata Y, Kugiyama K, Nagai R, Sata M. Candesartan ameliorates cardiac dysfunction observed in angiotensin-converting enzyme 2-deficient mice. Hypertens Res 2009; 31:1953-61. [PMID: 19015603 DOI: 10.1291/hypres.31.1953] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The renin-angiotensin (Ang) system plays a critical role in the regulation of blood pressure, body fluid, electrolyte homeostasis, and organ remodeling under physiological and pathological conditions. The carboxypeptidase ACE2 is a homologue of angiotensin-converting enzyme (ACE). It has been reported that ACE2-deficient mice develop cardiac dysfunction with increased plasma levels of Ang II. However, the molecular mechanism by which genetic disruption of ACE2 results in heart dysfunction is not fully understood. Here, we generated mice with targeted disruption of the Ace2 gene and compared the cardiovascular function of ACE2(-/y) mice with that of their wild-type littermates. ACE2-deficient mice were viable and fertile and lacked any gross structural abnormalities. Echocardiographic study detected no functional difference between ACE2(-/y) and wild-type mice at 12 weeks of age. Twenty-four-week-old ACE2(-/y) mice displayed significantly enlarged hearts with impaired systolic and diastolic function. The Ang II level was elevated in the plasma and heart of ACE2(-/y) mice. Pharmacological blockade of Ang II type 1 receptor (AT1) with candesartan attenuated the development of cardiac dysfunction in ACE2(-/y) mice. These results suggest that enhanced stimulation of AT1 may play a role in the development of cardiac dysfunction observed in ACE2-deficient mice.
Collapse
Affiliation(s)
- Kazuto Nakamura
- Department of Cardiovascular Medicine, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
45
|
López B, González A, Hermida N, Laviades C, Díez J. Myocardial fibrosis in chronic kidney disease: potential benefits of torasemide. Kidney Int 2008:S19-23. [DOI: 10.1038/ki.2008.512] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
46
|
CUI Q, WANG H, ZHANG W, WANG H, SUN X, ZHANG Y, YANG H. Enhanced Left Atrial Reservoir, Increased Conduit, and Weakened Booster Pump Function in Hypertensive Patients with Paroxysmal Atrial Fibrillation. Hypertens Res 2008; 31:395-400. [DOI: 10.1291/hypres.31.395] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
47
|
Kokubu N, Yuda S, Tsuchihashi K, Hashimoto A, Nakata T, Miura T, Ura N, Nagao K, Tsuzuki M, Wakabayashi C, Shimamoto K. Noninvasive assessment of left atrial function by strain rate imaging in patients with hypertension: a possible beneficial effect of renin-angiotensin system inhibition on left atrial function. Hypertens Res 2007; 30:13-21. [PMID: 17460367 DOI: 10.1291/hypres.30.13] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Renin-angiotensin system (RAS) inhibitors are likely to reduce the development of atrial fibrillation by preventing atrial fibrosis. Strain rate (SR) imaging is a novel echocardiographic technique to quantify left atrial (LA) function. However, it has not been determined whether SR imaging is applicable for detection of LA dysfunction in hypertensive (HT) patients. We used SR imaging to assess alteration in LA function in HT patients and its modification by RAS inhibitors. SR imaging was performed in 80 HT patients and 50 age-matched normotensive (NT) subjects. HT patients were divided into two groups according to left ventricular hypertrophy (LVH) and LA dilatation. Peak SR was measured at each LA segment (septal, lateral, posterior, anterior, and inferior) and mean peak systolic SR (SR-LAs) was calculated by averaging data in each segment. Mean SR-LAs levels in the dilated LA group (1.97+/-0.45 s(-1), n=25) and non-dilated LA group (2.15+/-0.57 s(-1), n=55) were significantly (p<0.05) lower than that in NT subjects (2.53+/-0.71 s(-1)). Irrespective of the presence or absence of LVH, mean SR-LAs in HT patients was lower than that in NT subjects. When RAS inhibitors were used, the mean SR-LAs level in the non-dilated LA group was equivalent to that in NT subjects. In HT patients, mean SR-LAs, an index of LA reservoir function, decreases before development of LA enlargement and LVH. Treatment with RAS inhibitors appears to preserve LA reservoir function in HT patients without dilated LA. SR imaging can detect LA dysfunction in HT patients and is useful for evaluation of the therapeutic benefit on LA reservoir function.
Collapse
Affiliation(s)
- Nobuaki Kokubu
- Second Department of Internal Medicine, Sapporo Medical University School of Medicine, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|