1
|
Tabata K, Kobayashi S, Itakura Y, Gonzalez G, Kabamba CF, Saito S, Sasaki M, Hall WW, Sawa H, Orba Y. Increased production of orthoflavivirus single-round infectious particles produced in mammalian cells at a suboptimal culture temperature of 28°C. J Virol Methods 2024; 329:115007. [PMID: 39154937 DOI: 10.1016/j.jviromet.2024.115007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 08/20/2024]
Abstract
In the employment of serodiagnostic methods for the detection of orthoflavivirus infections, neutralization tests are known to be more accurate than measurements of antibody binding properties employing enzyme-linked immunosorbent assays. However, neutralization tests require infectious virus and laboratories with an appropriate level of biosafety. Single-round infectious particles (SRIPs), which encode a reporter gene instead of the viral structural protein genes, are replication incompetent and represent a safe and reliable alternative to the diagnosis of pathogenic viruses in neutralization tests. The orthoflavivirus SRIPs are produced by co-transfection of plasmids expressing virus-like particles and replicons into mammalian cell lines preferably with high transfection efficacy, such as HEK293T cells. However, certain orthoflavivirus SRIPs have limitations in their efficient expression at 37°C, which is the optimal temperature for mammalian cell growth, resulting in insufficient yields for neutralization tests. Here, we demonstrate that the production of orthoflavivirus SRIPs increases at the lower temperature of 28°C compared to 37°C. Moreover, infections with 28°C-cultured SRIPs in microneutralization tests were specifically inhibited in the presence of serum from mice infected with homologous viruses, suggesting that these SRIPs preserved their neutralizing epitopes for antibodies. Our method to produce high titer SRIPs is anticipated to promote efficient and safe SRIPs neutralization tests as a general serodiagnostic method for detecting virus-specific neutralizing antibodies against orthoflaviviruses.
Collapse
Affiliation(s)
- Koshiro Tabata
- Hokkaido University, Institute for Vaccine Research and Development (HU-IVReD), Sapporo, Hokkaido 001-0021, Japan
| | - Shintaro Kobayashi
- Hokkaido University, Institute for Vaccine Research and Development (HU-IVReD), Sapporo, Hokkaido 001-0021, Japan; Laboratory of Public Health, Department of Preventive Veterinary Medicine, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060‑0818, Japan
| | - Yukari Itakura
- Hokkaido University, Institute for Vaccine Research and Development (HU-IVReD), Sapporo, Hokkaido 001-0021, Japan
| | - Gabriel Gonzalez
- Hokkaido University, Institute for Vaccine Research and Development (HU-IVReD), Sapporo, Hokkaido 001-0021, Japan
| | - Chilekwa F Kabamba
- Hokkaido University, Institute for Vaccine Research and Development (HU-IVReD), Sapporo, Hokkaido 001-0021, Japan
| | - Shinji Saito
- Hokkaido University, Institute for Vaccine Research and Development (HU-IVReD), Sapporo, Hokkaido 001-0021, Japan
| | - Michihito Sasaki
- Hokkaido University, Institute for Vaccine Research and Development (HU-IVReD), Sapporo, Hokkaido 001-0021, Japan; Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan
| | - William W Hall
- Hokkaido University, Institute for Vaccine Research and Development (HU-IVReD), Sapporo, Hokkaido 001-0021, Japan; International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan; Global Virus Network, Baltimore, MD 21201, USA; National Virus Reference Laboratory, University College Dublin, Belfield, Dublin 4, Ireland
| | - Hirofumi Sawa
- Hokkaido University, Institute for Vaccine Research and Development (HU-IVReD), Sapporo, Hokkaido 001-0021, Japan; International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan; Global Virus Network, Baltimore, MD 21201, USA; One Health Research Center, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan
| | - Yasuko Orba
- Hokkaido University, Institute for Vaccine Research and Development (HU-IVReD), Sapporo, Hokkaido 001-0021, Japan; Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan; International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan; One Health Research Center, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan.
| |
Collapse
|
2
|
Schwarz ER, Long MT. Comparison of West Nile Virus Disease in Humans and Horses: Exploiting Similarities for Enhancing Syndromic Surveillance. Viruses 2023; 15:1230. [PMID: 37376530 DOI: 10.3390/v15061230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
West Nile virus (WNV) neuroinvasive disease threatens the health and well-being of horses and humans worldwide. Disease in horses and humans is remarkably similar. The occurrence of WNV disease in these mammalian hosts has geographic overlap with shared macroscale and microscale drivers of risk. Importantly, intrahost virus dynamics, the evolution of the antibody response, and clinicopathology are similar. The goal of this review is to provide a comparison of WNV infection in humans and horses and to identify similarities that can be exploited to enhance surveillance methods for the early detection of WNV neuroinvasive disease.
Collapse
Affiliation(s)
- Erika R Schwarz
- Montana Veterinary Diagnostic Laboratory, MT Department of Livestock, Bozeman, MT 59718, USA
| | - Maureen T Long
- Department of Comparative, Diagnostic, & Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
3
|
Zhang Y, Li Y, Guan Z, Yang Y, Zhang J, Sun Q, Li B, Qiu Y, Liu K, Shao D, Ma Z, Wei J, Li P. Rapid Differential Detection of Japanese Encephalitis Virus and Getah Virus in Pigs or Mosquitos by a Duplex TaqMan Real-Time RT-PCR Assay. Front Vet Sci 2022; 9:839443. [PMID: 35464361 PMCID: PMC9023051 DOI: 10.3389/fvets.2022.839443] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/18/2022] [Indexed: 11/20/2022] Open
Abstract
Both JEV (Japanese encephalitis virus) and GETV (Getah virus) pose huge threats to the safety of animals and public health. Pigs and mosquitoes play a primary role in JEV and GETV transmission. However, there is no way to quickly distinguish between JEV and GETV. In this study, we established a one-step duplex TaqMan RT-qPCR for rapid identification and detection of JEV and GETV. Primers and probes located in the NS1 gene of JEV and the E2 gene of GETV that could specifically distinguish JEV from GETV were selected for duplex TaqMan RT-qPCR. In duplex real-time RT-qPCR detection, the correlation coefficients (R2) of the two viruses were higher than 0.999. The RT-qPCR assay demonstrated high sensitivity, extreme specificity, and excellent repeatability. Detection of JEV and GETV in field mosquito and pig samples was 100 times and 10 times more sensitive than using traditional PCR, respectively. In addition, the new test took less time and could be completed in under an hour. Clinical sample testing revealed the prevalence of JEV and GETV in mosquitoes and pig herds in China. This complete duplex TaqMan RT-qPCR assay provided a fast, efficient, specific, and sensitive tool for the detection and differentiation of JEV and GETV.
Collapse
Affiliation(s)
- Yan Zhang
- College of Animal Science, Yangtze University, Jingzhou, China
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yuhao Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Zhixin Guan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yang Yang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Junjie Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Qing Sun
- College of Animal Science, Yangtze University, Jingzhou, China
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Beibei Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yafeng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Ke Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Donghua Shao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Zhiyong Ma
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Jianchao Wei
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Peng Li
- College of Animal Science, Yangtze University, Jingzhou, China
| |
Collapse
|
4
|
Development of a highly specific serodiagnostic ELISA for West Nile virus infection using subviral particles. Sci Rep 2021; 11:9213. [PMID: 33911132 PMCID: PMC8080695 DOI: 10.1038/s41598-021-88777-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 04/16/2021] [Indexed: 11/09/2022] Open
Abstract
West Nile virus (WNV), a member of the Japanese encephalitis virus (JEV) serocomplex group, causes lethal encephalitis in humans and horses. Because serodiagnosis of WNV and JEV is hampered by cross-reactivity, the development of a simple, secure, and WNV-specific serodiagnostic system is required. The coexpression of prM protein and E protein leads to the secretion of subviral particles (SPs). Deletion of the C-terminal region of E protein is reported to affect the production of SPs by some flaviviruses. However, the influence of such a deletion on the properties and antigenicity of WNV E protein is unclear. We analyzed the properties of full-length E protein and E proteins lacking the C-terminal region as novel serodiagnostics for WNV infection. Deletion of the C-terminal region of E protein suppressed the formation of SPs but did not affect the production of E protein. The sensitivity of an enzyme-linked immunosorbent assay (ELISA) using the full-length E protein was higher than that using the truncated E proteins. Furthermore, in the ELISA using full-length E protein, there was little cross-reactivity with anti-JEV antibodies, and the sensitivity was similar to that of the neutralization test.
Collapse
|
5
|
Wang X, Guo S, Hameed M, Zhang J, Pang L, Li B, Qiu Y, Liu K, Shao D, Ma Z, Zhong D, Wei J, Li P. Rapid differential detection of genotype I and III Japanese encephalitis virus from clinical samples by a novel duplex TaqMan probe-based RT-qPCR assay. J Virol Methods 2020; 279:113841. [PMID: 32105753 DOI: 10.1016/j.jviromet.2020.113841] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/19/2020] [Accepted: 02/23/2020] [Indexed: 11/26/2022]
Abstract
Japanese Encephalitis (JE) is an acute infectious disease that threatens both human and pig populations throughout Asia. JE is caused by the Japanese Encephalitis Virus (JEV), of which genotype III (GIII) had been the most prevalent strain throughout Asia, but recent studies have shown that genotype I (GI) has replaced GIII as the predominant version. Pigs and mosquitoes play a primary role in JEV transmission. However, a method for the rapid differentiation between JEV G I and G III remains unavailable. This study aimed to establish a rapid JEV genotyping method using novel duplex TaqMan RT-qPCR assay.specific primer and probes located in the PrM/M gene that were able to specifically differentiate GI and GIII JEV, was selected as the duplex TaqMan RT-qPCR target.The specificity, sensitivity and reproducibility test of this assay were validated. The sensitivity of the assay was 10 genomic RNA copies for both GI and GIII JEV in field mosquito and pig samples,and more sensitive than the current methods. In addition, the novel assay can be completed in less than 1 h. Therefore, This duplex TaqMan RT-qPCR assay is a promising tool for rapid differential detection and epidemiology of GI and GIII JEV strains in China. The results showed that co-circulation of GI and GIII infections with GI infection being more prevalent in pigs or mosquitoes in eastern China.
Collapse
Affiliation(s)
- Xin Wang
- Yangtze University, Jingzhou, 434000, People's Republic of China; Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China
| | - Shuang Guo
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China
| | - Muddassar Hameed
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China
| | - Junjie Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China
| | - Linlin Pang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China
| | - Beibei Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China
| | - Yafeng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China
| | - Ke Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China
| | - Donghua Shao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China
| | - Zhiyong Ma
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China
| | - Dengke Zhong
- Shanghai Vocational and Technical College of Agriculture and Forestry, Shanghai, 201600, People's Republic of China.
| | - Jianchao Wei
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China.
| | - Peng Li
- Yangtze University, Jingzhou, 434000, People's Republic of China.
| |
Collapse
|
6
|
CAUSES OF DEATH AND DETECTION OF ANTIBODIES AGAINST JAPANESE ENCEPHALITIS VIRUS IN MISAKI FERAL HORSES ( EQUUS CABALLUS) IN SOUTHERN JAPAN, 2015-17. J Wildl Dis 2019. [PMID: 31112466 DOI: 10.7589/2018-10-265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We performed postmortem examinations on seven Misaki feral horses (Equus caballus) and evaluated Misaki feral horses, Japanese wild boars (Sus scrofa leucomystax), domestic pigs (Sus scrofa), and wild Japanese macaques (Macaca fuscata fuscata) from 2015 to 2017 in Cape Toi, Kushima, Miyazaki Prefecture, southern Japan, for antibodies against Japanese encephalitis virus (JEV). Strongylus vulgaris infection with severe arterial lesions and hemomelasma ilei was present in all necropsied horses. We frequently found intestinal ulcers, perihepatitis filamentosa, and poor body condition. We recorded degenerative arthropathy in metacarpophalangeal joints in two cases and a fracture of the rib with diaphragmatic rupture in one case. A total of 73% (177/242) of horses were seropositive for JEV as tested by hemagglutination inhibition (HI). The HI data also revealed that 74% (59/80) of the wild boars, 67% (60/90) of the pigs, and 29% (22/75) of the wild monkeys were seropositive for JEV. Our findings showed that Strongylus spp. are still a risk to horses in this region, and that environmental factors such as topographic location of the pasture and steep slope may have caused of degenerative arthropathy and bone fracture. Our results showed that JEV is endemic in Japan. The wild boars and pigs were presumed to act as strong amplifiers and sources of infection, with subsequent risk to humans.
Collapse
|
7
|
The distribution of important sero-complexes of flaviviruses in Malaysia. Trop Anim Health Prod 2019; 51:495-506. [PMID: 30604332 DOI: 10.1007/s11250-018-01786-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 12/13/2018] [Indexed: 12/13/2022]
Abstract
Flaviviruses (FVs) are arthropod-borne viruses of medical and veterinary importance. Numerous species of FVs have been isolated from various host; mainly humans, animals, ticks, and mosquitoes. Certain FVs are extremely host-specific; at the same time, some FVs can infect an extensive range of species. Based on published literatures, 11 species of FVs have been detected from diverse host species in Malaysia. In humans, dengue virus and Japanese encephalitis virus have been reported since 1901 and 1942. In animals, the Batu Cave virus, Sitiawan virus, Carey Island, Tembusu virus, Duck Tembusu virus, and Japanese encephalitis viruses were isolated from various species. In mosquitoes, Japanese encephalitis virus and Kunjin virus were isolated from Culex spp., while Zika virus and Jugra virus were isolated from Aedes spp. In ticks, the Langat virus was isolated from Ixodes spp. One of the major challenges in the diagnosis of FVs is the presence of sero-complexes as a result of cross-reactivity with one or more FV species. Subsequently, the distribution of specific FVs among humans and animals in a specific population is problematic to assess and often require comprehensive and thorough analyses. Molecular assays such as quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) and digital droplet RT-PCR (ddRT-PCR) have been used for the differentiation of flavivirus infections to increase the accuracy of epidemiological data for disease surveillance, monitoring, and control. In situations where sero-complexes are common in FVs, even sensitive assays such as qRT-pCR can produce false positive results. In this write up, an overview of the various FV sero-complexes reported in Malaysia to date and the challenges faced in diagnosis of FV infections are presented.
Collapse
|
8
|
High-throughput neutralization assay for multiple flaviviruses based on single-round infectious particles using dengue virus type 1 reporter replicon. Sci Rep 2018; 8:16624. [PMID: 30413742 PMCID: PMC6226426 DOI: 10.1038/s41598-018-34865-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 10/27/2018] [Indexed: 11/09/2022] Open
Abstract
Diseases caused by the genus Flavivirus, including dengue virus (DENV) and Zika virus (ZIKV), have a serious impact on public health worldwide. Due to serological cross-reactivity among flaviviruses, current enzyme-linked immunosorbent assay (ELISA) for IgM/G cannot reliably distinguish between infection by different flaviviruses. In this study, we developed a reporter-based neutralization assay using single-round infectious particles (SRIPs) derived from representative flaviviruses. SRIPs were generated by transfection of human embryonic kidney 293 T cells with a plasmid encoding premembrane and envelope (prME) proteins from DENV1-4, ZIKV, Japanese encephalitis virus, West Nile virus, yellow fever virus, Usutu virus, and tick-borne encephalitis virus, along with a plasmid carrying DENV1 replicon containing the luciferase gene and plasmid for expression of DENV1 capsid. Luciferase activity of SRIPs-infected cells was well correlated with number of infected cells, and each reporter SRIP was specifically neutralized by sera from mice immunized with each flavivirus antigen. Our high-throughput reporter SRIP-based neutralization assay for multiple flaviviruses is a faster, safer, and less laborious diagnostic method than the conventional plaque reduction neutralization test to screen the cause of primary flavivirus infection. The assay may also contribute to the evaluation of vaccine efficacy and assist in routine surveillance and outbreak response to flaviviruses.
Collapse
|
9
|
Hemida MG, Perera RAPM, Chu DKW, Ko RLW, Alnaeem AA, Peiris M. West Nile virus infection in horses in Saudi Arabia (in 2013-2015). Zoonoses Public Health 2018; 66:248-253. [DOI: 10.1111/zph.12532] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 08/24/2018] [Accepted: 09/29/2018] [Indexed: 11/27/2022]
Affiliation(s)
- Maged G. Hemida
- Department of Microbiology and Parasitology, College of Veterinary Medicine; King Faisal University; Al-Hasa Saudi Arabia
- Department of Virology, Faculty of Veterinary Medicine; Kafrelsheikh University; Kafrelsheikh Egypt
| | | | - Daniel K. W. Chu
- School of Public Health; The University of Hong Kong; Hong Kong China
| | - Ronald L. W. Ko
- School of Public Health; The University of Hong Kong; Hong Kong China
| | - Abdelmohsen A. Alnaeem
- Department of Clinical studies, College of Veterinary Medicine; King Faisal University; Al-Hasa Saudi Arabia
| | - Malik Peiris
- School of Public Health; The University of Hong Kong; Hong Kong China
| |
Collapse
|
10
|
Pantawane PB, Dhanze H, Ravi Kumar GVPPS, M R G, Dudhe NC, Bhilegaonkar KN. TaqMan real-time RT-PCR assay for detecting Japanese encephalitis virus in swine blood samples and mosquitoes. Anim Biotechnol 2018; 30:267-272. [PMID: 29938578 DOI: 10.1080/10495398.2018.1481417] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Japanese encephalitis (JE) is an emerging mosquito-borne zoonotic flaviviral disease. The present study was undertaken with the objective to develop TaqMan real-time reverse-transcription polymerase chain reaction (RT-PCR) assay for rapid detection and quantification of Japanese encephalitis virus (JEV) in swine blood and mosquito vectors. The amplification of envelope (E) gene was targeted by designing gene-specific MGB TaqMan fluorescent probe along with the primers. The best performance in terms of sensitivity was achieved by standardized TaqMan real-time RT-PCR with a detection limit of 2.8 copies/reaction and it was found to be 4-log more sensitive than conventional RT-PCR. The applicability of the standardized TaqMan assay was evaluated by screening representative sets of field swine blood samples and mosquito pools for JEV. The viral load ranged between 3.32 × 107-4.2 × 102 copies/ml of swine blood samples, and 5.7 × 109-1.3 × 102 copies/pool of mosquitoes. The standardized assay which is highly sensitive, specific and rapid would aid in screening sentinel swine and mosquitoes under JEV surveillance programs for effective prevention and control of disease in human beings.
Collapse
Affiliation(s)
- P B Pantawane
- a Division of Veterinary Public Health , ICAR- IVRI , Izatnagar , India
| | - H Dhanze
- a Division of Veterinary Public Health , ICAR- IVRI , Izatnagar , India
| | | | - Grace M R
- a Division of Veterinary Public Health , ICAR- IVRI , Izatnagar , India
| | - N C Dudhe
- a Division of Veterinary Public Health , ICAR- IVRI , Izatnagar , India
| | | |
Collapse
|
11
|
Benjelloun A, El Harrak M, Calistri P, Loutfi C, Kabbaj H, Conte A, Ippoliti C, Danzetta ML, Belkadi B. Seroprevalence of West Nile virus in horses in different Moroccan regions. Vet Med Sci 2017; 3:198-207. [PMID: 29152314 PMCID: PMC5677775 DOI: 10.1002/vms3.71] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
West Nile virus-associated disease is one of the most widespread vector-borne diseases in the world. In Morocco, the first cases were reported in horses in 1996 and the disease re-emerged in 2003 and in 2010. The objective of this work was to study the epidemiological situation of WNV-associated infection in Morocco, by quantifying the seroprevalence of anti-WNV IgM and IgG antibodies in horses in different bioclimatic regions-zones of Morocco in 2011. During the months of May, June and July 2011, 840 serum samples were collected from horses in four regions characterized by different environmental and climatic features such as altitude, temperature and precipitation. These environmental-climatic regions are: the Atlantic plateaus of the Gharb and pre-Rif region, the North Atlasic plains and plateaus region, the Atlas Mountains and pre-Atlas region and the plains and plateaus of the Oriental region. All samples were tested for the anti-WNV IgG antibodies by ELISA and positive sera were confirmed by virus neutralization (VN). An anti-WNV antibody prevalence map was developed. A total of 261 samples (31%) were found positive by both techniques. The prevalence of the infection was higher in the Atlantic plateaus of the Gharb and pre-Rif region, in the northern part of the country. Available data concerning the previous WNV-associated disease outbreaks in Morocco and the preliminary results of this serological survey suggest that the Moroccan northwest is the region at highest risk for WNV circulation. In this region, the climate is more humid with higher rainfall than other regions and milder winter temperatures exist. In the same area, the presence of migratory bird settlements may affect the risk of virus introduction and amplification.
Collapse
Affiliation(s)
- Abdennasser Benjelloun
- Laboratory of Microbiology and Molecular BiologyFaculty of ScienceUniversity MohammedRabatV BP 1014Morocco
- Central Command PostLGARoute de ZaerRabatBP 5039Morocco
| | | | - Paolo Calistri
- Istituto Zooprofilattico dell'Abruzzo e del Molise ‘G. Caporale’Via Campo Boario64100TeramoItaly
| | | | - Hafsa Kabbaj
- Laboratory of Microbiology and Molecular BiologyFaculty of ScienceUniversity MohammedRabatV BP 1014Morocco
| | - Annamaria Conte
- Istituto Zooprofilattico dell'Abruzzo e del Molise ‘G. Caporale’Via Campo Boario64100TeramoItaly
| | - Carla Ippoliti
- Istituto Zooprofilattico dell'Abruzzo e del Molise ‘G. Caporale’Via Campo Boario64100TeramoItaly
| | - Maria Luisa Danzetta
- Istituto Zooprofilattico dell'Abruzzo e del Molise ‘G. Caporale’Via Campo Boario64100TeramoItaly
| | - Bouchra Belkadi
- Laboratory of Microbiology and Molecular BiologyFaculty of ScienceUniversity MohammedRabatV BP 1014Morocco
| |
Collapse
|
12
|
GENG X, ZHANG F, GAO Q, LEI Y. Sensitive Impedimetric Immunoassay of Japanese Encephalitis Virus Based on Enzyme Biocatalyzed Precipitation on a Gold Nanoparticle-modified Screen-printed Carbon Electrode. ANAL SCI 2016; 32:1105-1109. [DOI: 10.2116/analsci.32.1105] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Xiaohui GENG
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University
| | - Fanglin ZHANG
- Department of Microbiology, Faculty of Preclinical Medicine, The Fourth Military Medical University
| | - Qiang GAO
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University
| | - Yingfeng LEI
- Department of Microbiology, Faculty of Preclinical Medicine, The Fourth Military Medical University
| |
Collapse
|
13
|
A High-Performance Multiplex Immunoassay for Serodiagnosis of Flavivirus-Associated Neurological Diseases in Horses. BIOMED RESEARCH INTERNATIONAL 2015; 2015:678084. [PMID: 26457301 PMCID: PMC4589573 DOI: 10.1155/2015/678084] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 05/12/2015] [Indexed: 12/21/2022]
Abstract
West Nile virus (WNV), Japanese encephalitis virus (JEV), and tick-borne encephalitis virus (TBEV) are flaviviruses responsible for severe neuroinvasive infections in humans and horses. The confirmation of flavivirus infections is mostly based on rapid serological tests such as enzyme-linked immunosorbent assays (ELISAs). These tests suffer from poor specificity, mainly due to antigenic cross-reactivity among flavivirus members. Robust diagnosis therefore needs to be validated through virus neutralisation tests (VNTs) which are time-consuming and require BSL3 facilities. The flavivirus envelope (E) glycoprotein ectodomain is composed of three domains (D) named DI, DII, and DIII, with EDIII containing virus-specific epitopes. In order to improve the serological differentiation of flavivirus infections, the recombinant soluble ectodomain of WNV E (WNV.sE) and EDIIIs (rEDIIIs) of WNV, JEV, and TBEV were synthesised using the Drosophila S2 expression system. Purified antigens were covalently bonded to fluorescent beads. The microspheres coupled to WNV.sE or rEDIIIs were assayed with about 300 equine immune sera from natural and experimental flavivirus infections and 172 nonimmune equine sera as negative controls. rEDIII-coupled microspheres captured specific antibodies against WNV, TBEV, or JEV in positive horse sera. This innovative multiplex immunoassay is a powerful alternative to ELISAs and VNTs for veterinary diagnosis of flavivirus-related diseases.
Collapse
|
14
|
Hirota J, Shimizu S, Shibahara T. Application of West Nile virus diagnostic techniques. Expert Rev Anti Infect Ther 2014; 11:793-803. [PMID: 23977935 DOI: 10.1586/14787210.2013.814824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
West Nile virus (WNV) is an enveloped RNA virus in the family Flaviviridae and belongs to Japanese encephalitis virus serocomplex group. The WNV has a wide geographic distribution that includes Africa, Europe, Asia, America and Australia. Recently, it has re-emerged as an important pathogenic organism, illustrated by the series of WNV outbreaks in North America and in Europe. Several hundred people are sacrificed by WNV infection every year. WNV can infect many mammals, birds, reptiles and amphibians. A variety of diagnoses for WNV infection have been developed, such as virus isolation, nucleotide amplification, antigen detection and serology. Flaviviruses, including WNV, share common nucleotide sequences and antigenic epitopes. Understanding these properties that can influence cross-reactivity is important for accurate diagnosis, especially because areas with multiple flaviviruses are currently expanding. Herein, the authors outline the different diagnostic methods for detecting WNV infection as well as important considerations in using these methods.
Collapse
Affiliation(s)
- Jiro Hirota
- National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan
| | | | | |
Collapse
|
15
|
Beck C, Jimenez-Clavero MA, Leblond A, Durand B, Nowotny N, Leparc-Goffart I, Zientara S, Jourdain E, Lecollinet S. Flaviviruses in Europe: complex circulation patterns and their consequences for the diagnosis and control of West Nile disease. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2013; 10:6049-83. [PMID: 24225644 PMCID: PMC3863887 DOI: 10.3390/ijerph10116049] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 10/24/2013] [Accepted: 10/29/2013] [Indexed: 12/11/2022]
Abstract
In Europe, many flaviviruses are endemic (West Nile, Usutu, tick-borne encephalitis viruses) or occasionally imported (dengue, yellow fever viruses). Due to the temporal and geographical co-circulation of flaviviruses in Europe, flavivirus differentiation by diagnostic tests is crucial in the adaptation of surveillance and control efforts. Serological diagnosis of flavivirus infections is complicated by the antigenic similarities among the Flavivirus genus. Indeed, most flavivirus antibodies are directed against the highly immunogenic envelope protein, which contains both flavivirus cross-reactive and virus-specific epitopes. Serological assay results should thus be interpreted with care and confirmed by comparative neutralization tests using a panel of viruses known to circulate in Europe. However, antibody cross-reactivity could be advantageous in efforts to control emerging flaviviruses because it ensures partial cross-protection. In contrast, it might also facilitate subsequent diseases, through a phenomenon called antibody-dependent enhancement mainly described for dengue virus infections. Here, we review the serological methods commonly used in WNV diagnosis and surveillance in Europe. By examining past and current epidemiological situations in different European countries, we present the challenges involved in interpreting flavivirus serological tests and setting up appropriate surveillance programs; we also address the consequences of flavivirus circulation and vaccination for host immunity.
Collapse
Affiliation(s)
- Cécile Beck
- UMR1161 Virologie INRA, ANSES, ENVA, EU-RL on equine West Nile disease, Animal Health Laboratory, ANSES, Maisons-Alfort 94704, France; E-Mails: (C.B.); (S.Z.)
| | | | - Agnès Leblond
- Département Hippique, VetAgroSup, Marcy l’Etoile 69280, France; E-Mail:
- UR346, INRA, Saint Genès Champanelle 63122, France; E-Mail:
| | - Benoît Durand
- Epidemiology Unit, Animal Health Laboratory, ANSES, Maisons-Alfort 94704, France; E-Mail:
| | - Norbert Nowotny
- Viral Zoonoses, Emerging and Vector-Borne Infections Group, Institute of Virology, University of Veterinary Medicine Vienna, Vienna 1210, Austria; E-Mail:
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Sultanate of Oman
| | | | - Stéphan Zientara
- UMR1161 Virologie INRA, ANSES, ENVA, EU-RL on equine West Nile disease, Animal Health Laboratory, ANSES, Maisons-Alfort 94704, France; E-Mails: (C.B.); (S.Z.)
| | - Elsa Jourdain
- UR346, INRA, Saint Genès Champanelle 63122, France; E-Mail:
| | - Sylvie Lecollinet
- UMR1161 Virologie INRA, ANSES, ENVA, EU-RL on equine West Nile disease, Animal Health Laboratory, ANSES, Maisons-Alfort 94704, France; E-Mails: (C.B.); (S.Z.)
| |
Collapse
|
16
|
Gilbert AT, Fooks AR, Hayman DTS, Horton DL, Müller T, Plowright R, Peel AJ, Bowen R, Wood JLN, Mills J, Cunningham AA, Rupprecht CE. Deciphering serology to understand the ecology of infectious diseases in wildlife. ECOHEALTH 2013; 10:298-313. [PMID: 23918033 DOI: 10.1007/s10393-013-0856-0] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 06/03/2013] [Accepted: 06/04/2013] [Indexed: 06/02/2023]
Abstract
The ecology of infectious disease in wildlife has become a pivotal theme in animal and public health. Studies of infectious disease ecology rely on robust surveillance of pathogens in reservoir hosts, often based on serology, which is the detection of specific antibodies in the blood and is used to infer infection history. However, serological data can be inaccurate for inference to infection history for a variety of reasons. Two major aspects in any serological test can substantially impact results and interpretation of antibody prevalence data: cross-reactivity and cut-off thresholds used to discriminate positive and negative reactions. Given the ubiquitous use of serology as a tool for surveillance and epidemiological modeling of wildlife diseases, it is imperative to consider the strengths and limitations of serological test methodologies and interpretation of results, particularly when using data that may affect management and policy for the prevention and control of infectious diseases in wildlife. Greater consideration of population age structure and cohort representation, serological test suitability and standardized sample collection protocols can ensure that reliable data are obtained for downstream modeling applications to characterize, and evaluate interventions for, wildlife disease systems.
Collapse
Affiliation(s)
- Amy T Gilbert
- National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, 30333, USA,
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Hirota J, Shimizu S. A new competitive ELISA detects West Nile virus infection using monoclonal antibodies against the precursor-membrane protein of West Nile virus. J Virol Methods 2013; 188:132-8. [DOI: 10.1016/j.jviromet.2012.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 11/30/2012] [Accepted: 12/06/2012] [Indexed: 12/01/2022]
|
18
|
Capone G, Lucchese G, Calabrò M, Kanduc D. West Nile virus diagnosis and vaccination: using unique viral peptide sequences to evoke specific immune responses. Immunopharmacol Immunotoxicol 2012; 35:64-70. [DOI: 10.3109/08923973.2012.736521] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
19
|
Gulati BR, Singha H, Singh BK, Virmani N, Khurana SK, Singh RK. Serosurveillance for Japanese encephalitis virus infection among equines in India. J Vet Sci 2012; 12:341-5. [PMID: 22122900 PMCID: PMC3232393 DOI: 10.4142/jvs.2011.12.4.341] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The seroprevalence of Japanese encephalitis virus (JEV) among equines was evaluated from January 2006 to December 2009 in 13 different states of India by hemagglutination inhibition (HI) test and virus neutralization test (VNT). Antibodies against JEV were detected in 327 out of 3,286 (10%) equines with a maximum prevalence reported in the state of Manipur (91.7%) followed by Gujarat (18.5%), Madhya Pradesh (14.4%), and Uttar Pradesh (11.6%). Evidence of JEV infection was observed in equines in Indore (Madhya Pradesh) where a 4-fold or higher rise in antibody titer was observed in 21 out of 34 horses in November 2007 to October 2006. In March 2008, seven of these horses had a subsequent 4-fold rise in JEV antibody titers while this titer decreased in nine animals. JEV-positive horse sera had a JEV/WNV (West Nile virus) ratio over 2.0 according to the HI and/or VNT. These results indicated that JEV is endemic among equines in India.
Collapse
Affiliation(s)
- Baldev R Gulati
- National Research Centre on Equines, Sirsa Road, Hisar-125001, Haryana, India.
| | | | | | | | | | | |
Collapse
|
20
|
Yang DK, Oh YI, Kim HR, Lee YJ, Moon OK, Yoon H, Kim B, Lee KW, Song JY. Serosurveillance for Japanese encephalitis virus in wild birds captured in Korea. J Vet Sci 2012; 12:373-7. [PMID: 22122903 PMCID: PMC3232397 DOI: 10.4142/jvs.2011.12.4.373] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Climate change induced by recent global warming may have a significant impact on vector-borne and zoonotic diseases. For example, the distribution of Japanese encephalitis virus (JEV) has expanded into new regions. We surveyed the levels of hemagglutination-inhibition (HI) antibodies against JEV (Family Flaviviridae, genus Flavivirus) in wild birds captured in Korea. Blood samples were collected from 1,316 wild birds including the following migratory birds: Oceanodroma castro (n = 4), Anas formosa (n = 7), Anas penelope (n = 20), Fulica atra (n = 30), Anas acuta (n = 89), Anas crecca (n = 154), Anas platyrhynchos (n = 214), Aix galericulata (n = 310), and Anas poecilorhyncha (n = 488). All were captured in 16 locations in several Korea provinces between April 2007 and December 2009. Out of the 1,316 serum samples tested, 1,141 (86.7%) were positive for JEV. Wild birds captured in 2009 had a higher seroprevalence of ant-JEV antibodies than those captured in 2007. Wild birds with an HI antibody titer of 1 : 1,280 or higher accounted for 21.2% (280/1,316) of the animals tested. These findings indicated that wild birds from the region examined in our study have been exposed to JEV and may pose a high risk for introducing a new JEV genotype into Korea.
Collapse
Affiliation(s)
- Dong-Kun Yang
- Animal and Plant and Fisheries Quarantine and Inspection Agency, MIFAFF, Anyang 430-757, Korea.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Hobson-Peters J. Approaches for the development of rapid serological assays for surveillance and diagnosis of infections caused by zoonotic flaviviruses of the Japanese encephalitis virus serocomplex. J Biomed Biotechnol 2012; 2012:379738. [PMID: 22570528 PMCID: PMC3337611 DOI: 10.1155/2012/379738] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 01/24/2012] [Accepted: 01/29/2012] [Indexed: 11/17/2022] Open
Abstract
Flaviviruses are responsible for a number of important mosquito-borne diseases of man and animals globally. The short vireamic period in infected hosts means that serological assays are often the diagnostic method of choice. This paper will focus on the traditional methods to diagnose flaviviral infections as well as describing the modern rapid platforms and approaches for diagnostic antigen preparation.
Collapse
Affiliation(s)
- Jody Hobson-Peters
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia.
| |
Collapse
|
22
|
Yeh JY, Lee JH, Park JY, Seo HJ, Moon JS, Cho IS, Kim HP, Yang YJ, Ahn KM, Kyung SG, Choi IS, Lee JB. A diagnostic algorithm to serologically differentiate West Nile virus from Japanese encephalitis virus infections and its validation in field surveillance of poultry and horses. Vector Borne Zoonotic Dis 2012; 12:372-9. [PMID: 22217162 DOI: 10.1089/vbz.2011.0709] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The detection of West Nile virus (WNV) in areas endemic for Japanese encephalitis virus (JEV) is complicated by the extensive serological cross-reactivity between the two viruses. A testing algorithm was developed and employed for the detection of anti-WNV antibody in areas endemic for JEV. Using this differentiation algorithm, a serological survey of poultry (2004 through 2009) and horses (2007 through 2009) was performed. Among 2681 poultry sera, 125 samples were interpreted as being positive for antibodies against JEV, and 14 were suspected to be positive for antibodies against undetermined flaviviruses other than WNV and JEV. Of the 2601 horse sera tested, a total of 1914 (73.6%) were positive to the initial screening test. Of these positive sera, 132 sera (5.1%) had been collected from horses that had been imported from the United States, where WNV is endemic. These horses had WNV vaccination records, and no significant pattern of increasing titer was observed in paired sera tests. Of the remaining 1782 positive sera 1468 sera (56.4%) were also found to contain anti-JEV antibodies, and were interpreted to be JEV-specific antibodies by the differentiation algorithm developed in this study. The remaining 314 horses (12.1%) for which a fourfold difference in neutralizing antibody titer could not be demonstrated, were determined to contain an antibody against an unknown (unidentified or undetermined) flavivirus. No evidence of WNV infections were found during the period of this study.
Collapse
Affiliation(s)
- Jung-Yong Yeh
- Foreign Animal Disease Division, National Veterinary Research and Quarantine Service, Anyang-city, Gyeonggi-do, Republic of Korea.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
HIROTA J, SHIMIZU S, SHIBAHARA T, KOBAYASHI S. Cross-Reactivity of Chicken Anti-Japanese Encephalitis Virus Serum and Anti-West Nile Virus Serum in Serological Diagnosis. J Vet Med Sci 2012; 74:1497-9. [DOI: 10.1292/jvms.12-0087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Jiro HIROTA
- National Institute of Animal Health, National Agriculture and Food Research Organization, 3–1–5 Kan-non-dai, Tsukuba, Ibaraki 305–0856, Japan
| | - Shinya SHIMIZU
- National Institute of Animal Health, National Agriculture and Food Research Organization, 3–1–5 Kan-non-dai, Tsukuba, Ibaraki 305–0856, Japan
| | - Tomoyuki SHIBAHARA
- National Institute of Animal Health, National Agriculture and Food Research Organization, 3–1–5 Kan-non-dai, Tsukuba, Ibaraki 305–0856, Japan
| | - Sota KOBAYASHI
- National Institute of Animal Health, National Agriculture and Food Research Organization, 3–1–5 Kan-non-dai, Tsukuba, Ibaraki 305–0856, Japan
| |
Collapse
|
24
|
Yang DK, Kim HH, Hyun BH, Lim SI, Nam YK, Nah JJ, Song JY. Detection of Neutralizing Antibody Against Japanese Encephalitis Virus in Wild Boars of Korea. ACTA ACUST UNITED AC 2012. [DOI: 10.4167/jbv.2012.42.4.353] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Dong-Kun Yang
- Animal, Plant and Fishery Quarantine Inspection Agency, MIFAFF, Anyang, Korea
| | - Ha-Hyun Kim
- Animal, Plant and Fishery Quarantine Inspection Agency, MIFAFF, Anyang, Korea
| | - Bang-Hun Hyun
- Animal, Plant and Fishery Quarantine Inspection Agency, MIFAFF, Anyang, Korea
| | - Seong-In Lim
- Animal, Plant and Fishery Quarantine Inspection Agency, MIFAFF, Anyang, Korea
| | - Yun-Kyoung Nam
- College of Veterinary Medicine, JeonBuk National University, JeonJu, Korea
| | - Jin-Ju Nah
- Animal, Plant and Fishery Quarantine Inspection Agency, MIFAFF, Anyang, Korea
| | - Jae-Young Song
- Animal, Plant and Fishery Quarantine Inspection Agency, MIFAFF, Anyang, Korea
| |
Collapse
|
25
|
New sensitive competitive enzyme-linked immunosorbent assay using a monoclonal antibody against nonstructural protein 1 of West Nile virus NY99. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2011; 19:277-83. [PMID: 22190400 DOI: 10.1128/cvi.05382-11] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
An anti-West Nile virus (anti-WNV) monoclonal antibody, SHW-7A11, was developed for competitive enzyme-linked immunosorbent assays (c-ELISAs). SHW-7A11 reacted with nonstructural protein 1 in Western blot analysis. SHW-7A11 was relatively specific for the WNV strain NY99 and recognized Kunjin and Eg101 strains in indirect ELISAs. Two c-ELISAs were developed for sera diluted 10 and 100 times and named c-ELISA10 and c-ELISA100, respectively. Both c-ELISAs detected antibodies against WNV NY99 and Kunjin strains. Little cross-reactivity was observed for antibodies against Japanese encephalitis virus and St. Louis encephalitis virus in these assays. Using the cutoff point for the St. Louis encephalitis virus, all WNV-infected chickens were found to be positive on day 21 after infection in both c-ELISAs. On the other hand, all infected chickens were found to be positive on day 35 after infection in a virus neutralization test. Our newly developed SHW-7A11-based c-ELISA can detect WNV infection with sera diluted 10 to 100 times. Therefore, this c-ELISA can be used for WNV serosurveillance of chickens and wild birds.
Collapse
|
26
|
Mattar S, Komar N, Young G, Alvarez J, Gonzalez M. Seroconversion for west Nile and St. Louis encephalitis viruses among sentinel horses in Colombia. Mem Inst Oswaldo Cruz 2011; 106:976-9. [DOI: 10.1590/s0074-02762011000800012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 08/31/2011] [Indexed: 11/21/2022] Open
|
27
|
Mansfield KL, Horton DL, Johnson N, Li L, Barrett ADT, Smith DJ, Galbraith SE, Solomon T, Fooks AR. Flavivirus-induced antibody cross-reactivity. J Gen Virol 2011; 92:2821-2829. [PMID: 21900425 PMCID: PMC3352572 DOI: 10.1099/vir.0.031641-0] [Citation(s) in RCA: 185] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Dengue viruses (DENV) cause countless human deaths each year, whilst West Nile virus (WNV) has re-emerged as an important human pathogen. There are currently no WNV or DENV vaccines licensed for human use, yet vaccines exist against other flaviviruses. To investigate flavivirus cross-reactivity, sera from a human cohort with a history of vaccination against tick-borne encephalitis virus (TBEV), Japanese encephalitis virus (JEV) and yellow fever virus (YFV) were tested for antibodies by plaque reduction neutralization test. Neutralization of louping ill virus (LIV) occurred, but no significant neutralization of Murray Valley encephalitis virus was observed. Sera from some individuals vaccinated against TBEV and JEV neutralized WNV, which was enhanced by YFV vaccination in some recipients. Similarly, some individuals neutralized DENV-2, but this was not significantly influenced by YFV vaccination. Antigenic cartography techniques were used to generate a geometric illustration of the neutralization titres of selected sera against WNV, TBEV, JEV, LIV, YFV and DENV-2. This demonstrated the individual variation in antibody responses. Most sera had detectable titres against LIV and some had titres against WNV and DENV-2. Generally, LIV titres were similar to titres against TBEV, confirming the close antigenic relationship between TBEV and LIV. JEV was also antigenically closer to TBEV than WNV, using these sera. The use of sera from individuals vaccinated against multiple pathogens is unique relative to previous applications of antigenic cartography techniques. It is evident from these data that notable differences exist between amino acid sequence identity and mapped antigenic relationships within the family Flaviviridae.
Collapse
Affiliation(s)
- Karen L Mansfield
- Brain Infections Group, University of Liverpool, UK.,Wildlife Zoonoses and Vector-borne Diseases Research Group, Animal Health and Veterinary Laboratories Agency, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Daniel L Horton
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK.,Wildlife Zoonoses and Vector-borne Diseases Research Group, Animal Health and Veterinary Laboratories Agency, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Nicholas Johnson
- Wildlife Zoonoses and Vector-borne Diseases Research Group, Animal Health and Veterinary Laboratories Agency, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Li Li
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Alan D T Barrett
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Derek J Smith
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | | | - Tom Solomon
- Brain Infections Group, University of Liverpool, UK
| | - Anthony R Fooks
- National Centre for Zoonoses Research, University of Liverpool, UK.,Wildlife Zoonoses and Vector-borne Diseases Research Group, Animal Health and Veterinary Laboratories Agency, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| |
Collapse
|
28
|
Evaluation of widely used diagnostic tests to detect West Nile virus infections in horses previously infected with St. Louis encephalitis virus or dengue virus type 2. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2011; 18:580-7. [PMID: 21346058 DOI: 10.1128/cvi.00201-10] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Primary West Nile virus (WNV) infections can be diagnosed using a number of tests that detect infectious particles, nucleic acid, and specific IgM and/or IgG antibodies. However, serological identification of the infecting agent in secondary or subsequent flavivirus infections is problematic due to the extensive cross-reactivity of flavivirus antibodies. This is particularly difficult in the tropical Americas where multiple flaviviruses cocirculate. A study of sequential flavivirus infection in horses was undertaken using three medically important flaviviruses and five widely utilized diagnostic assays to determine if WNV infection in horses that had a previous St. Louis encephalitis virus (SLEV) or dengue virus type 2 (DENV-2) infection could be diagnosed. Following the primary inoculation, 25% (3/12) and 75% (3/4) of the horses mounted antibody responses against SLEV and DENV-2, respectively. Eighty-eight percent of horses subsequently inoculated with WNV had a WNV-specific antibody response that could be detected with one of these assays. The plaque reduction neutralization test (PRNT) was sensitive in detection but lacked specificity, especially following repeated flavivirus exposure. The WNV-specific IgM enzyme-linked immunosorbent assay (IgM ELISA) was able to detect an IgM antibody response and was not cross-reactive in a primary SLEV or DENV response. The WNV-specific blocking ELISA was specific, showing positives only following a WNV injection. Of great importance, we demonstrated that timing of sample collection and the need for multiple samples are important, as the infecting etiology could be misdiagnosed if only a single sample is tested.
Collapse
|
29
|
Castillo-Olivares J, Mansfield KL, Phipps LP, Johnson N, Tearle J, Fooks AR. Antibody Response in Horses Following Experimental Infection with West Nile Virus Lineages 1 and 2. Transbound Emerg Dis 2011; 58:206-12. [DOI: 10.1111/j.1865-1682.2010.01197.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
Fast duplex one-step reverse transcriptase PCR for rapid differential detection of West Nile and Japanese encephalitis viruses. J Clin Microbiol 2010; 48:4010-4. [PMID: 20844215 DOI: 10.1128/jcm.00582-10] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The aim of this study was to develop a highly sensitive and specific one-step duplex reverse transcriptase PCR (RT-PCR) assay for the simultaneous and differential detection of West Nile (WNV) and Japanese encephalitis (JEV) viruses. The bioinformatic analysis of published sequences of WNV and JEV revealed conserved regions not targeted by previously reported primers. A total of 13 primers were designed based on these regions to detect all of the WNV and JEV lineages and to discriminate between the two viruses by the generation of 482- and 241-bp cDNA products, respectively. The results indicate that single-tube duplex PCR using these primers is a useful technique for the detection and differentiation of WNV and JEV in plasma or brain tissue. The novel duplex RT-PCR described in this study enables the early diagnosis of these two encephalitic flaviviruses. In addition, this technique may be useful as part of a testing regimen for human patients, horses, and other susceptible animal species, as it is rapid (less than 3.5 h from RNA extraction), sensitive, and specific, and it may enable the differential diagnosis of clinical samples.
Collapse
|