1
|
Prevedel NE, Mee MW, Wood GA, Coomber BL. Effect of proteasome inhibitors on canine lymphoma cell response to CHOP chemotherapy in vitro. Vet Comp Oncol 2024; 22:96-105. [PMID: 38237918 DOI: 10.1111/vco.12957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/14/2023] [Accepted: 12/12/2023] [Indexed: 02/13/2024]
Abstract
The standard treatment for canine lymphoma is the CHOP chemotherapy regimen. Proteasome inhibitors have been employed with CHOP for the treatment of human haematological malignancies but remain to be fully explored in canine lymphoma. We identified an association between poor response to CHOP chemotherapy and high mRNA expression levels of proteasomal subunits in a cohort of 15 canine lymphoma patients, and sought to determine the effect of proteasome inhibitors on the viability of a canine B-cell lymphoma cell line (CLBL-1). The aim of this study was to investigate whether proteasome inhibitors sensitize these cells to the CHOP agents doxorubicin, vincristine and cyclophosphamide (as 4-hydroxycyclophosphamide/4-HC). CLBL-1 cells were sensitive to proteasome inhibition by bortezomib and ixazomib. The IC50 of bortezomib was 15.1 nM and of ixazomib was 59.14 nM. Proteasome inhibitors plus doxorubicin had a synergistic effect on CLBL-1 viability; proteosome inhibitors plus vincristine showed different effects depending on the combination ratio, and there was an antagonistic effect with 4-HC. These results may have clinical utility, as proteasome inhibition could potentially be used with a synergizing CHOP compound to improve responsiveness to chemotherapy for canine lymphoma patients.
Collapse
Affiliation(s)
- Nicholas E Prevedel
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Miles W Mee
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Geoffrey A Wood
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Brenda L Coomber
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
2
|
Michishita M, Ochiai K, Nakahira R, Azakami D, Machida Y, Nagashima T, Nakagawa T, Ishiwata T. mTOR pathway as a potential therapeutic target for cancer stem cells in canine mammary carcinoma. Front Oncol 2023; 13:1100602. [PMID: 36816969 PMCID: PMC9931192 DOI: 10.3389/fonc.2023.1100602] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
Mammary adenocarcinoma, the most common cancer in female dogs, often exhibits the lymph node and lung metastases and has a higher mortality rate. However, mammary adenocarcinoma has no established treatment, except early surgical excision. Canine mammary carcinoma has many common features with human mammary carcinoma, including clinical characteristics, heterogeneity, and genetic aberrations, making it an excellent spontaneous tumor model for human breast cancer. Diverse cancers comprised heterogeneous cell populations originating from cancer stem cells (CSCs) with self-renewal ability. Therefore, in addition to conventional therapy, therapeutic strategies targeting CSCs are essential for cancer eradication. The present study aimed to extract inhibitors of canine mammary CSCs that suppress their self-renewal ability. Sphere-formation assay, which evaluates self-renewal ability, was performed for the canine mammary cancer cell lines CTBp and CNMp. The spheres formed in this assay were used in inhibitor library screening, which identified various signaling pathways such as proteosome, stress inducer, and mammalian target of rapamycin (mTOR). The present study focused on the mTOR signaling pathway. Western blotting showed higher levels of phosphorylated mTOR in sphere-forming CTBp and CNMp cells than in adherent cells. Drug sensitivity examination using the mTOR inhibitors everolimus and temsirolimus revealed dose-dependent reductions in viability among both sphere-forming cells and adherent cells. Expression of phosphorylated mTOR in adherent and sphere-forming cells decreased by everolimus and temsirolimus treatment. In mice transplanted with CTBp-derived spheres, everolimus treatment significantly decreased tumor volume compared to control. These results reveal that the mTOR signaling pathway may be a potential to be a therapeutic target in both cancer cells and CSCs. Novel therapeutic strategies for canine mammary carcinoma are expected to benefit to human breast carcinoma as well.
Collapse
Affiliation(s)
- Masaki Michishita
- Department of Veterinary Pathology, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo, Japan,Research Center for Animal Life Science, Nippon Veterinary and Life Science University, Tokyo, Japan,*Correspondence: Masaki Michishita,
| | - Kazuhiko Ochiai
- Research Center for Animal Life Science, Nippon Veterinary and Life Science University, Tokyo, Japan,Department of Veterinary Hygiene, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Rei Nakahira
- Department of Veterinary Pathology, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Daigo Azakami
- Laboratory of Veterinary Clinical Oncology, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Yukino Machida
- Department of Veterinary Pathology, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Tomokazu Nagashima
- Department of Veterinary Pathology, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Takayuki Nakagawa
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Science, The University of Tokyo, Tokyo, Japan
| | - Toshiyuki Ishiwata
- Division of Aging and Carcinogenesis, Research Team for Geriatric Pathology, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| |
Collapse
|
3
|
Abstract
Spontaneous tumors in dogs share several environmental, epidemiologic, biologic, clinical and molecular features with a wide variety of human cancers, making this companion animal an attractive model. Nuclear factor kappa B (NF-kB) transcription factor overactivation is common in several human cancers, and there is evidence that similar signaling aberrations also occur in canine cancers including lymphoma, leukemia, hemangiosarcoma, mammary cancer, melanoma, glioma, and prostate cancer. This review provides an overview of NF-kB signaling biology, both in health and in cancer development. It also summarizes available evidence of aberrant NF-kB signaling in canine cancer, and reviews antineoplastic compounds that have been shown to inhibit NF-kB activity used in various types of canine cancers. Available data suggest that dogs may be an excellent model for human cancers that have overactivation of NF-kB.
Collapse
|
4
|
Zhao J, Li R, Pawlak A, Henklewska M, Sysak A, Wen L, Yi JE, Obmińska-Mrukowicz B. Antitumor Activity of Betulinic Acid and Betulin in Canine Cancer Cell Lines. In Vivo 2018; 32:1081-1088. [PMID: 30150429 DOI: 10.21873/invivo.11349] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/28/2018] [Accepted: 06/04/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND/AIM Betulinic acid (BA) and betulin (BT) exhibit a variety of pharmacological properties including anti-cancer, anti-inflammatory and anti-oxidant ones. Canine lymphoma and osteosarcoma have a high mortality rate and need more effective therapeutic approaches. In this study, the anti-proliferative and pro-apoptotic effects of BA and BT were investigated in canine T-cell lymphoma (CL-1), canine B-cell lymphoma (CLBL-1) and canine osteosarcoma (D-17) cell lines. MATERIALS AND METHODS The cultured cells were treated with several concentrations of BA or BT for 24, 48 and 72 h, and cell proliferation was assessed by the MTT assay. Cell apoptotic rate and cell cycle were analyzed using flow cytometry. RESULTS Anti-proliferative effect of BT and BA was concentration- and time-dependent. Moreover, BA and BT arrested cell cycle in S phase in CL-1 and D-17 cells, and in G0/G1 phase in CLBL-1 cells. CONCLUSION Both compounds showed an antitumor activity, and the effects of BA were stronger than that of BT.
Collapse
Affiliation(s)
- Jing Zhao
- College of Veterinary Medicine, Hunan Agricultural University, Changsha City, P.R. China
| | - Rongfang Li
- College of Veterinary Medicine, Hunan Agricultural University, Changsha City, P.R. China
| | - Aleksandra Pawlak
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Marta Henklewska
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Angelika Sysak
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Lixin Wen
- College of Veterinary Medicine, Hunan Agricultural University, Changsha City, P.R. China
| | - Jin-E Yi
- College of Veterinary Medicine, Hunan Agricultural University, Changsha City, P.R. China
| | - Bożena Obmińska-Mrukowicz
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| |
Collapse
|
5
|
Assumpção ALFV, Lu Z, Marlowe KW, Shaffer KS, Pan X. Targeting NEDD8-activating enzyme is a new approach to treat canine diffuse large B-cell lymphoma. Vet Comp Oncol 2018; 16:606-615. [PMID: 30101447 PMCID: PMC6392197 DOI: 10.1111/vco.12428] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/20/2018] [Accepted: 07/05/2018] [Indexed: 02/04/2023]
Abstract
Canine diffuse large B-cell lymphoma (DLBCL), the most common hematologic malignancy of dogs, is associated with poor overall survival. The lack of conventional chemotherapies with sustainable efficacy warrants investigation of novel therapies. Pevonedistat (MLN4924) is a potent and selective small molecule NEDD8-activating enzyme inhibitor. In human activated B-cell-like (ABC) diffuse large B-cell lymphoma, pevonedistat induces lymphoma cell apoptosis, DNA damage and G1 cell cycle arrest by inhibiting the nuclear factor-κB (NF-κB) pathway. Genomic and transcriptomic studies showed that the NF-κB pathway is deregulated in canine DLBCL. Our results showed that pevonedistat treatment significantly reduces the viability of canine DLBCL cells by inducing G1 cell cycle arrest and apoptosis. Pevonedistat treatment inhibits NF-κB pathway activation and downregulates NF-κB target genes in canine DLBCL. Moreover, administration of pevonedistat to mice bearing canine DLBCL xenograft tumours resulted in tumour regression. Our in vivo and in vitro studies provide justification for future clinical application of pevonedistat as a potential new anti-cancer therapy that may benefit both canine and human species.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/administration & dosage
- Antineoplastic Agents/therapeutic use
- Apoptosis/drug effects
- Blotting, Western/veterinary
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Cyclopentanes/administration & dosage
- Cyclopentanes/therapeutic use
- Dog Diseases/drug therapy
- Dog Diseases/enzymology
- Dogs
- Dose-Response Relationship, Drug
- Inhibitory Concentration 50
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/enzymology
- Lymphoma, Large B-Cell, Diffuse/veterinary
- Mice
- Mice, Inbred NOD
- NEDD8 Protein/antagonists & inhibitors
- Neoplasm Transplantation/veterinary
- Pyrimidines/administration & dosage
- Pyrimidines/therapeutic use
- Reverse Transcriptase Polymerase Chain Reaction
- Ubiquitin-Activating Enzymes/antagonists & inhibitors
Collapse
Affiliation(s)
- A. L. F. V. Assumpção
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Z. Lu
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - K. W. Marlowe
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - K. S. Shaffer
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - X. Pan
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
6
|
Roode SC, Rotroff D, Richards KL, Moore P, Motsinger-Reif A, Okamura Y, Mizuno T, Tsujimoto H, Suter SE, Breen M. Comprehensive genomic characterization of five canine lymphoid tumor cell lines. BMC Vet Res 2016; 12:207. [PMID: 27639374 PMCID: PMC5027081 DOI: 10.1186/s12917-016-0836-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 09/08/2016] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Leukemia/lymphoma cell lines have been critical in the investigation of the pathogenesis and therapy of hematological malignancies. While human LL cell lines have generally been found to recapitulate the primary tumors from which they were derived, appropriate characterization including cytogenetic and transcriptional assessment is crucial for assessing their clinical predictive value. RESULTS In the following study, five canine LL cell lines, CLBL-1, Ema, TL-1 (Nody-1), UL-1, and 3132, were characterized using extensive immunophenotyping, karyotypic analysis, oligonucleotide array comparative genomic hybridization (oaCGH), and gene expression profiling. Genome-wide DNA copy number data from the cell lines were also directly compared with 299 primary canine round cell tumors to determine whether the cell lines represent primary tumors, and, if so, what subtype each most closely resembled. CONCLUSIONS Based on integrated analyses, CLBL-1 was classified as B-cell lymphoma, Ema and TL-1 as T-cell lymphoma, and UL-1 as T-cell acute lymphoblastic leukemia. 3132, originally classified as a B-cell lymphoma, was reclassified as a histiocytic sarcoma based on characteristic cytogenomic properties. In combination, these data begin to elucidate the clinical predictive value of these cell lines which will enhance the appropriate selection of in vitro models for future studies of canine hematological malignancies.
Collapse
Affiliation(s)
- Sarah C Roode
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, CVM Research Building - Room 348, 1060 William Moore Drive, Raleigh, 27607, NC, USA
| | - Daniel Rotroff
- Bioinformatics Research Center, Department of Statistics, North Carolina State University, Raleigh, NC, USA
| | - Kristy L Richards
- Department of Medicine, University of North Carolina, Chapel Hill, NC, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA
- Cancer Genetics Program, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- KLR current address: Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA
| | - Peter Moore
- Department of Pathology, Microbiology, and Immunology, College of Veterinary Medicine, University of California, Davis, CA, USA
| | - Alison Motsinger-Reif
- Bioinformatics Research Center, Department of Statistics, North Carolina State University, Raleigh, NC, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA
| | - Yasuhiko Okamura
- Veterinary Teaching Hospital, Faculty of Agriculture, Iwate University, Morioka, Japan
| | - Takuya Mizuno
- Laboratory of Veterinary Internal Medicine, Faculty of Agriculture, Yamaguchi University, Yamaguchi, Japan
| | - Hajime Tsujimoto
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo, Japan
| | - Steven E Suter
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA.
- Cancer Genetics Program, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA.
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, CVM Research Building - Room 308, 1051 William Moore Drive, Raleigh, NC, 27607, USA.
| | - Matthew Breen
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, CVM Research Building - Room 348, 1060 William Moore Drive, Raleigh, 27607, NC, USA.
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA.
- Cancer Genetics Program, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
7
|
Pawlak A, Ziolo E, Kutkowska J, Blazejczyk A, Wietrzyk J, Krupa A, Hildebrand W, Dziegiel P, Dzimira S, Obminska-Mrukowicz B, Strzadala L, Rapak A. A novel canine B-cell leukaemia cell line. Establishment, characterisation and sensitivity to chemotherapeutics. Vet Comp Oncol 2016; 15:1218-1231. [PMID: 27506920 DOI: 10.1111/vco.12257] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 06/14/2016] [Accepted: 07/03/2016] [Indexed: 11/27/2022]
Abstract
We established a new B-cell leukaemia cell line CLB70 from a dog with chronic lymphocytic leukaemia. This cell line is positive for CD20, CD45, CD79a, MHC class II, IgG, IgM; weakly positive for CD21; and negative for CD3, CD4, CD5, CD8, CD14, CD34, CD117. PCR for antigen receptor gene rearrangement (PARR) analysis revealed a biclonal immunoglobulin heavy chain (IgH) gene rearrangement and negative result for TCRγ. Western blot analysis of anti- and pro-apoptotic proteins showed increased expression of Bcl-2, Mcl-1, NF-kB, and Ras, and decreased expression of p53. CLB70 cells grow rapidly in vitro and are tumourigenic in nude mice. The CLB70 line is highly sensitive to doxorubicin, less sensitive to etoposide and imatinib, and resistant to piroxicam, celecoxib and dexamethasone. Our results indicate that CLB70 cells are derived from mature B-cells and they may be a useful tool for the development of new therapeutic strategies for both dogs and humans.
Collapse
Affiliation(s)
- A Pawlak
- Department of Biochemistry, Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - E Ziolo
- Laboratory of Tumor Molecular Immunobiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Wroclaw, Poland
| | - J Kutkowska
- Laboratory of Tumor Molecular Immunobiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Wroclaw, Poland
| | - A Blazejczyk
- Laboratory of Experimental Oncology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Wroclaw, Poland
| | - J Wietrzyk
- Laboratory of Experimental Oncology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Wroclaw, Poland
| | - A Krupa
- Department of Internal Medicine and Clinic of Diseases of Horses, Dogs and Cats, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - W Hildebrand
- Department of Internal Medicine and Clinic of Diseases of Horses, Dogs and Cats, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - P Dziegiel
- Department of Histology and Embryology, Wroclaw Medical University, Wroclaw, Poland
| | - S Dzimira
- Department of Pathology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - B Obminska-Mrukowicz
- Department of Biochemistry, Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - L Strzadala
- Laboratory of Tumor Molecular Immunobiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Wroclaw, Poland
| | - A Rapak
- Laboratory of Tumor Molecular Immunobiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Wroclaw, Poland
| |
Collapse
|
8
|
|
9
|
Ito K, Kobayashi M, Kuroki S, Sasaki Y, Iwata T, Mori K, Kuroki T, Ozawa Y, Tetsuka M, Nakagawa T, Hiroi T, Yamamoto H, Ono K, Washizu T, Bonkobara M. The proteasome inhibitor bortezomib inhibits the growth of canine malignant melanoma cells in vitro and in vivo. Vet J 2013; 198:577-82. [PMID: 24035468 DOI: 10.1016/j.tvjl.2013.08.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 07/31/2013] [Accepted: 08/02/2013] [Indexed: 12/11/2022]
Abstract
Canine malignant melanomas are highly aggressive and fatal neoplasms. In the present report, 21 drugs that target specific signalling pathways were screened for their growth inhibitory activity on three canine malignant melanoma cell lines. The proteasome inhibitor bortezomib inhibited the growth of these cell lines. The growth inhibitory properties of bortezomib were then examined using nine canine malignant melanoma cell lines. Bortezomib demonstrated potent growth inhibitory activity in all cell lines with calculated IC50 values of 3.5-5.6 nM. Because suppression of the NF-κB pathway by preventing proteasomic degradation of I κB is an important mechanism of the anti-tumour activity of bortezomib, the activation status of and the effect of bortezomib on the NF-κB pathway were examined using a canine malignant melanoma cell line, CMM-1. The NF-κB pathway was constitutively activated in CMM-1 cells and bortezomib efficiently suppressed this activated pathway. Using a CMM-1 xenograft mouse model, bortezomib also significantly inhibited tumour growth via suppression of tumour cell proliferation. Collectively, these findings suggest that bortezomib has growth inhibitory activity against canine malignant melanomas potentially through suppression of the constitutively activated NF-κB pathway. Targeted therapy using bortezomib could therefore be beneficial in the management of canine malignant melanomas.
Collapse
Affiliation(s)
- Keita Ito
- Department of Veterinary Clinical Pathology, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino-shi, Tokyo 180-8602, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|