1
|
Li P, Fu Z, Wang M, Yang T, Li Y, Ma D. Functional Characterization of FgAsp, a Gene Coding an Aspartic Acid Protease in Fusarium graminearum. J Fungi (Basel) 2024; 10:879. [PMID: 39728375 DOI: 10.3390/jof10120879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/30/2024] [Accepted: 12/08/2024] [Indexed: 12/28/2024] Open
Abstract
Aspartic proteases (APs), hydrolases with aspartic acid residues as catalytic active sites, are closely associated with processes such as plant growth and development and fungal and bacterial pathogenesis. F. graminearum is the dominant pathogenic fungus that causes Fusarium head blight (FHB) in wheat. However, the relationship of APs to the growth, development, and pathogenesis of F. graminearum is not clear. Therefore, we selected the FGSG_09558 gene, whose function annotation is aspartate protease, for further study. In this study, FGSG_09558 was found to contain a conserved structural domain and signal peptide sequence of aspartic acid protease and was therefore named FgAsp. The function of FgAsp in F. graminearum was investigated by constructing the knockout and complementation mutants of this gene. The results showed that with respect to the wild type (PH-1), the knockout mutant showed a significant reduction in mycelial growth, asexual spore production, and sexual spore formation, highlighting the key role of FgAsp in the growth and development of F. graminearum. In addition, the mutants showed a significant reduction in the virulence and accumulation level of deoxynivalenol (DON) content on maize whiskers, wheat germ sheaths, and wheat ears. DON, as a key factor of virulence, plays an important role in the F. graminearum infection of wheat ears, suggesting that FgAsp is involved in the regulation of F. graminearum pathogenicity by affecting the accumulation of the DON toxin. FgAsp had a significant effect on the ability of F. graminearum to utilize various sugars, especially arabinose. In response to the stress, hydrogen peroxide inhibited the growth of the mutant most significantly, indicating the important function of FgAsp in the strain's response to environmental stress. Finally, FgAsp plays a key role in the regulation of F. graminearum growth and development, pathogenicity, and environmental stress response.
Collapse
Affiliation(s)
- Ping Li
- Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Zhizhen Fu
- Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Mengru Wang
- Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Tian Yang
- Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Yan Li
- Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Dongfang Ma
- Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, College of Agriculture, Yangtze University, Jingzhou 434025, China
| |
Collapse
|
2
|
Banahene JCM, Ofosu IW, Odai BT, Lutterodt HE, Agyemang PA, Ellis WO. Ochratoxin A in food commodities: A review of occurrence, toxicity, and management strategies. Heliyon 2024; 10:e39313. [PMID: 39640601 PMCID: PMC11620267 DOI: 10.1016/j.heliyon.2024.e39313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 10/04/2024] [Accepted: 10/11/2024] [Indexed: 12/07/2024] Open
Abstract
Ochratoxin A (OTA) is a potent mycotoxin produced by species of Aspergillus and Penicillium that contaminate agricultural products and pose significant health risks to both humans and animals. This review examines the mechanisms of OTA toxicity, its occurrence in various food commodities, and the implications for public health and trade. Literature pertaining to OTA was sourced from Google Scholar, covering the period from 2004 to 2024. OTA exposure is linked to multiple adverse health effects, including teratogenicity, immunotoxicity, and hepatotoxicity, with a primary impact on kidney function, and it is classified as a possible human carcinogen (Group 2B). Its toxic effects are attributed to several mechanisms, including lipid peroxidation, inhibition of protein synthesis, DNA damage, oxidative stress, and mitochondrial dysfunction. Notable findings included the presence of OTA in 46.7 % of cocoa products in Turkey, 32 % of cocoa samples in Côte d'Ivoire exceeding the OTA threshold of 2 μg/kg, and 91.5 % of ready-to-sell cocoa beans in Nigeria testing positive for OTA. Coffee beans are particularly susceptible to OTA contamination, which underscores the need for vigilant monitoring. Additionally, OTA contamination impacts agricultural productivity and food safety, leading to significant economic consequences, particularly in regions reliant on exports, such as cocoa and coffee. Several countries regulate the OTA levels in food products to safeguard public health. However, these regulations can impede trade, particularly in countries with high levels of contamination. Balancing regulatory compliance with economic viability is crucial for affected nations. Current strategies for managing OTA include improved agronomic practices, such as the use of biocontrol agents for pest management, enhanced storage conditions to prevent mould growth, and the implementation of detoxification techniques to reduce OTA levels in food products. Despite these strategies, OTA remains a significant threat to public health and the agricultural economy worldwide. The complexity of contamination in food products requires robust prevention, control, and management strategies to mitigate its impact. Continuous research and regulatory initiatives are essential for safeguarding consumers and ensuring food safety.
Collapse
Affiliation(s)
- Joel Cox Menka Banahene
- Department of Food Science and Technology, Kwame Nkrumah University of Science and Technology, Kumasi, Ashanti, Ghana
- Research Department, Quality Control Company Limited–Ghana Cocoa Board, Tema, Greater Accra, Ghana
| | - Isaac Williams Ofosu
- Department of Food Science and Technology, Kwame Nkrumah University of Science and Technology, Kumasi, Ashanti, Ghana
| | - Bernard Tawiah Odai
- Radiation Technology Centre–BNARI, Ghana Atomic Energy Commission, Kwabenya, Accra, Ghana
| | - Herman Erick Lutterodt
- Department of Food Science and Technology, Kwame Nkrumah University of Science and Technology, Kumasi, Ashanti, Ghana
| | - Paul Ayiku Agyemang
- Research Department, Quality Control Company Limited–Ghana Cocoa Board, Tema, Greater Accra, Ghana
| | - Williams Otoo Ellis
- Department of Food Science and Technology, Kwame Nkrumah University of Science and Technology, Kumasi, Ashanti, Ghana
| |
Collapse
|
3
|
Anyogu A, Somorin YM, Oladipo AO, Raheem S. Food safety issues associated with sesame seed value chains: Current status and future perspectives. Heliyon 2024; 10:e36347. [PMID: 39253262 PMCID: PMC11381738 DOI: 10.1016/j.heliyon.2024.e36347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 09/11/2024] Open
Abstract
Sesame (Sesamum indicum) is an oilseed crop which is increasingly recognised as a functional food by consumers due to its nutritional and nutraceutical components. Consequently, global demand for sesame has increased significantly over the last three decades. Sesame is an important export crop in producing countries, contributing to their socio-economic development. However, in recent years, major foodborne incidents have been associated with imported sesame seeds and products made with these seeds. Foodborne hazards are a potential risk to consumer health and hinder international trade due to border rejections and increased import controls. An insight into the routes of contamination of these hazards across the value chain and factors affecting persistence may lead to more focused intervention and prevention strategies. It was observed that Salmonella is a significant microbial hazard in imported sesame seeds and has been associated with several global outbreaks. Sesame is mainly cultivated in the tropical and subtropical regions of Africa and Asia by smallholder farmers. Agricultural and manufacturing practices during harvesting, storage, and processing before export may allow for the contamination of sesame seeds with Salmonella. However, only a few studies collect data on the microbiological quality of sesame across the value chain in producing countries. In addition, the presence of mycotoxins and pesticides above regulatory limits in sesame seeds is a growing concern. Eliminating foodborne hazards in the sesame value chain requires urgent attention from researchers, producers, processors, and regulators and suggestions for improving the safety of these foods are discussed.
Collapse
Affiliation(s)
- Amarachukwu Anyogu
- Food Safety and Security, School of Biomedical Sciences, University of West London, London, W5 5RF, United Kingdom
| | - Yinka M Somorin
- University of Glasgow, Glasgow, G12 8QQ, United Kingdom
- Department of Biological Science, Ajayi Crowther University, Oyo, Nigeria
| | - Abigail Oluseye Oladipo
- Food Safety and Security, School of Biomedical Sciences, University of West London, London, W5 5RF, United Kingdom
| | - Saki Raheem
- School of Life Sciences, University of Westminster, London, W1W 6UW, United Kingdom
| |
Collapse
|
4
|
Fakhri Y, Ranaei V, Pilevar Z, Moradi M, Mahmoudizeh A, Hemmati F, Mousavi Khaneghah A. The prevalence and concentration of aflatoxins in beers: a global systematic review and meta-analysis and probabilistic health risk assessment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024:1-19. [PMID: 38842007 DOI: 10.1080/09603123.2024.2362816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024]
Abstract
Mycotoxins have been identified as considerable contaminants in beer. The current investigation's concentration and prevalence of aflatoxins (AFs) in beer were meta-analyzed. The health risk of consumers was estimated through MOEs in the Monte Carlo simulation (MCS) model. The rank order of AFs in beer based on pooled prevalence was AFB1 (26.00%) > AFG1 (14.93%) > AFB2 (7.69%) > AFG2 (7.52%), In addition, the rank order of AFs in beer based on their pooled concentration was AFG1 (0.505 µg/l) > AFB1 (0.469 µg/l) > AFB2 (0.134 µg/l) > AFG2 (0.071 µg/l). The prevalence and concentration of AFs in beer in Malawi were higher than in other countries. The health risk assessment shows consumers in all countries, especially Malawi, Brazil, and Cameroon, are exposed to unacceptably health risks (MOEs <10,000). It is recommended to monitor levels of AFs in beer efficiently and implement control plans in order to decrease health risk of exposed population.
Collapse
Affiliation(s)
- Yadolah Fakhri
- Food Health Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Vahid Ranaei
- School of Health, Arak University of Medical Sciences, Arak, Iran
| | - Zahra Pilevar
- School of Health, Arak University of Medical Sciences, Arak, Iran
| | - Mahboobeh Moradi
- Department of Environmental Health Engineering, School of Public Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Fatemeh Hemmati
- Department of Food Hygiene and Quality Control, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amin Mousavi Khaneghah
- Faculty of Biotechnologies (BioTech), ITMO University, Saint Petersburg, Russia
- Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran
| |
Collapse
|
5
|
Grajdieru C, Mitina I, Tumanova L, Mitin V. Assessing several fungal contaminants and their associated mycotoxins in maize cultivated on cornfields of Republic of Moldova. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2024; 41:675-687. [PMID: 38662872 DOI: 10.1080/19440049.2024.2345721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/16/2024] [Indexed: 05/29/2024]
Abstract
Maize is an important crop for the Republic of Moldova and one of the crops most contaminated with mycotoxins. Maize grain obtained from plants cultivated on Moldavian cornfields in 2021 and 2022 were tested for mycotoxigenic risk using qPCR with primers to several fungal genome sequences engaged in mycotoxin synthesis and ELISA test to screen total aflatoxins, fumonisin B1, zearalenone, deoxynivalenol and T-2 toxin. Except for T-2 toxin, the mycotoxin concentrations were under the limits of detection and did not exceed maximum admissible levels for unprocessed grain. Concentrations of T-2 toxin in grain samples did not correlate significantly with the quantity of toxigenic F. sporotrichioides. All of the analysed grain samples were contaminated with at least one toxigenic fungus, and 20% of the samples were infected with seven different species of toxigenic fungi. Accumulation of fungi in maize kernels was affected significantly by the season, and generally a decrease was observed in fungal frequency and quantity under drought conditions. However, several toxigenic Aspergillus and Fusarium fungi that are able to produce aflatoxins and fumonisins under improper storage conditions were found in the kernels during the whole period of monitoring.
Collapse
Affiliation(s)
- Cristina Grajdieru
- Laboratory of Molecular genetics, Institute of Genetics, Physiology and Plant Protection of Moldova State University, Chisinau, Republic of Moldova
| | - Irina Mitina
- Laboratory of Molecular genetics, Institute of Genetics, Physiology and Plant Protection of Moldova State University, Chisinau, Republic of Moldova
| | - Lidia Tumanova
- Laboratory of Molecular genetics, Institute of Genetics, Physiology and Plant Protection of Moldova State University, Chisinau, Republic of Moldova
| | - Valentin Mitin
- Laboratory of Molecular genetics, Institute of Genetics, Physiology and Plant Protection of Moldova State University, Chisinau, Republic of Moldova
| |
Collapse
|
6
|
Liang WZ, Chia YY, Sun HJ, Sun GC. Exploration of beauvericin's toxic effects and mechanisms in human astrocytes and N-acetylcysteine's protective role. Toxicon 2024; 243:107734. [PMID: 38670497 DOI: 10.1016/j.toxicon.2024.107734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/13/2024] [Accepted: 04/22/2024] [Indexed: 04/28/2024]
Abstract
Beauvericin (BEA) is a newly identified mycotoxin produced by various Fusarium species, and its contamination in food and animal feed is widespread globally. This mycotoxin demonstrates cytotoxic effects by inducing oxidative stress in multiple models. Furthermore, evidence indicates that BEA possesses diverse toxic activities, making it a promising candidate for toxicological research. Recent studies have highlighted the ability of BEA to traverse the blood-brain barrier, suggesting its potential neurotoxicity. However, limited information is available regarding the neurotoxic effects of BEA on human astrocytes. Therefore, this study aimed to assess the neurotoxic effects of BEA on the Gibco® Human Astrocyte (GHA) cell line and elucidate the underlying mechanisms. Additionally, the study aimed to investigate the protective effects of the antioxidant N-acetylcysteine (NAC) against BEA-induced toxicity. The data show that exposure to BEA within the 2.5-15 μM concentration range resulted in concentration-dependent cytotoxicity. BEA-treated cells exhibited significantly increased levels of reactive oxygen species (ROS), while intracellular glutathione (GSH) content was significantly reduced. Western blot analysis of cells treated with BEA revealed altered protein levels of Bax, cleaved caspase-9, and caspase-3, along with an increased Bax/Bcl-2 ratio, indicating the induction of apoptosis. Additionally, BEA exposure triggered antioxidant responses, as evidenced by increased protein expression of Nrf2, HO-1, and NQO1. Significantly, pretreatment with NAC partially attenuated the significant toxic effects of BEA. In conclusion, our findings suggest that BEA-induced cytotoxicity in GHA cells involves oxidative stress-associated apoptosis. Furthermore, NAC demonstrates potential as a protective agent against BEA-induced oxidative damage.
Collapse
Affiliation(s)
- Wei-Zhe Liang
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, 81362, Taiwan; Department of Pharmacy and Master Program, College of Pharmacy and Health Care, Tajen University, Pingtung County, 90741, Taiwan
| | - Yuan-Yi Chia
- Department of Anesthesiology, Kaohsiung Veterans General Hospital, Kaohsiung, 81362, Taiwan
| | - Huai-Jhih Sun
- Department of Anesthesiology, Kaohsiung Veterans General Hospital, Kaohsiung, 81362, Taiwan
| | - Gwo-Ching Sun
- Department of Anesthesiology, Kaohsiung Veterans General Hospital, Kaohsiung, 81362, Taiwan; Department of Anesthesiology, Tri-Service General Hospital and National Defense Medical Center, Taipei, 114202, Taiwan.
| |
Collapse
|
7
|
Urugo MM, Teka TA, Lema TB, Lusweti JN, Djedjibegovíc J, Lachat C, Tesfamariam K, Mesfin A, Astatkie T, Abdel-Wahhab MA. Dietary aflatoxins exposure, environmental enteropathy, and their relation with childhood stunting. Int J Food Sci Nutr 2024; 75:241-254. [PMID: 38404064 DOI: 10.1080/09637486.2024.2314676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/30/2024] [Indexed: 02/27/2024]
Abstract
Childhood stunting is a global phenomenon affecting more than 149 million children under the age of 5 worldwide. Exposure to aflatoxins (AFs) in utero, during breastfeeding, and consumption of contaminated food affect the gut microbiome, resulting in intestinal dysfunction and potentially contributing to stunting. This review explores the potential relationship between AF exposure, environmental enteropathy and childhood stunting. AFs bind to DNA, disrupt protein synthesis and elicit environmental enteropathy (EE). An EE alters the structure of intestinal epithelial cells, impairs nutrient uptake and leads to malabsorption. This article proposes possible intervention strategies for researchers and policymakers to reduce AF exposure, EE and childhood stunting, such as exposure reduction, the implementation of good agricultural practices, dietary diversification and improving environmental water sanitation and hygiene.
Collapse
Affiliation(s)
- Markos Makiso Urugo
- Department of Food Science and Postharvest Technology, College of Agricultural Sciences, Wachemo University, Hosaina, Ethiopia
- Department of Postharvest Management, College of Agriculture and Veterinary Medicine, Jimma University, Jimma, Ethiopia
| | - Tilahun A Teka
- Department of Postharvest Management, College of Agriculture and Veterinary Medicine, Jimma University, Jimma, Ethiopia
| | - Tefera Belachew Lema
- Department of Nutrition and Dietetics, Faculty of Public Health, Institute of Health, Jimma University, Jimma, Ethiopia
| | | | | | - Carl Lachat
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Kokeb Tesfamariam
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Department of Public Health, College of Medicine and Health Sciences, Ambo University, Ambo, Ethiopia
| | - Addisalem Mesfin
- Center of Excellence in Mycotoxicology and Public Health, MYTOX-SOUTH, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
- Department of Human Nutrition, College of Agriculture, Hawassa University, Hawassa, Ethiopia
| | - Tess Astatkie
- Faculty of Agriculture, Dalhousie University, Truro, NS, Canada
| | - Mosaad A Abdel-Wahhab
- Food Toxicology & Contaminants Department, National Research Center, Dokki, Cairo, Egypt
| |
Collapse
|
8
|
Khan R, Anwar F, Ghazali FM. A comprehensive review of mycotoxins: Toxicology, detection, and effective mitigation approaches. Heliyon 2024; 10:e28361. [PMID: 38628751 PMCID: PMC11019184 DOI: 10.1016/j.heliyon.2024.e28361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 04/19/2024] Open
Abstract
Mycotoxins, harmful compounds produced by fungal pathogens, pose a severe threat to food safety and consumer health. Some commonly produced mycotoxins such as aflatoxins, ochratoxin A, fumonisins, trichothecenes, zearalenone, and patulin have serious health implications in humans and animals. Mycotoxin contamination is particularly concerning in regions heavily reliant on staple foods like grains, cereals, and nuts. Preventing mycotoxin contamination is crucial for a sustainable food supply. Chromatographic methods like thin layer chromatography (TLC), gas chromatography (GC), high-performance liquid chromatography (HPLC), and liquid chromatography coupled with a mass spectrometer (LC/MS), are commonly used to detect mycotoxins; however, there is a need for on-site, rapid, and cost-effective detection methods. Currently, enzyme-linked immunosorbent assays (ELISA), lateral flow assays (LFAs), and biosensors are becoming popular analytical tools for rapid detection. Meanwhile, preventing mycotoxin contamination is crucial for food safety and a sustainable food supply. Physical, chemical, and biological approaches have been used to inhibit fungal growth and mycotoxin production. However, new strains resistant to conventional methods have led to the exploration of novel strategies like cold atmospheric plasma (CAP) technology, polyphenols and flavonoids, magnetic materials and nanoparticles, and natural essential oils (NEOs). This paper reviews recent scientific research on mycotoxin toxicity, explores advancements in detecting mycotoxins in various foods, and evaluates the effectiveness of innovative mitigation strategies for controlling and detoxifying mycotoxins.
Collapse
Affiliation(s)
- Rahim Khan
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, UPM, Serdang, Malaysia
| | - Farooq Anwar
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, UPM, Serdang, Malaysia
- Institute of Chemistry, University of Sargodha, Sargodha, 40100, Pakistan
| | - Farinazleen Mohamad Ghazali
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, UPM, Serdang, Malaysia
| |
Collapse
|
9
|
Maričević M, Španić V, Bukan M, Rajković B, Šarčević H. Diallel Analysis of Wheat Resistance to Fusarium Head Blight and Mycotoxin Accumulation under Conditions of Artificial Inoculation and Natural Infection. PLANTS (BASEL, SWITZERLAND) 2024; 13:1022. [PMID: 38611551 PMCID: PMC11013806 DOI: 10.3390/plants13071022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/30/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024]
Abstract
Breeding resistant wheat cultivars to Fusarium head blight (FHB), caused by Fusarium spp., is the best method for controlling the disease. The aim of this study was to estimate general combining ability (GCA) and specific combining ability (SCA) for FHB resistance in a set of eight genetically diverse winter wheat cultivars to identify potential donors of FHB resistance for crossing. FHB resistance of parents and F1 crosses produced by the half diallel scheme was evaluated under the conditions of artificial inoculation with F. graminearum and natural infection. Four FHB related traits were assessed: visual rating index (VRI), Fusarium damaged kernels (FDK), and deoxynivalenol and zearalenone content in the harvested grain samples. Significant GCA effects for FHB resistance were observed for the parental cultivars with high FHB resistance for all studied FHB resistance related traits. The significant SCA and mid-parent heterosis effects for FHB resistance were rare under both artificial inoculation and natural infection conditions and involved crosses between parents with low FHB resistance. A significant negative correlation between grain yield under natural conditions and VRI (r = -0.43) and FDK (r = -0.47) under conditions of artificial inoculation was observed in the set of the studied F1 crosses. Some crosses showed high yield and high FHB resistance, indicating that breeding of FHB resistant genotypes could be performed without yield penalty. These crosses involved resistant cultivars with significant GCA effects for FHB resistance indicating that that they could be used as good donors of FHB resistance.
Collapse
Affiliation(s)
- Marko Maričević
- Bc Institute for Breeding and Production of Field Crops, Rugvica, Dugoselska 7, 10370 Dugo Selo, Croatia; (M.M.); (B.R.)
| | - Valentina Španić
- Agricultural Institute Osijek, Južno Predgrađe 17, 31000 Osijek, Croatia
| | - Miroslav Bukan
- Faculty of Agriculture, University of Zagreb, Svetošimunska Cesta 25, 10000 Zagreb, Croatia;
| | - Bruno Rajković
- Bc Institute for Breeding and Production of Field Crops, Rugvica, Dugoselska 7, 10370 Dugo Selo, Croatia; (M.M.); (B.R.)
| | - Hrvoje Šarčević
- Faculty of Agriculture, University of Zagreb, Svetošimunska Cesta 25, 10000 Zagreb, Croatia;
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CroP-BioDiv), Svetošimunska Cesta 25, 10000 Zagreb, Croatia
| |
Collapse
|
10
|
Abdallah MF, Gado M, Abdelsadek D, Zahran F, El-Salhey NN, Mehrez O, Abdel-Hay S, Mohamed SM, De Ruyck K, Yang S, Gonzales GB, Varga E. Mycotoxin contamination in the Arab world: Highlighting the main knowledge gaps and the current legislation. Mycotoxin Res 2024; 40:19-44. [PMID: 38117428 DOI: 10.1007/s12550-023-00513-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/26/2023] [Accepted: 11/30/2023] [Indexed: 12/21/2023]
Abstract
Since the discovery of aflatoxins in the 1960s, knowledge in the mycotoxin research field has increased dramatically. Hundreds of review articles have been published summarizing many different aspects, including mycotoxin contamination per country or region. However, mycotoxin contamination in the Arab world, which includes 22 countries in Africa and Asia, has not yet been specifically reviewed. To this end, the contamination of mycotoxins in the Arab world was reviewed not only to profile the pervasiveness of the problem in this region but also to identify the main knowledge gaps imperiling the safety of food and feed in the future. To the best of our knowledge, 306 (non-)indexed publications in English, Arabic, or French were published from 1977 to 2021, focusing on the natural occurrence of mycotoxins in matrices of 14 different categories. Characteristic factors (e.g., detected mycotoxins, concentrations, and detection methods) were extracted, processed, and visualized. The main results are summarized as follows: (i) research on mycotoxin contamination has increased over the years. However, the accumulated data on their occurrences are scarce to non-existent in some countries; (ii) the state-of-the-art technologies on mycotoxin detection are not broadly implemented neither are contemporary multi-mycotoxin detection strategies, thus showing a need for capacity-building initiatives; and (iii) mycotoxin profiles differ among food and feed categories, as well as between human biofluids. Furthermore, the present work highlights contemporary legislation in the Arab countries and provides future perspectives to mitigate mycotoxins, enhance food and feed safety, and protect the consumer public. Concluding, research initiatives to boost mycotoxin research among Arab countries are strongly recommended.
Collapse
Affiliation(s)
- Mohamed F Abdallah
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt.
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.
| | - Muhammad Gado
- Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | | | - Fatma Zahran
- Faculty of Pharmacy, Menoufia University, Shibin El-Kom, Menoufia, Egypt
| | - Nada Nabil El-Salhey
- Department of Clinical Pharmacy, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Ohaila Mehrez
- Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Sara Abdel-Hay
- Faculty of Pharmacy, Tanta University, Tanta, Gharbia Governorate, Egypt
| | - Sahar M Mohamed
- Department of Chemistry, Faculty of Science, Sohag University, Sohag, Egypt
| | - Karl De Ruyck
- Teagasc Food Research Centre, Ashtown, Dublin, Ireland
| | - Shupeng Yang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Gerard Bryan Gonzales
- Nutrition, Metabolism and Genomics Group, Wageningen University, Wageningen, Netherlands
| | - Elisabeth Varga
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
- Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
11
|
Awuor AO, Wambura G, Ngere I, Hunsperger E, Onyango C, Bigogo G, Blum LS, Munyua P, Njenga MK, Widdowson MA. A mixed methods assessment of knowledge, attitudes and practices related to aflatoxin contamination and exposure among caregivers of children under 5 years in western Kenya. Public Health Nutr 2023; 26:3013-3022. [PMID: 36871962 PMCID: PMC10755389 DOI: 10.1017/s1368980023000150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 11/22/2022] [Accepted: 12/01/2022] [Indexed: 03/07/2023]
Abstract
OBJECTIVE Identifying factors that may influence aflatoxin exposure in children under 5 years of age living in farming households in western Kenya. DESIGN We used a mixed methods design. The quantitative component entailed serial cross-sectional interviews in 250 farming households to examine crop processing and conservation practices, household food storage and consumption and local understandings of aflatoxins. Qualitative data collection included focus group discussions (N 7) and key informant interviews (N 13) to explore explanations of harvesting and post-harvesting techniques and perceptions of crop spoilage. SETTING The study was carried out in Asembo, a rural community where high rates of child stunting exist. PARTICIPANTS A total of 250 female primary caregivers of children under 5 years of age and thirteen experts in farming and food management participated. RESULTS Study results showed that from a young age, children routinely ate maize-based dishes. Economic constraints and changing environmental patterns guided the application of sub-optimal crop practices involving early harvest, poor drying, mixing spoiled with good cereals and storing cereals in polypropylene bags in confined quarters occupied by humans and livestock and raising risks of aflatoxin contamination. Most (80 %) smallholder farmers were unaware of aflatoxins and their harmful economic and health consequences. CONCLUSIONS Young children living in subsistence farming households may be at risk of exposure to aflatoxins and consequent ill health and stunting. Sustained efforts to increase awareness of the risks of aflatoxins and control measures among subsistence farmers could help to mitigate practices that raise exposure.
Collapse
Affiliation(s)
- Abigael O Awuor
- Division of Global Health Protection, US Centers for Disease Control and Prevention, Nairobi, Kenya
| | - Gati Wambura
- Washington State University Global Health Program, Nairobi, Kenya
- Kenya Medical Research Institute, Centre for Global Health Research, Kisumu, Kenya
| | - Isaac Ngere
- Washington State University Global Health Program, Nairobi, Kenya
- Paul G Allen School of Global Animal Health, Washington State University, Pullman99164, USA
| | - Elizabeth Hunsperger
- Division of Global Health Protection, US Centers for Disease Control and Prevention, Nairobi, Kenya
| | - Clayton Onyango
- Division of Global Health Protection, US Centers for Disease Control and Prevention, Nairobi, Kenya
| | - Godfrey Bigogo
- Kenya Medical Research Institute, Centre for Global Health Research, Kisumu, Kenya
| | - Lauren S Blum
- Paul G Allen School of Global Animal Health, Washington State University, Pullman99164, USA
| | - Peninah Munyua
- Division of Global Health Protection, US Centers for Disease Control and Prevention, Nairobi, Kenya
| | - M Kariuki Njenga
- Washington State University Global Health Program, Nairobi, Kenya
- Paul G Allen School of Global Animal Health, Washington State University, Pullman99164, USA
| | - Marc-Alain Widdowson
- Division of Global Health Protection, US Centers for Disease Control and Prevention, Nairobi, Kenya
- Institute of Tropical Medicine, Antwerp, Belgium
| |
Collapse
|
12
|
Kinyenje E, Kishimba R, Mohamed M, Mwafulango A, Eliakimu E, Kwesigabo G. Aflatoxicosis outbreak and its associated factors in Kiteto, Chemba and Kondoa Districts, Tanzania. PLOS GLOBAL PUBLIC HEALTH 2023; 3:e0002191. [PMID: 37552664 PMCID: PMC10409262 DOI: 10.1371/journal.pgph.0002191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 07/17/2023] [Indexed: 08/10/2023]
Abstract
Tanzania had experienced hundreds of cases of aflatoxicosis in the districts of Kiteto, Chemba, and Kondoa for the three consecutive years since 2016. Cases may end up with liver cancer. Aflatoxin-induced liver cancer had resulted in the demise of roughly three persons per 100,000 in the country during the same year, 2016. We investigated to characterize the latest outbreak of 2019 and identify its risk factors. This case-control study enrolled all patients presented with acute jaundice of unknown origin and laboratory test results confirmed an acute liver injury with or without abdominal pain, distension, vomiting, or fever during the period of June to November 2019 and had epidemiological link with cases confirmed with Aflatoxin-B1-Lysine. Adjusted odds ratios (AOR) with 95% confidence intervals (CI) were used to identify independent factors associated with aflatoxicosis. We analyzed 62 cases with median age of 7 years (0.58-50 years) and 186 controls with median age of 24 years (range 0.42-55) with onset of symptoms ranging from 1st June 2019 to 16th July 2019. Case-parents had higher serum aflatoxin-B1-lysine adduct concentrations than did controls; 208.80 ng/mg (n = 45) vs. 32.2 ng/mg (n = 26); p<0.01. Storing foods at poor conditions (AOR 5.49; 95% CI 2.30-13.1), age <15 years (AOR 4.48; 95% CI 1.63-12.3), chronic illness (AOR 3.05; 95% CI 1.19-7.83) and being male (AOR 2.31; 95% CI 1.01-5.30) were significantly associated with the disease, whereas cleaning foods before milling decreased the risk of getting the disease by 88% (AOR 0.12; 95% CI 0.05-0.29). According to the results, the outbreak resulted from a globally highest-ever recorded aflatoxin-B1-lysine that originated from a common source. To prevent future outbreaks, it is crucial to store and clean food crops safely before milling. We recommend strict regulations and enforcement around aflatoxin levels in food products.
Collapse
Affiliation(s)
- Erick Kinyenje
- School of Public Health and Social Sciences, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
- Tanzania Field Epidemiology and Laboratory Training Programme (TFELTP), Dar es Salaam, Tanzania
- Health Quality Assurance Unit, Ministry of Health, Dodoma, Tanzania
| | - Rogath Kishimba
- Tanzania Field Epidemiology and Laboratory Training Programme (TFELTP), Dar es Salaam, Tanzania
| | - Mohamed Mohamed
- Tanzania Field Epidemiology and Laboratory Training Programme (TFELTP), Dar es Salaam, Tanzania
| | | | - Eliudi Eliakimu
- Health Quality Assurance Unit, Ministry of Health, Dodoma, Tanzania
| | - Gideon Kwesigabo
- School of Public Health and Social Sciences, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| |
Collapse
|
13
|
Yazid SNE, Tajudin NI, Razman NAA, Selamat J, Ismail SI, Sanny M, Samsudin NIP. Mycotoxigenic fungal growth inhibition and multi-mycotoxin reduction of potential biological control agents indigenous to grain maize. Mycotoxin Res 2023:10.1007/s12550-023-00484-4. [PMID: 37219742 PMCID: PMC10204017 DOI: 10.1007/s12550-023-00484-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 05/03/2023] [Accepted: 05/09/2023] [Indexed: 05/24/2023]
Abstract
The present work investigated the potential of fungal species from grain maize farms in Malaysia as antagonists against the indigenous mycotoxigenic fungal species and their subsequent mycotoxin production. Dual-culture assay was conducted on grain maize agar (GMA) with 12 strains of potential fungal antagonists namely Bjerkandra adusta, Penicillium janthinellum, Schizophyllum commune, Trametes cubensis, Trichoderma asperelloides, Trichoderma asperellum, Trichoderma harzianum, and Trichoderma yunnanense against seven mycotoxigenic strains namely Aspergillus flavus, Aspergillus niger, Fusarium verticillioides, and Fusarium proliferatum producing aflatoxins, ochratoxin A, and fumonisins, respectively. Based on fungal growth inhibition, Trichoderma spp. showed the highest inhibitory activity (73-100% PIRG, Percentage Inhibition of Radial Growth; 28/0 ID, Index of Dominance) against the tested mycotoxigenic strains. Besides, B. adusta and Tra. cubensis showed inhibitory activity against some of the tested mycotoxigenic strains. All fungal antagonists showed varying degrees of mycotoxin reduction. Aflatoxin B1 produced by A. flavus was mainly reduced by P. janthinellum, Tra. cubensis, and B. adusta to 0 ng/g. Ochratoxin A produced by A. niger was mainly reduced by Tri. harzianum and Tri. asperellum to 0 ng/g. Fumonisin B1 and FB2 produced by F. verticillioides was mainly reduced by Tri. harzianum, Tri. asperelloides, and Tri. asperellum to 59.4 and 0 µg/g, respectively. Fumonisin B1 and FB2 produced by F. proliferatum were mainly reduced by Tri. asperelloides and Tri. harzianum to 244.2 and 0 µg/g, respectively. This is the first study that reports on the efficacy of Tri. asperelloides against FB1, FB2, and OTA, P. janthinellum against AFB1, and Tra. cubensis against AFB1.
Collapse
Affiliation(s)
- Siti Nur Ezzati Yazid
- Laboratory of Food Safety and Food Integrity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Nur Izzah Tajudin
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Nur Aina Aribah Razman
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Jinap Selamat
- Laboratory of Food Safety and Food Integrity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Siti Izera Ismail
- Laboratory of Climate-Smart Food Crop Production, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Maimunah Sanny
- Laboratory of Food Safety and Food Integrity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Nik Iskandar Putra Samsudin
- Laboratory of Food Safety and Food Integrity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| |
Collapse
|
14
|
N'zi FAJA, Kouakou-Kouamé CA, N'guessan FK, Poss C, Teyssier C, Durand N, Montet D. Occurrence of mycotoxins and microbial communities in artisanal infant flours marketed in Côte d'Ivoire. World J Microbiol Biotechnol 2023; 39:128. [PMID: 36943491 DOI: 10.1007/s11274-023-03577-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/11/2023] [Indexed: 03/23/2023]
Abstract
The aim of this study was to determine the microbial diversity and mycotoxin profile of artisanal infant flours commonly vended in public healthcare centres and retail markets in Côte d'Ivoire. Thus, maize, millet, sorghum, soya and multigrain (mix of different cereals) flour samples collected from different localities were first, analysed for nutritional composition, then for microbial communities using high-throughput sequencing and for mycotoxins through UHPLC-MS/MS method. Firmicutes was the most abundant bacterial phylum and the dominant genera were Weissella, Staphylococcus, Pediococcus. Potential pathogenic genera such as Bacillus, Enterobacter, Acinetobacter and Burkholderia were also found. The fungal community was composed of two dominant phyla (Ascomycota and Basidiomycota) and 31 genera with > 0.1% relative abundance. In samples from public healthcare centres, Candida, Hyphopichia, Trichosporon, and Cyberlindnera were the most dominant genera according to the flour type while in samples from retail markets, they were Cyberlindnera, Clavispora, Nakaseomyces, Aureobasidium and Candida. Possible toxigenic genera Fusarium and Aspergillus were also detected. Aflatoxin B1 (AFB1), Ochractoxin (OTA), Fumonisin B1 (FB1) and B2 (FB2) were the mycotoxins found in the analysed flours. AFB1 was detected in 100% of maize (range 1.2-120.5 µg/kg; mean: 44.2 µg/kg) and 50-83.3% of millet flours (range 0.2-31.5 µg/kg; mean: 31.5 µg/kg). Its level in all maize and rice flour samples exceeded EU standard (0.1 µg/kg). For OTA and fumonisins, millet and maize flours showed the highest levels of sample exceeding the EU standard. Thus, artisanal infant flours marketed in Côte d'Ivoire, mainly maize and rice flours, although containing potentially beneficial bacteria, represent potential health risks for children.
Collapse
Affiliation(s)
- Fabienne Anne-Julie A N'zi
- Laboratoire de Biotechnologie et Microbiologie des Aliments, Unité de Formation et de Recherche en Sciences et Technologie des Aliments (UFR-STA), Université Nangui Abrogoua, 02 BP 801, Abidjan, 02, Côte d'Ivoire.
| | - Clémentine A Kouakou-Kouamé
- Laboratoire de Biotechnologie et Microbiologie des Aliments, Unité de Formation et de Recherche en Sciences et Technologie des Aliments (UFR-STA), Université Nangui Abrogoua, 02 BP 801, Abidjan, 02, Côte d'Ivoire
| | - Florent K N'guessan
- Laboratoire de Biotechnologie et Microbiologie des Aliments, Unité de Formation et de Recherche en Sciences et Technologie des Aliments (UFR-STA), Université Nangui Abrogoua, 02 BP 801, Abidjan, 02, Côte d'Ivoire
| | - Charlie Poss
- CIRAD, UMR Qualisud, Montpellier, France
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
| | - Corinne Teyssier
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
| | - Noel Durand
- CIRAD, UMR Qualisud, Montpellier, France
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
| | - Didier Montet
- CIRAD, UMR Qualisud, Montpellier, France
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
| |
Collapse
|
15
|
Building a Human Physiologically Based Pharmacokinetic Model for Aflatoxin B1 to Simulate Interactions with Drugs. Pharmaceutics 2023; 15:pharmaceutics15030894. [PMID: 36986755 PMCID: PMC10053806 DOI: 10.3390/pharmaceutics15030894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
Mycotoxins such as aflatoxin B1 (AFB1) are secondary fungal metabolites present in food commodities and part of one’s daily exposure, especially in certain regions, e.g., sub-Saharan Africa. AFB1 is mostly metabolised by cytochrome P450 (CYP) enzymes, namely, CYP1A2 and CYP3A4. As a consequence of chronic exposure, it is interesting to check for interactions with drugs taken concomitantly. A physiologically based pharmacokinetic (PBPK) model was developed based on the literature and in-house-generated in vitro data to characterise the pharmacokinetics (PK) of AFB1. The substrate file was used in different populations (Chinese, North European Caucasian and Black South African), provided by SimCYP® software (v21), to evaluate the impact of populations on AFB1 PK. The model’s performance was verified against published human in vivo PK parameters, with AUC ratios and Cmax ratios being within the 0.5–2.0-fold range. Effects on AFB1 PK were observed with commonly prescribed drugs in South Africa, leading to clearance ratios of 0.54 to 4.13. The simulations revealed that CYP3A4/CYP1A2 inducer/inhibitor drugs might have an impact on AFB1 metabolism, altering exposure to carcinogenic metabolites. AFB1 did not have effects on the PK of drugs at representative exposure concentrations. Therefore, chronic AFB1 exposure is unlikely to impact the PK of drugs taken concomitantly.
Collapse
|
16
|
Aljazzar A, El-Ghareeb WR, Darwish WS, Abdel-Raheem SM, Ibrahim AM, Hegazy EE, Mohamed EA. Effects of aflatoxin B1 on human breast cancer (MCF-7) cells: cytotoxicity, oxidative damage, metabolic, and immune-modulatory transcriptomic changes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:13132-13140. [PMID: 36125688 DOI: 10.1007/s11356-022-23032-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 09/11/2022] [Indexed: 06/15/2023]
Abstract
Aflatoxin B1 (AFB1) is a potent mycotoxin that is commonly produced by molds such as Aspergillus (A.) flavus and A. parasiticus. AFB1 is associated with several health adverse effects in humans including mutagenesis and carcinogenesis. Aflatoxin is commonly secreted in the milk leading to deleterious effects on breast tissue and potential nursing infants. However, the effects of aflatoxins, particularly AFB1, on the breast cells are less investigated. In this study, AFB1-associated effects on human breast cancer cell lines (MCF-7) were investigated. AFB1 caused significant cytotoxicity on MCF-7 cells. Such cytotoxicity had a positive correlation with the induction of oxidative stress. In addition, AFB1 caused significant transcriptomic alterations in xenobiotics and drug-metabolizing enzymes, transporters, and antioxidant enzymes. Besides, AFB1 upregulated pro-inflammatory markers such as tumor necrosis factor-α and cyclooxygenase-2 with a significant reduction of mRNA expressions of the immunity-related genes including interleukins 8 and 10.
Collapse
Affiliation(s)
- Ahmed Aljazzar
- Department of Pathology, College of Veterinary Medicine, King Faisal University, Al-Ahsa, P.O. Box: 400, Al Hofuf, 31982, Saudi Arabia
| | - Waleed Rizk El-Ghareeb
- Department of Veterinary Public Health, College of Veterinary Medicine, King Faisal University, Al-Ahsa, P.O. Box: 400, Al Hofuf, 31982, Saudi Arabia.
- Food Control Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt.
| | - Wageh Sobhy Darwish
- Food Control Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Sherief M Abdel-Raheem
- Department of Veterinary Public Health, College of Veterinary Medicine, King Faisal University, Al-Ahsa, P.O. Box: 400, Al Hofuf, 31982, Saudi Arabia
- Department of Animal Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Abdelazim M Ibrahim
- Department of Pathology, College of Veterinary Medicine, King Faisal University, Al-Ahsa, P.O. Box: 400, Al Hofuf, 31982, Saudi Arabia
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Eman E Hegazy
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Esraa A Mohamed
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
17
|
Lootens O, Vermeulen A, Croubels S, De Saeger S, Van Bocxlaer J, De Boevre M. Possible Mechanisms of the Interplay between Drugs and Mycotoxins-Is There a Possible Impact? Toxins (Basel) 2022; 14:toxins14120873. [PMID: 36548770 PMCID: PMC9787578 DOI: 10.3390/toxins14120873] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022] Open
Abstract
Mycotoxin contamination is a global food safety issue leading to major public health concerns. Repeated exposure to multiple mycotoxins not only has repercussions on human health but could theoretically also lead to interactions with other xenobiotic substances-such as drugs-in the body by altering their pharmacokinetics and/or pharmacodynamics. The combined effects of chronic drug use and mycotoxin exposure need to be well understood in order to draw valid conclusions and, in due course, to develop guidelines. The aim of this review is to focus on food contaminants, more precisely on mycotoxins, and drugs. First, a description of relevant mycotoxins and their effects on human health and metabolism is presented. The potential for interactions of mycotoxins with drugs using in vitro and in vivo animal experiments is summarized. Predictive software tools for unraveling mycotoxin-drug interactions are proposed and future perspectives on this emerging topic are highlighted with a view to evaluate associated risks and to focus on precision medicine. In vitro and in vivo animal studies have shown that mycotoxins affect CYP450 enzyme activity. An impact from drugs on mycotoxins mediated via CYP450-enzymes is plausible; however, an impact of mycotoxins on drugs is less likely considering the much smaller dose exposure to mycotoxins. Drugs that are CYP450 perpetrators and/or substrates potentially influence the metabolism of mycotoxins, metabolized via these CYP450 enzymes. To date, very little research has been conducted on this matter. The only statistically sound reports describe mycotoxins as victims and drugs as perpetrators in interactions; however, more analysis on mycotoxin-drug interactions needs to be performed.
Collapse
Affiliation(s)
- Orphélie Lootens
- Centre of Excellence in Mycotoxicology and Public Health, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
- Laboratory of Medical Biochemistry and Clinical Analysis, Department of Bioanalysis, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
- MYTOX-SOUTH, International Thematic Network, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
- Correspondence: (O.L.); (M.D.B.)
| | - An Vermeulen
- Laboratory of Medical Biochemistry and Clinical Analysis, Department of Bioanalysis, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Siska Croubels
- MYTOX-SOUTH, International Thematic Network, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
- Laboratory of Pharmacology and Toxicology, Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Sarah De Saeger
- Centre of Excellence in Mycotoxicology and Public Health, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
- MYTOX-SOUTH, International Thematic Network, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
- Department of Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Gauteng 2028, South Africa
| | - Jan Van Bocxlaer
- Laboratory of Medical Biochemistry and Clinical Analysis, Department of Bioanalysis, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Marthe De Boevre
- Centre of Excellence in Mycotoxicology and Public Health, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
- MYTOX-SOUTH, International Thematic Network, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
- Correspondence: (O.L.); (M.D.B.)
| |
Collapse
|
18
|
Mohamed AB, Chavez RA, Wagacha MJ, Mutegi CK, Muthomi JW, Pillai SD, Stasiewicz MJ. Efficacy of electron beam irradiation in reduction of mycotoxin-producing fungi, aflatoxin, and fumonisin, in naturally contaminated maize slurry. Toxicon X 2022; 16:100141. [DOI: 10.1016/j.toxcx.2022.100141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/18/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
|
19
|
Adeyeye SAO, Ashaolu TJ, Idowu-Adebayo F. Mycotoxins: Food Safety, Consumer Health and Africa’s Food Security. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2021.1957952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- S. A. O Adeyeye
- Department of Food Technology, Hindustan Institute of Technology and Science, Hindustan University, Chennai, Tamil Nadu, India
| | - T. J Ashaolu
- Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam
- Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang, Viet Nam
| | - F Idowu-Adebayo
- Department of Food Science & Technology, Federal University, Oye-Ekiti, Nigeria
- Food Quality & Design Group, Wageningen University and Research, The Netherlands
| |
Collapse
|
20
|
Underreported Human Exposure to Mycotoxins: The Case of South Africa. Foods 2022; 11:foods11172714. [PMID: 36076897 PMCID: PMC9455755 DOI: 10.3390/foods11172714] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 12/03/2022] Open
Abstract
South Africa (SA) is a leading exporter of maize in Africa. The commercial maize farming sector contributes to about 85% of the overall maize produced. More than 33% of South Africa’s population live in rural settlements, and their livelihoods depend entirely on subsistence farming. The subsistence farming system promotes fungal growth and mycotoxin production. This review aims to investigate the exposure levels of the rural population of South Africa to dietary mycotoxins contrary to several reports issued concerning the safety of South African maize. A systematic search was conducted using Google Scholar. Maize is a staple food in South Africa and consumption rates in rural and urban communities are different, for instance, intake may be 1–2 kg/person/day and 400 g/person/day, respectively. Commercial and subsistence maize farming techniques are different. There exist differences influencing the composition of mycotoxins in food commodities from both sectors. Depending on the levels of contamination, dietary exposure of South Africans to mycotoxins is evident in the high levels of fumonisins (FBs) that have been detected in SA home-grown maize. Other potential sources of exposure to mycotoxins, such as carryover effects from animal products and processed foods, were reviewed. The combined effects between FBs and aflatoxins (AFs) have been reported in humans/animals and should not be ignored, as sporadic breakouts of aflatoxicosis have been reported in South Africa. These reports are not a true representation of the entire country as reports from the subsistence-farming rural communities show high incidence of maize contaminated with both AFs and FBs. While commercial farmers and exporters have all the resources needed to perform laboratory analyses of maize products, the greater challenge in combatting mycotoxin exposure is encountered in rural communities with predominantly subsistence farming systems, where conventional food surveillance is lacking.
Collapse
|
21
|
Mohammed A, Bekeko Z, Yusufe M, Sulyok M, Krska R. Fungal Species and Multi-Mycotoxin Associated with Post-Harvest Sorghum (Sorghum bicolor (L.) Moench) Grain in Eastern Ethiopia. Toxins (Basel) 2022; 14:toxins14070473. [PMID: 35878211 PMCID: PMC9315719 DOI: 10.3390/toxins14070473] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/03/2022] [Accepted: 07/07/2022] [Indexed: 02/05/2023] Open
Abstract
Sorghum is the main staple food crop in developing countries, including Ethiopia. However, sorghum grain quantity and quality are affected by contaminating fungi both under field and post-harvest stage. The aim of the current study was to assessed fungal species and multi-mycotoxins associated with sorghum grain in post-harvest samples collected from eastern Ethiopia. Fungal genera of Aspergillus, Alternaria, Bipolaris, Fusarium, Mucor, Penicillium, and Rhizoctonia were recovered in the infected grain. A liquid chromatography-tandem mass spectrometric (LC-MS/MS) was used for quantification of multiple mycotoxins/fungal metabolites. Overall, 94 metabolites were detected and grouped into eight categories. All metabolites were detected either in one or more samples. Among major mycotoxins and derivatives, deoxynivalenol (137 μg/kg), zearalenone (121 μg/kg), ochratoxin A (115 μg/kg), and fumonisin B1 (112 μg/kg) were detected with maximum concentrations, while aflatoxin B1 had relatively lower concentrations (23.6 μg/kg). Different emerging mycotoxins were also detected, with tenuazonic acid (1515 μg/kg) occurring at the maximum concentration among Alternaria metabolites. Fusaric acid (2786 μg/kg) from Fusarium metabolites and kojic acid (4584 μg/kg) were detected with the maximum concentration among Fusarium and Aspergillus metabolites, respectively. Unspecific metabolites were recognized with neoechinulin A (1996 μg/kg) at the maximum concentration, followed by cyclo (L-Pro-L-Tyr) (574 μg/kg) and cyclo (L-Pro-L-Val) (410 μg/kg). Moreover, metabolites form other fungal genera and bacterial metabolites were also detected at varying levels. Apparently, the study revealed that sorghum grains collected across those districts were significantly contaminated with co-occurrences of several mycotoxins. Farmers should be the main target groups to be trained on the improved management of sorghum production.
Collapse
Affiliation(s)
- Abdi Mohammed
- School of Plant Sciences, College of Agriculture and Environmental Sciences, Haramaya University, Dire Dawa P.O. Box 138, Ethiopia;
- Correspondence: ; Tel.: +251-953953442
| | - Zelalem Bekeko
- School of Plant Sciences, College of Agriculture and Environmental Sciences, Haramaya University, Dire Dawa P.O. Box 138, Ethiopia;
| | - Mawardi Yusufe
- Institute of Technology, Food Sciences and Post-harvest Technology, Haramaya University, Dire Dawa P.O. Box 138, Ethiopia;
| | - Michael Sulyok
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna Konrad Lorenzstr. 20, A-3430 Tulln, Austria; (M.S.); (R.K.)
| | - Rudolf Krska
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna Konrad Lorenzstr. 20, A-3430 Tulln, Austria; (M.S.); (R.K.)
- Institute for Global Food Security, School of Biological Sciences, Queens University Belfast, University Road, Belfast BT7 1NN, UK
| |
Collapse
|
22
|
Olum S, Hardy C, Obol J, Scolding N. The neurology of chronic nodding syndrome. Brain Commun 2022; 4:fcac126. [PMID: 35694148 PMCID: PMC9178964 DOI: 10.1093/braincomms/fcac126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/21/2022] [Accepted: 05/27/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
Nodding Syndrome is an uncommon disorder of childhood onset and unknown cause, presenting with nodding seizures, and which appears to occur exclusively in clusters in sub-Saharan Africa. An endemic pattern of disease was initially described in Tanzania and in Liberia; epidemic occurrences were later reported in South Sudan and northern Uganda. Not the least significant of the many questions remaining about Nodding syndrome concerns the common presence or otherwise of neurological features other than seizures – clearly relevant to the core issue of whether this is a focal, primary epileptic disease, or a multi-system CNS disorder, with, in turn implications for its aetiology.
We had the opportunity to interview and clinically to examine 57 affected individuals in rural northern Uganda some ten years after onset. In this observational cross-sectional study, nodding onset was invariably between the ages of 5 and 14, presenting with food-triggered nodding attacks in over 75% of cases; 86% went on to develop other seizure types. In 53/57 Nodding Syndrome individuals (93%) there was a definite history of the child and his or her family having resided in or been fed from an Internally Displaced Person camp for some time prior to the onset of nodding.
A half of Nodding Syndrome sufferers (28/57) had focal neurological abnormalities – mainly pyramidal signs (92%), often asymmetric, some with extrapyramidal abnormalities. Many individuals (28/57) were severely functionally disabled, ranging from “sometimes can dig” to “can do nothing at home” or “cannot even feed herself”. Such sufferers tended more frequently to have significant burns, and clear cognitive impairment.
We conclude that Nodding Syndrome is a unique multisystem CNS disorder of childhood onset and then slow progression over several years followed by spontaneous stabilisation, consistent with an underlying self-limiting neurodegenerative process. We discuss the possibility that this might be triggered by food-related mycotoxins, within a fixed window of CNS vulnerability during childhood.
Collapse
Affiliation(s)
- Sam Olum
- Gulu University Faculty of Medicine, , Uganda
| | - Charlotte Hardy
- Gulu University Faculty of Medicine, , Uganda
- Royal United Hospital , BATH, UK
- University of Bristol , BRISTOL, UK
| | - James Obol
- Gulu University Faculty of Medicine, , Uganda
| | - Neil Scolding
- Gulu University Faculty of Medicine, , Uganda
- University of Bristol , BRISTOL, UK
| |
Collapse
|
23
|
Nahle S, El Khoury A, Savvaidis I, Chokr A, Louka N, Atoui A. Detoxification approaches of mycotoxins: by microorganisms, biofilms and enzymes. INTERNATIONAL JOURNAL OF FOOD CONTAMINATION 2022. [DOI: 10.1186/s40550-022-00089-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
AbstractMycotoxins are generally found in food, feed, dairy products, and beverages, subsequently presenting serious human and animal health problems. Not surprisingly, mycotoxin contamination has been a worldwide concern for many research studies. In this regard, many biological, chemical, and physical approaches were investigated to reduce and/or remove contamination from food and feed products. Biological detoxification processes seem to be the most promising approaches for mycotoxins removal from food. The current review details the newest progress in biological detoxification (adsorption and metabolization) through microorganisms, their biofilms, and enzymatic degradation, finally describing the detoxification mechanism of many mycotoxins by some microorganisms. This review also reports the possible usage of microorganisms as mycotoxins’ binders in various food commodities, which may help produce mycotoxins-free food and feed.
Collapse
|
24
|
Meinhold K, Darr D. Keeping Up With Rising (Quality) Demands? The Transition of a Wild Food Resource to Mass Market, Using the Example of Baobab in Malawi. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.840760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The importance of wild food resources, particularly from our forests, is increasingly recognized in the context of food systems transformation and derived products are increasingly also entering modern food supply chains. The transformation of a wild, solely traditionally used resource to a product available in retail, however, has consequences, not all of which are currently well understood. Using the rapidly increasing commercialization of baobab fruit products in Malawi as a case study we, therefore, aim to shed light on aspects such a transformation may have on product quality and supply chain organization. Using a mixed-methods approach a total of 68 baobab value chain actors targeting either formal or informal markets were interviewed, focusing on perceived baobab quality characteristics as well as linkages across the value chain, concurrently collecting product samples if the interviewees had these at hand. The baobab supply chain was shown to have elongated in recent years, with a variety of actors now active on the scene, including baobab collectors, a variety of traders often directly picking up baobab resources at source, microenterprises producing baobab ice lollies for informal markets, or more formal juice processors targeting retail outlets. A broad variety of harvest, storage, or processing practices was observed and product quality differed widely, whereas mycotoxins were detected in two of the analyzed samples. Storage of baobab products can last several months with harvesting activities peaking in April, yet sales dominating in the hot months toward the end of the year. Dryness was commonly identified as the most important quality indicator, but other factors such as cracks in the shell were more heavily disputed amongst different value chain actors. Although different quality standards have to be observed to be able to sell in formal retail outlets, risks of low-quality baobab entering formal retail outlets remains with the majority of more formal baobab processors obtaining their raw material via informal pathways. There is a dire need to strengthen the institutional framework and enabling environment to foster the best-possible integration of forest resources into prevailing agri-food systems and enable the production of high-quality products for both the formal and the informal sector.
Collapse
|
25
|
Salman MK, Mudalal S. Quality control and mycotoxin levels in food in the Palestinian market. FOOD ADDITIVES & CONTAMINANTS. PART B, SURVEILLANCE 2022; 15:1-6. [PMID: 35262451 DOI: 10.1080/19393210.2022.2046651] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/22/2022] [Indexed: 12/16/2022]
Abstract
A total of 51 food samples (18 rice, 17 wheat flour, and 16 nuts) were randomly collected from different shops and analysed for the presence of total aflatoxins, ochratoxin A and fumonisins, using a lateral flow competitive immunochromatographic assay method. Mycological contamination (total aerobic and fungi count), colour index (L*a*b*) and moisture content were also evaluated. Sensory characteristics for mycotoxins contaminated and uncontaminated samples of rice and wheat flour were evaluated by 40 panellists. Forty-five per cent of all samples were positive for aflatoxins as the most occurred mycotoxins, with a range of 2-8.1 μg/kg. Fungal counts were not significantly different between contaminated and uncontaminated rice and wheat flour samples. In addition, panellists were able to discriminate between contaminated and uncontaminated rice samples by detection of mouldy flavour, spoilage symptoms, earthy flavour, and the degree of freshness.
Collapse
Affiliation(s)
- Mohammed K Salman
- Department of Nutrition and Food Technology, Faculty of Agriculture and Veterinary Medicine, An-Najah National University, Nablus
| | - Samer Mudalal
- Department of Nutrition and Food Technology, Faculty of Agriculture and Veterinary Medicine, An-Najah National University, Nablus
| |
Collapse
|
26
|
Lactic Acid Bacteria from African Fermented Cereal-Based Products: Potential Biological Control Agents for Mycotoxins in Kenya. J Toxicol 2022; 2022:2397767. [PMID: 35242183 PMCID: PMC8888082 DOI: 10.1155/2022/2397767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/29/2022] [Indexed: 12/26/2022] Open
Abstract
Cereals play an important role in global food security. Data from the UN Food and Agriculture Organization projects increased consumption of cereals from 2.6 billion tonnes in 2017 to approximately 2.9 billion tonnes by 2027. However, cereals are prone to contamination by toxigenic fungi, which lead to mycotoxicosis. The current methods for mycotoxin control involve the use of chemical preservatives. However, there are concerns about the use of chemicals in food preservation due to their effects on the health, nutritional quality, and organoleptic properties of food. Therefore, alternative methods are needed that are affordable and simple to use. The fermentation technique is based on the use of microorganisms mainly to impart desirable sensory properties and shelf-life extension. The lactic acid bacteria (LAB) are generally regarded as safe (GRAS) due to their long history of application in food fermentation systems and ability to produce antimicrobial compounds (hydroxyl fatty acids, organic acids, phenyllactic acid, hydrogen peroxide, bacteriocins, and carbon dioxide) with a broad range of antifungal activity. Hence, LAB can inhibit the growth of mycotoxin-producing fungi, thereby preventing the production of mycotoxins. Fermentation is also an efficient technique for improving nutrient bioavailability and other functional properties of cereal-based products. This review seeks to provide evidence of the potential of LAB from African fermented cereal-based products as potential biological agents against mycotoxin-producing fungi.
Collapse
|
27
|
Su Z, Li T, Wu D, Wu Y, Li G. Recent Progress on Single-Molecule Detection Technologies for Food Safety. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:458-469. [PMID: 34985271 DOI: 10.1021/acs.jafc.1c06808] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Rapid and sensitive detection technologies for food contaminants play vital roles in food safety. Due to the complexity of the food matrix and the trace amount distribution, traditional methods often suffer from unsatisfying accuracy, sensitivity, or specificity. In past decades, single-molecule detection (SMD) has emerged as a way to realize the rapid and ultrasensitive measurement with low sample consumption, showing a great potential in food contaminants detection. For instance, based on the nanopore technique, simple and effective methods for single-molecule analysis of food contaminants have been developed. To our knowledge, there has been a rare review that focuses on SMD techniques for food safety. The present review attempts to cover some typical SMD methods in food safety, including electrochemistry, optical spectrum, and atom force microscopy. Then, recent applications of these techniques for detecting food contaminants such as biotoxins, pesticides, heavy metals, and illegal additives are reviewed. Finally, existing research challenges and future trends of SMD in food safety are also tentatively proposed.
Collapse
Affiliation(s)
- Zhuoqun Su
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Tong Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Di Wu
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, United Kingdom
| | - Yongning Wu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Guoliang Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
28
|
Ashraf R, Rashid S, Rasheed I, Asif S. Early embryonic death in equines and camelids. Open Vet J 2022; 12:903-909. [PMID: 36777062 PMCID: PMC9805778 DOI: 10.5455/ovj.2022.v12.i6.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/01/2022] [Indexed: 12/26/2022] Open
Abstract
This paper includes the study of early embryonic death (EED), predisposing factors of EED and treatment. EED refers to the fetal mortality which varies in mare and camelids but most probably not later than 50 days of gestation. This duration may be divided into very early mortality, early mortality and late embryonic mortality. This also varies in mare and camelids. There are different embryonic, maternal, environmental/external, and infectious and noninfectious factors which lead to early embryonic loss. Diagnosis is very difficult as in most of the cases resorption of fetus occurs but it is done by the use of ultrasound. Unfortunately, there is no treatment to avoid early embryonic mortality. However, new reproductive technologies have increased the service rate in a herd, and efforts are still being made to determine the rate and frequency of camel embryonic loss.
Collapse
Affiliation(s)
- Rehan Ashraf
- Corresponding Author: Rehan Ashraf. Faculty of Veterinary Sciences, University of Agriculture, Faisalabad, Pakistan.
| | | | | | | |
Collapse
|
29
|
Imade F, Ankwasa EM, Geng H, Ullah S, Ahmad T, Wang G, Zhang C, Dada O, Xing F, Zheng Y, Liu Y. Updates on food and feed mycotoxin contamination and safety in Africa with special reference to Nigeria. Mycology 2021; 12:245-260. [PMID: 34900380 PMCID: PMC8654414 DOI: 10.1080/21501203.2021.1941371] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Mycotoxin contamination of food and feed is a major concern in sub-Sahara African countries, particularly Nigeria. It represents a significant limit to health of human, livestock as well as the international trade. Aflatoxins, fumonisins, ochratoxin, zearalenone, deoxynivalenol and beauvericin are the major mycotoxins recognised in the aetiology of food safety challenges that precipitated countless number of diseases. In Nigeria, aflatoxins and fumonisin found in nearly all crops are the most common mycotoxins of economic and health importance such as sorghum, maize and groundnuts. Thus, consumption of food contaminated with mycotoxins are inevitable, hence the need for adequate regulation is necessary in these frontier economies as done in many developed economies to ensure food safety for human and animals. In low and middle-income countries, especially Nigeria, there is lack of awareness and sufficient information on the risk associated with consequent of mycotoxin contamination on wellbeing of human, animals health and the economy. It is based on the foregoing that this paper summarized the status of mycotoxin present in Nigerian food and feeds relative to the global regulatory standards. This aimed at preventing consuming mycotoxin contaminated food stuff while confronting its associated challenges. Suggestions on some possible control strategies to mitigate vending mycotoxin food and feeds were made.
Collapse
Affiliation(s)
- Francis Imade
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences /Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, China.,Botany Department, Faculty of Life Sciences, Ambrose Alli University, Ekpoma, Edo State, Edo State Nigeria
| | - Edgar Mugizi Ankwasa
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences /Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Hairong Geng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences /Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Sana Ullah
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences /Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Tanvir Ahmad
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences /Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Gang Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences /Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Chenxi Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences /Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Oyeyemi Dada
- Department of Crop Protection and Environmental Biology, University of Ibadan, Nigeria
| | - Fuguo Xing
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences /Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yongquan Zheng
- State Key Laboratory for Biology Pests, Institute of Plant Protection, Chinense Academy of Agricultural Sciences, Beljing, China
| | - Yang Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences /Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, China.,School of Food Science and Engineering, Foshan University/South China Food Safety Research Center, Guangdong, China
| |
Collapse
|
30
|
Aljazzar A, El-Ghareeb WR, Darwish WS, Abdel-Raheem SM, Ibrahim AM. Content of total aflatoxin, lead, and cadmium in the bovine meat and edible offal: study of their human dietary intake, health risk assessment, and molecular biomarkers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:61225-61234. [PMID: 34170471 DOI: 10.1007/s11356-021-12641-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 01/20/2021] [Indexed: 06/13/2023]
Abstract
The objectives of the present study were first to determine the residual contents of total aflatoxins (AFTs), lead (Pb), and cadmium (Cd) in the edible tissues of the cattle reared in Al-Ahsa, Saudi Arabia. Al-Ahsa is the largest governorate in the Eastern Province of Saudi Arabia. The two main economic activities of Al-Ahsa are oil production (industrial) and agriculture. Besides, dietary intake and possible health risks for Saudi population were further calculated. In order to establish potential molecular biomarkers for xenobiotic exposure in cattle, the mRNA expression of xenobiotic-metabolizing enzymes (XMEs) including cytochrome P450 (CYP) 1A1, NAD(P)H dehydrogenase [quinone] 1 (NQO1), metallothionein (MT) 1A, and heat shock protein (HSP) 70 was investigated in the different tissues of the cattle. The tested XMEs were selected because of their specific roles in the metabolism and detoxification of AFTs, Pb, and Cd. The obtained results revealed that the liver had significantly the highest AFT content, while all examined muscle samples had no AFT residues. Consumption of the bovine liver and kidneys represents the highest source for the dietary exposure to total AFTs (0.05-0.98 μg/kg/day), Pb (0.06-0.19 mg/kg/day), and Cd (0.08-0.19 mg/kg/day) among the examined tissues. Therefore, excessive intake of such organs might pose a public health concern, particularly among children. Significant upregulation of mRNA expressions of CYP1A1, NQO1, MT1A, and HSP70 was observed in the different tissues of the cattle in comparison with the muscle. This upregulation had significant positive correlation with the accumulated AFTs, Pb, and Cd. This indicates the possible use of CYP1A1, NQO1, MT1A, and HSP70 as potential biomarkers for the exposure of the cattle to AFTs, Pb, and Cd.
Collapse
Affiliation(s)
- Ahmed Aljazzar
- Department of Pathology, College of Veterinary Medicine, King Faisal University, P.O. Box: 400, Hofuf, Al-Ahsa, 31982, Saudi Arabia
| | - Waleed Rizk El-Ghareeb
- Department of Veterinary Public Health, College of Veterinary Medicine, King Faisal University, P.O. Box: 400, Hofuf, Al-Ahsa, 31982, Saudi Arabia.
| | - Wageh Sobhy Darwish
- Food Control Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Sherief M Abdel-Raheem
- Department of Veterinary Public Health, College of Veterinary Medicine, King Faisal University, P.O. Box: 400, Hofuf, Al-Ahsa, 31982, Saudi Arabia
| | - Abdelazim M Ibrahim
- Department of Pathology, College of Veterinary Medicine, King Faisal University, P.O. Box: 400, Hofuf, Al-Ahsa, 31982, Saudi Arabia
| |
Collapse
|
31
|
Wang Z, Luo P, Zheng B. A Rapid and Sensitive Fluorescent Microsphere-Based Lateral Flow Immunoassay for Determination of Aflatoxin B1 in Distillers' Grains. Foods 2021; 10:foods10092109. [PMID: 34574219 PMCID: PMC8468960 DOI: 10.3390/foods10092109] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 12/20/2022] Open
Abstract
Aflatoxin B1 (AFB1) is a toxic compound naturally produced by the genera Aspergillus. Distillers' grains can be used as animal feed since they have high content of crude protein and other nutrients. However, they are easily contaminated by mycotoxins, and currently there are no rapid detection methods for AFB1 in distillers' grains. In this study, a lateral flow immunoassay (LFIA) based on red fluorescent microsphere (FM), is developed for quantitative detection of AFB1 in distillers' grains. The whole test can be completed within 15 min, with the cut-off value being 25.0 μg/kg, and the quantitative limit of detection (qLOD) being 3.4 μg/kg. This method represents satisfactory recoveries of 95.2-113.0%, and the coefficients of variation (CVs) are less than 7.0%. Furthermore, this technique is successfully used to analyze AFB1 in real samples, and the results indicates good consistency with that of high-performance liquid chromatography (HPLC). The correlation coefficient is found to be greater than 0.99. The proposed test strip facilitates on-site, cost-effective, and sensitive monitoring of AFB1 in distillers' grains.
Collapse
Affiliation(s)
- Zifei Wang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
- Chinese Academy of Medical Science Research Unit (No. 2019RU014), NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100022, China;
| | - Pengjie Luo
- Chinese Academy of Medical Science Research Unit (No. 2019RU014), NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100022, China;
| | - Baodong Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
- Correspondence: ; Tel.: +86-0591-83705076
| |
Collapse
|
32
|
Keller B, Russo T, Rembold F, Chauhan Y, Battilani P, Wenndt A, Connett M. The potential for aflatoxin predictive risk modelling in sub-Saharan Africa: a review. WORLD MYCOTOXIN J 2021. [DOI: 10.3920/wmj2021.2683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This review presents the current state of aflatoxin risk prediction models and their potential for value actors throughout the food chain in sub-Saharan Africa, with a specific focus on improving smallholder farmer management practices. Several empirical and mechanistic models have been developed either in academic research or by private sector aggregators and processors in high-income countries including Australia, the USA, and Southern Europe, but these models have been only minimally applied in sub-Saharan Africa, where there is significant potential and increasing need due to climate variability. Predictions can be made based on historic occurrence data using either a mechanistic microbiological framework for aflatoxin accumulation or an empirical model based on statistical correlations with climate conditions and local agronomic factors. Model results can then be distributed to smallholders through private, public, or mobile extension services, used by policymakers for strategy or policy, or utilised by private sector institutions for management decisions. Specific agricultural advice can be given during the three most critical points in the phenological cycle: preseason insight including sowing timing and crop varieties, preharvest advice about management and harvest timing, and postharvest optimal practices including storage, drying, and market information. Model development for sub-Saharan Africa is limited by a dearth of georeferenced aflatoxin occurrence data and real-time high resolution climate data; the wide diversity of farm typologies each with significant information and technology gaps; a prevalence of informal market structures and lack of economic incentives systems; and general lack of awareness around aflatoxins and best management practices to mitigate risk. Given advancements towards solving these challenges, predictive aflatoxin models can be integrated into decision support platforms to focus on optimisation of value for smallholders by minimising yield and nutritional losses, which can propagate value throughout the production and postharvest phases.
Collapse
Affiliation(s)
- B. Keller
- Global Good, 3150 139th Ave SE, Bellevue, WA 98005, USA
| | - T. Russo
- Global Good, 3150 139th Ave SE, Bellevue, WA 98005, USA
| | - F. Rembold
- European Commission, Joint Research Centre, Via E. Fermi 2749, 21027 Ispra, Italy
| | - Y. Chauhan
- Department of Agriculture and Fisheries, 214 Kingaroy Cooyar Road, Kingaroy, QLD 4610, Australia
| | - P. Battilani
- Department of Sustainable Crop Production (DI.PRO.VE.S.): Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - A. Wenndt
- Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Sciences, Cornell University, 334 Plant Science Building, Ithaca, NY 14853-4203, USA
| | - M. Connett
- Global Good, 3150 139th Ave SE, Bellevue, WA 98005, USA
| |
Collapse
|
33
|
Owumi SE, Najophe SE, Idowu TB, Nwozo SO. Protective mechanisms of gallic acid on hepatorenal dysfunction of zearalenone treated rat. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00828-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
34
|
Yu J, Yang M, Han J, Pang X. Fungal and mycotoxin occurrence, affecting factors, and prevention in herbal medicines: a review. TOXIN REV 2021. [DOI: 10.1080/15569543.2021.1925696] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Jingsheng Yu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, China
| | - Meihua Yang
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jianping Han
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, China
| | - Xiaohui Pang
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, China
| |
Collapse
|
35
|
Aboagye-Nuamah F, Kwoseh CK, Maier DE. Toxigenic mycoflora, aflatoxin and fumonisin contamination of poultry feeds in Ghana. Toxicon 2021; 198:164-170. [PMID: 34019909 DOI: 10.1016/j.toxicon.2021.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/28/2021] [Accepted: 05/13/2021] [Indexed: 12/11/2022]
Abstract
The study was undertaken to identify the major mycotoxigenic fungi, aflatoxin and fumonisin levels in prepared poultry feeds in Ghana. Three hundred and fifty (350) prepared feed samples were randomly collected from 133 commercial poultry farms, 76 feed processors and eight (8) feed vendors in three major poultry producing regions of Ghana over two seasons. Fungi were isolated using the serial dilution method on potato dextrose agar and identified using standard methods of identification. Total aflatoxin and fumonisin levels were quantified using AgraStrip® Total Aflatoxin and Fumonisin Quantitative test Watex® from RomerLab, USA. Eight (8) different fungi were isolated from the feed samples with isolation frequency as follows: Aspergillus flavus (47%), A. niger (24%), A. fumigatus (17%), A. oryzae (3%), A. tamarii (2%), Penicillium sp. (3%), Colletotrichum sp. (4%) and Rhizopus sp. (0.1%). Feed samples collected during the rainy season recorded higher mean colony counts (3.39 ± 0.29) than that of the dry season (1.10 ± 0.18). Total aflatoxin and fumonisin levels ranged from 0 to 118 ppb with a mean of 57.25 ± 2.55 ppb, and 0.28-15 ppm with a mean of 1.54 ± 0.12 ppm, respectively. The study revealed co-occurrence of aflatoxin and fumonisin in all the feed samples. Significant correlations (r = 0.298, r = 0.694) (p < 0.05) were observed among the aflatoxin and fumonisin levels and the fungi isolated. Seventy-four percent (74%) of all the feed samples exceeded the 15 ppb Ghana Standards Authority threshold, the EU regulatory limit of 20 ppb and the FAO/WHO recommended maximum permissible limit of 30 ppb for poultry feeds. Although fumonisin levels were less than the EU guidance values of 20 ppm for poultry feeds, 20% of the samples were higher than the FAO/WHO maximum tolerable daily intake limit of 2 ppm. Proper handling of prepared feeds and ingredients could prevent or minimize toxigenic fungi contamination and lower the likelihood of mycotoxin development in poultry feeds.
Collapse
Affiliation(s)
- Francis Aboagye-Nuamah
- Department of Nursing and Applied Sciences, Methodist University College Ghana, Wenchi Campus, Ghana; Department of Crop and Soil Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
| | - Charles Kodia Kwoseh
- Department of Crop and Soil Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Dirk E Maier
- Department of Agricultural and Biosystems Engineering, Iowa State University of Science and Technology, Ames, IA, USA
| |
Collapse
|
36
|
Joutsjoki VV, Korhonen HJ. Management strategies for aflatoxin risk mitigation in maize, dairy feeds and milk value chains—case study Kenya. FOOD QUALITY AND SAFETY 2021. [DOI: 10.1093/fqsafe/fyab005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Abstract
Widespread aflatoxin contamination of a great number of food and feed crops has important implications on global trade and health. Frequent occurrence of aflatoxin in maize and milk poses serious health risks to consumers because these commodities are staple foods in many African countries. This situation calls for development and implementation of rigorous aflatoxin control measures that encompass all value chains, focusing on farms where food and feed-based commodities prone to aflatoxin contamination are cultivated. Good agricultural practices (GAP) have proven to be an effective technology in mitigation and management of the aflatoxin risk under farm conditions. The prevailing global climate change is shown to increase aflatoxin risk in tropical and subtropical regions. Thus, there is an urgent need to devise and apply novel methods to complement GAP and mitigate aflatoxin contamination in the feed, maize and milk value chains. Also, creation of awareness on aflatoxin management through training of farmers and other stakeholders and enforcement of regular surveillance of aflatoxin in food and feed chains are recommended strategies. This literature review addresses the current situation of aflatoxin occurrence in maize, dairy feeds and milk produced and traded in Kenya and current technologies applied to aflatoxin management at the farm level. Finally, a case study in Kenya on successful application of GAP for mitigation of aflatoxin risk at small-scale farms will be reviewed.
Collapse
|
37
|
Case-Control Study of Nodding Syndrome in Acholiland: Urinary Multi-Mycotoxin Screening. Toxins (Basel) 2021; 13:toxins13050313. [PMID: 33925470 PMCID: PMC8145943 DOI: 10.3390/toxins13050313] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/21/2021] [Accepted: 04/24/2021] [Indexed: 11/17/2022] Open
Abstract
This case-control study adds to the growing body of knowledge on the medical, nutritional, and environmental factors associated with Nodding Syndrome (NS), a seizure disorder of children and adolescents in northern Uganda. Past research described a significant association between NS and prior history of measles infection, dependence on emergency food and, at head nodding onset, subsistence on moldy maize, which has the potential to harbor mycotoxins. We used LC-MS/MS to screen for current mycotoxin loads by evaluating nine analytes in urine samples from age-and-gender matched NS cases (n = 50) and Community Controls (CC, n = 50). The presence of the three mycotoxins identified in the screening was not significantly different between the two groups, so samples were combined to generate an overall view of exposure in this community during the study. Compared against subsequently run standards, α-zearalenol (43 ± 103 µg/L in 15 samples > limit of quantitation (LOQ); 0 (0/359) µg/L), T-2 toxin (39 ± 81 µg/L in 72 samples > LOQ; 0 (0/425) µg/L) and aflatoxin M1 (4 ± 10 µg/L in 15 samples > LOQ; 0 (0/45) µg/L) were detected and calculated as the average concentration ± SD; median (min/max). Ninety-five percent of the samples had at least one urinary mycotoxin; 87% were positive for two of the three compounds detected. While mycotoxin loads at NS onset years ago are and will remain unknown, this study showed that children with and without NS currently harbor foodborne mycotoxins, including those associated with maize.
Collapse
|
38
|
Khan MT, Irfan M, Ahsan H, Ali S, Malik A, Pech-Cervantes A, Cui Z, Zhang Y, Wei D. CYP1A2, 2A13, and 3A4 network and interaction with aflatoxin B 1. WORLD MYCOTOXIN J 2021. [DOI: 10.3920/wmj2020.2621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Aspergillus fungi are known to produce aflatoxins, among which aflatoxin B1 (AFB1) is the most potent carcinogen that is metabolised by cytochrome P450 (CYP450). In the liver, AFB1 is metabolised into exo-8,9-epoxide by the CYP1A2 enzymes. The resulting epoxide can react with guanine to cause DNA damage. Natural inhibitors are being identified. However, the modes of action are poorly understood. In the current study, we have investigated the mode of action of AFB1 with CYP1A2, CYP3A4 and CYP2A13 using molecular dynamic simulation (MD simulation) approaches. The interaction network and paths among CYP1A2, CYP3A4, and CYP2A13 have been investigated using the STRING database and PathLinker plugin of Cytoscape. CYP3A4 is the most active protein involved in interactions with AFB1 during its metabolism. Residues 362ARG, 445SER, 450LEU and 451PHE of CYP1A2 are important, interacting with AFB1 and converting it to toxic exo-AFB1-8,9-epoxide (AFBEX). The pathway shows that microsomal epoxide hydrolase (EPHX1) may acts as initiator in the signalling pathway where CYP1A2, CYP3A4 and CYP2A13 interact in a sequential order. The interaction network shows there to be a strong association in expression among CYP1A2, CYP3A4 and CYP2A13 along with other metabolising enzymes. The complex of AFB1 and CYP1A2 was found to be stable during the MD simulation. This study provides a better understanding of the mode of action between AFB1 and CYP1A2, CYP3A4 and CYP2A13 which relates to the effective management of AFB1 toxicity. EPHX1 in the protein network may be an ideal target when designing inhibitors to prevent the toxin’s activation. Peptide inhibitors may be designed to block the substrate site residues of CYP1A2 in order to prevent the conversion from AFB1 into AFBEX. This would either neutralise or reduce its toxicity.
Collapse
Affiliation(s)
- M. Tahir Khan
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore-Pakistan, 54000 Lahore, Pakistan
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, and Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China P.R
| | - M. Irfan
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32611-7011, USA
| | - H. Ahsan
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - S. Ali
- Quaid-i-Azam University Islamabad, Pakistan
- Provincial Tuberculosis Reference Lab, Hayatabad Peshawar, Pakistan
| | - A. Malik
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore-Pakistan, 54000 Lahore, Pakistan
| | - A.A. Pech-Cervantes
- Agricultural Research Station, Fort Valley State University, 9000 Watson Blvd, Fort Valley, GA 31030, USA
| | - Z. Cui
- Department of Respiratory Medicine, XinHua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China P.R
| | - Y.J. Zhang
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China P.R
| | - D.Q. Wei
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, and Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China P.R
- Peng Cheng Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nanshan District, Shenzhen, Guangdong, 518055, China P.R
| |
Collapse
|
39
|
Meijer N, Kleter G, de Nijs M, Rau ML, Derkx R, van der Fels-Klerx HJ. The aflatoxin situation in Africa: Systematic literature review. Compr Rev Food Sci Food Saf 2021; 20:2286-2304. [PMID: 33682354 DOI: 10.1111/1541-4337.12731] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 01/16/2021] [Accepted: 02/01/2021] [Indexed: 11/29/2022]
Abstract
Contamination of African staple foods is a major issue for human and animal health, nutrition, and trade. This review aimed to collect and synthesize the available evidence on geographical spread, scale of contamination, disease burden, economic impact, and mitigation measures for aflatoxins in Africa by way of a systematic literature review. This knowledge can enhance management strategies for the major challenges to combat aflatoxins. The search was conducted by applying a predefined search strategy, using bibliographic databases and websites, covering the period 2010 to 2018. Results showed that maize, peanuts, and animal feeds were the most studied commodities. For maize, all studies indicated mean AFB1 to exceed the European Union legal limit. From studies on contamination levels and biomarkers, it is clear that overall exposure is high, leading to a substantial increase in long-term disease burden. In addition, concentrations in food occasionally can reach very high levels, causing acute aflatoxicoses. The trade-related impact of aflatoxin contamination was mainly evaluated from the standpoint of aflatoxin regulation affecting products imported from Africa. There was a limited number of studies on health-related economic impacts, pointing out a gap in peer-reviewed literature. A number of mitigation measures have been developed, but proof of cost-effectiveness or even costs alone of the practices is often lacking. We recommend more emphasis to be put in peer-reviewed studies on evidence-based cost-effective mitigation strategies for aflatoxins, on the scale and spread of the problem and its impacts on public health and economics for use in evidence-based policies.
Collapse
Affiliation(s)
- Nathan Meijer
- Wageningen Food Safety Research (WFSR), Wageningen, The Netherlands
| | - Gijs Kleter
- Wageningen Food Safety Research (WFSR), Wageningen, The Netherlands
| | - Monique de Nijs
- Wageningen Food Safety Research (WFSR), Wageningen, The Netherlands
| | - Marie-Luise Rau
- Wageningen Economic Research (WECR), Den Haag, The Netherlands
| | - Ria Derkx
- Wageningen University & Research - Library, Wageningen, The Netherlands
| | | |
Collapse
|
40
|
Rotimi SO, Rotimi OA, Salhia B. A Review of Cancer Genetics and Genomics Studies in Africa. Front Oncol 2021; 10:606400. [PMID: 33659210 PMCID: PMC7917259 DOI: 10.3389/fonc.2020.606400] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/14/2020] [Indexed: 12/24/2022] Open
Abstract
Cancer is the second leading cause of death globally and is projected to overtake infectious disease as the leading cause of mortality in Africa within the next two decades. Cancer is a group of genomic diseases that presents with intra- and inter-population unique phenotypes, with Black populations having the burden of morbidity and mortality for most types. At large, the prevention and treatment of cancers have been propelled by the understanding of the genetic make-up of the disease of mostly non-African populations. By the same token, there is a wide knowledge gap in understanding the underlying genetic causes of, and genomic alterations associated with, cancer among black Africans. Accordingly, we performed a review of the literature to survey existing studies on cancer genetics/genomics and curated findings pertaining to publications across multiple cancer types conducted on African populations. We used PubMed MeSH terms to retrieve the relevant publications from 1990 to December 2019. The metadata of these publications were extracted using R text mining packages: RISmed and Pubmed.mineR. The data showed that only 0.329% of cancer publications globally were on Africa, and only 0.016% were on cancer genetics/genomics from Africa. Although the most prevalent cancers in Africa are cancers of the breast, cervix, uterus, and prostate, publications representing breast, colorectal, liver, and blood cancers were the most frequent in our review. The most frequently reported cancer genes were BRCA1, BRCA2, and TP53. Next, the genes reported in the reviewed publications’ abstracts were extracted and annotated into three gene ontology classes. Genes in the cellular component class were mostly associated with cell part and organelle part, while those in biological process and molecular function classes were mainly associated with cell process, biological regulation, and binding, and catalytic activity, respectively. Overall, this review highlights the paucity of research on cancer genomics on African populations, identified gaps, and discussed the need for concerted efforts to encourage more research on cancer genomics in Africa.
Collapse
Affiliation(s)
- Solomon O Rotimi
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.,Department of Biochemistry, Covenant University, Ota, Nigeria
| | - Oluwakemi A Rotimi
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.,Department of Biochemistry, Covenant University, Ota, Nigeria
| | - Bodour Salhia
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.,Norris Comprehensive Cancer Centre, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
41
|
Zinedine A, Ben Salah-Abbes J, Abbès S, Tantaoui-Elaraki A. Aflatoxin M1 in Africa: Exposure Assessment, Regulations, and Prevention Strategies - A Review. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 258:73-108. [PMID: 34611756 DOI: 10.1007/398_2021_73] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Aflatoxins are the most harmful mycotoxins causing health problems to human and animal. Many acute aflatoxin outbreaks have been reported in Africa, especially in Kenya and Tanzania. When ingested, aflatoxin B1 is converted by hydroxylation in the liver into aflatoxin M1, which is excreted in milk of dairy females and in urine of exposed populations. This review aims to highlight the AFM1 studies carried out in African regions (North Africa, East Africa, West Africa, Central Africa, and Southern Africa), particularly AFM1 occurrence in milk and dairy products, and in human biological fluids (breast milk, serum, and urine) of the populations exposed. Strategies for AFM1 detoxification will be considered, as well as AFM1 regulations as compared to the legislation adopted worldwide and the assessment of AFM1 exposure of some African populations. Egypt, Kenya, and Nigeria have the highest number of investigations on AFM1 in the continent. Indeed, some reports showed that 100% of the samples analyzed exceeded the EU regulations (50 ng/kg), especially in Zimbabwe, Nigeria, Sudan, and Egypt. Furthermore, AFM1 levels up to 8,000, 6,999, 6,900, and 2040 ng/kg have been reported in milk from Egypt, Kenya, Sudan, and Nigeria, respectively. Data on AFM1 occurrence in human biological fluids have also shown that exposure of African populations is mainly due to milk intake and breastfeeding, with 85-100% of children being exposed to high levels. Food fermentation in Africa has been tried for AFM1 detoxification strategies. Few African countries have set regulations for AFM1 in milk and derivatives, generally similar to those of the Codex alimentarius, the US or the EU standards.
Collapse
Affiliation(s)
- Abdellah Zinedine
- Faculty of Sciences, BIOMARE Laboratory, Applied Microbiology and Biotechnologies, Chouaib Doukkali University, El Jadida, Morocco.
| | - Jalila Ben Salah-Abbes
- Laboratory of Genetic, Biodiversity and Bio-Resources Valorization, University of Monastir, Monastir, Tunisia
| | - Samir Abbès
- Laboratory of Genetic, Biodiversity and Bio-Resources Valorization, University of Monastir, Monastir, Tunisia
- Higher Institute of Biotechnology of Béja, University of Jendouba, Jendouba, Tunisia
| | - Abdelrhafour Tantaoui-Elaraki
- Retired, Department of Food Sciences, Hassan II Institute of Agronomy and Veterinary Medicine - Rabat, Rabat-Instituts, Témara, Morocco
| |
Collapse
|
42
|
Mihafu FD, Issa JY, Kamiyango MW. Implication of Sensory Evaluation and Quality Assessment in Food Product Development: A Review. CURRENT RESEARCH IN NUTRITION AND FOOD SCIENCE JOURNAL 2020. [DOI: 10.12944/crnfsj.8.3.03] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The quality of food products is determined by physical properties, chemical composition, the level of contaminants (microbiological and toxic substances) and sensory attributes. Consumers around the world demand consistent supply of quality food products that reflect the value of the price they pay for them. The nature of raw materials and ingredients reflect the quality of food products in the market. Raw materials as well as packaging materials should be purchased based on the quality specifications that suppliers should adhere to. This review aimed at highlighting the importance of using objective assessment tools and consumer/sensory evaluation in determining the quality and acceptability of new food products. Objective tests are used to measure one particular attribute of a food product rather than its overall quality. They are generally rapid, reliable and repeatable. On the other hand sensory methods measure the reaction to stimuli resulting from the consumption of a product. Sensory testing is often used to determine consumer acceptability of a food product and contributes to the design of quality systems hence considered as a technical support for quality assurance during food production. Not only that but also it helps to obtain feedback for making decisions and carrying out proper modification of a particular food product. Therefore objective methods and sensory evaluation are indispensable tools for routine quality control of new food products as well as the existing ones.
Collapse
Affiliation(s)
| | - Joseph Yohane Issa
- Centre for Innovation and Industrial Research, Malawi University of Science and Technology, Limbe, Malawi
| | | |
Collapse
|
43
|
Francesconi S, Steiner B, Buerstmayr H, Lemmens M, Sulyok M, Balestra GM. Chitosan Hydrochloride Decreases Fusarium graminearum Growth and Virulence and Boosts Growth, Development and Systemic Acquired Resistance in Two Durum Wheat Genotypes. Molecules 2020; 25:E4752. [PMID: 33081211 PMCID: PMC7587526 DOI: 10.3390/molecules25204752] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 11/26/2022] Open
Abstract
Fusarium head blight (FHB) is a devastating disease for cereals. FHB is managed by fungicides at anthesis, but their efficacy is variable. Conventional fungicides accumulate in the soil and are dangerous for animal and human health. This study assayed the antifungal ability of chitosan hydrochloride against Fusarium graminearum. Chitosan reduced F. graminearum growth and downregulated the transcript of the major genes involved in the cell growth, respiration, virulence, and trichothecenes biosynthesis. Chitosan promoted the germination rate, the root and coleoptile development, and the nitrogen balance index in two durum wheat genotypes, Marco Aurelio (FHB-susceptible) and DBC480 (FHB-resistant). Chitosan reduced FHB severity when applied on spikes or on the flag leaves. FHB severity in DBC480 was of 6% at 21 dpi after chitosan treatments compared to F. graminearum inoculated control (20%). The elicitor-like property of chitosan was confirmed by the up-regulation of TaPAL, TaPR1 and TaPR2 (around 3-fold). Chitosan decreased the fungal spread and mycotoxins accumulation. This study demonstrated that the non-toxic chitosan is a powerful molecule with the potential to replace the conventional fungicides. The combination of a moderately resistant genotype (DBC480) with a sustainable compound (chitosan) will open new frontiers for the reduction of conventional compounds in agriculture.
Collapse
Affiliation(s)
- Sara Francesconi
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via San Camillo de Lellis, snc, 01100 Viterbo, Italy
| | - Barbara Steiner
- Department of Agrobiotechnology Tulln (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Konrad Lorenz Straße 20, A-3430 Tulln an der Donau, Austria; (B.S.); (H.B.); (M.L.); (M.S.)
| | - Hermann Buerstmayr
- Department of Agrobiotechnology Tulln (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Konrad Lorenz Straße 20, A-3430 Tulln an der Donau, Austria; (B.S.); (H.B.); (M.L.); (M.S.)
| | - Marc Lemmens
- Department of Agrobiotechnology Tulln (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Konrad Lorenz Straße 20, A-3430 Tulln an der Donau, Austria; (B.S.); (H.B.); (M.L.); (M.S.)
| | - Michael Sulyok
- Department of Agrobiotechnology Tulln (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Konrad Lorenz Straße 20, A-3430 Tulln an der Donau, Austria; (B.S.); (H.B.); (M.L.); (M.S.)
| | - Giorgio Mariano Balestra
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via San Camillo de Lellis, snc, 01100 Viterbo, Italy
| |
Collapse
|
44
|
Mamo FT, Abate BA, Tesfaye K, Nie C, Wang G, Liu Y. Mycotoxins in Ethiopia: A Review on Prevalence, Economic and Health Impacts. Toxins (Basel) 2020; 12:E648. [PMID: 33049980 PMCID: PMC7601512 DOI: 10.3390/toxins12100648] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 12/12/2022] Open
Abstract
Mycotoxigenic fungi and their toxins are a global concern, causing huge economic and health impacts in developing countries such as Ethiopia, where the mycotoxin control system is inadequate. This work aimed to review the occurrences of agriculturally essential fungi such as Aspergillus, Fusarium, and Penicillium and their major mycotoxins in Ethiopian food/feedstuffs. The incidents of crucial toxins, including aflatoxins (B1, B2, G1, G2, M1), fumonisins (B1, B2), zearalenone, deoxynivalenol, and ochratoxin A, were studied. The impacts of chronic aflatoxin exposure on liver cancer risks, synergy with chronic hepatitis B infection, and possible links with Ethiopian childhood malnutrition were thoroughly examined. In addition, health risks of other potential mycotoxin exposure are also discussed, and the impacts of unsafe level of mycotoxin contaminations on economically essential export products and livestock productions were assessed. Feasible mycotoxin mitigation strategies such as biocontrol methods and binding agents (bentonite) were recommended because they are relatively cheap for low-income farmers and widely available in Ethiopia, respectively. Moreover, Ethiopian mycotoxin regulations, storage practice, adulteration practice, mycotoxin tests, and knowledge gaps among value chain actors were highlighted. Finally, sustained public awareness was suggested, along with technical and human capacity developments in the food control sector.
Collapse
Affiliation(s)
- Firew Tafesse Mamo
- School of Food Science and Engineering, Foshan University, Foshan 528231, China; (F.T.M.); (C.N.)
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
- Bahir Dar Institute of Technology, Bahir Dar University, Bahir Dar 79, Ethiopia
| | | | - Kassahun Tesfaye
- Ethiopian Biotechnology Institute, Addis Ababa 5954, Ethiopia; (B.A.A.); (K.T.)
| | - Chengrong Nie
- School of Food Science and Engineering, Foshan University, Foshan 528231, China; (F.T.M.); (C.N.)
| | - Gang Wang
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| | - Yang Liu
- School of Food Science and Engineering, Foshan University, Foshan 528231, China; (F.T.M.); (C.N.)
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| |
Collapse
|
45
|
Gbashi S, Njobeh PB, Madala NE, De Boevre M, Kagot V, De Saeger S. Parallel validation of a green-solvent extraction method and quantitative estimation of multi-mycotoxins in staple cereals using LC-MS/MS. Sci Rep 2020; 10:10334. [PMID: 32587262 PMCID: PMC7316717 DOI: 10.1038/s41598-020-66787-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 05/13/2020] [Indexed: 11/21/2022] Open
Abstract
In this study, 15 different mycotoxins were estimated in three staple cereals from selected agro-ecological regions in Nigeria using a 'novel' green extraction method, pressurized hot water extraction (PHWE) in comparison to a conventional solvent extraction method. Discrimination of the results of PHWE and solvent extraction using principal component analysis (PCA) and orthogonal projection to latent structures discriminate analysis (OPLS-DA) did not yield any differential clustering patterns. All maize samples (n = 16), 32% (n = 38) of sorghum and 35% (n = 37) of millet samples were positive for at least one of the 15 tested mycotoxins. Contamination levels for the cereals were higher in the warm humid rain forest region and gradually decreased towards the hot and arid region in the north of the country. The results demonstrate the applicability of PHWE as a possible alternative extraction method to conventional methods of extraction, which are solvent based.
Collapse
Affiliation(s)
- Sefater Gbashi
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, P.O Box 17011, Doornfontein Campus, 2028, Gauteng, South Africa.
| | - Patrick Berka Njobeh
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, P.O Box 17011, Doornfontein Campus, 2028, Gauteng, South Africa.
| | - Ntakadzeni Edwin Madala
- Department of Biochemistry, School of Mathematical and Natural Sciences, University of Venda, Thohoyandou, South Africa
| | - Marthe De Boevre
- Centre of Excellence in Mycotoxicology and Public Health, Department of Bioanalysis, Ghent University, 9000, Ghent, Belgium
| | - Victor Kagot
- Centre of Excellence in Mycotoxicology and Public Health, Department of Bioanalysis, Ghent University, 9000, Ghent, Belgium
| | - Sarah De Saeger
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, P.O Box 17011, Doornfontein Campus, 2028, Gauteng, South Africa
- Centre of Excellence in Mycotoxicology and Public Health, Department of Bioanalysis, Ghent University, 9000, Ghent, Belgium
| |
Collapse
|
46
|
Olum S, Scolding P, Hardy C, Obol J, Scolding NJ. Nodding syndrome: a concise review. Brain Commun 2020; 2:fcaa037. [PMID: 32954295 PMCID: PMC7425334 DOI: 10.1093/braincomms/fcaa037] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 12/12/2022] Open
Abstract
Nodding syndrome is an uncommon epileptic disorder of childhood onset, which appears to occur exclusively in clusters in sub-Saharan Africa. It was first reported in the 1960s, in what is now southern Tanzania, then in Liberia, and later in South Sudan and northern Uganda, with both epidemic and endemic patterns described. The cause remains unknown. Here we describe the background and development of descriptions of the disorder, review its clinical features and summarize current theories and studies concerning its cause, outlining the principal remaining research questions relating to this highly unusual disease.
Collapse
Affiliation(s)
- Sam Olum
- Faculty of Medicine, Gulu University, Gulu, Uganda
| | - Peter Scolding
- Department of Medicine, Imperial College Healthcare NHS Trust, London W12 0HS, UK
| | - Charlotte Hardy
- Faculty of Medicine, Gulu University, Gulu, Uganda.,Emergency Department, Royal United Hospital, Bath BA1 3NG, UK
| | - James Obol
- Faculty of Medicine, Gulu University, Gulu, Uganda
| | - Neil J Scolding
- Faculty of Medicine, Gulu University, Gulu, Uganda.,Institute of Clinical Neurosciences, University of Bristol, Learning and Research Building, Southmead Hospital, Bristol BS10 5NB, UK
| |
Collapse
|
47
|
Namulawa VT, Mutiga S, Musimbi F, Akello S, Ngángá F, Kago L, Kyallo M, Harvey J, Ghimire S. Assessment of Fungal Contamination in Fish Feed from the Lake Victoria Basin, Uganda. Toxins (Basel) 2020; 12:toxins12040233. [PMID: 32272644 PMCID: PMC7232351 DOI: 10.3390/toxins12040233] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/28/2020] [Accepted: 04/02/2020] [Indexed: 12/17/2022] Open
Abstract
The emergence of commercial fish farming has stimulated the establishment of fish feed factories in Uganda. However, no information is available on the safety of the feed, mainly due to lack of mycotoxin testing facilities and weak regulatory systems. A study was carried out to examine fungal colonization and mycotoxin contamination in fish feed samples (n = 147) of different types collected from nine fish farms (n = 81) and seven fish feed factories (n = 66) in the Lake Victoria Basin (LVB). Fungi were isolated in potato dextrose agar, grouped into morphotypes and representative isolates from each morphotype were identified based on the internal transcribed spacer (ITS) region of ribosomal DNA sequences. Aflatoxin B1 (AFB1) and total fumonisin (combinations of B1, B2 and B3; hereinafter named fumonisin) levels in feed samples were determined by enzyme-linked immunosorbent assay (ELISA). A wide range of fungi, including toxigenic Aspergillus flavus and Fusarium verticillioides, were isolated from the fish feed samples. AFB1 was detected in 48% of the factory samples and in 63% of the farm samples, with toxin levels <40 and >400 µg/kg, respectively. Similarly, 31% of the factory samples and 29% of the farm samples had fumonisin contamination ranging between 0.1 and 4.06 mg/kg. Pellets and powder had higher mycotoxin contamination compared to other commercially available fish feed types. This study shows AFB1 as a potential fish feed safety issue in the LVB and suggests a need for more research on mycotoxin residues in fish fillets.
Collapse
Affiliation(s)
- Victoria Tibenda Namulawa
- National Agricultural Research Organization, Aquaculture Research & Development Center, P.O. Box 530, Kampala 00256, Uganda;
- Biosciences eastern and central Africa-International Livestock Research Institute (BecA–ILRI) Hub, P.O. Box 30709-00100, Nairobi 00100, Kenya; (S.M.); (S.A.); (F.N.); (L.K.); (M.K.); (J.H.); (S.G.)
- Correspondence:
| | - Samuel Mutiga
- Biosciences eastern and central Africa-International Livestock Research Institute (BecA–ILRI) Hub, P.O. Box 30709-00100, Nairobi 00100, Kenya; (S.M.); (S.A.); (F.N.); (L.K.); (M.K.); (J.H.); (S.G.)
- Department of Plant Pathology, University of Arkansas, Fayetteville, NC 72701, USA
| | - Fred Musimbi
- National Agricultural Research Organization, Aquaculture Research & Development Center, P.O. Box 530, Kampala 00256, Uganda;
| | - Sundy Akello
- Biosciences eastern and central Africa-International Livestock Research Institute (BecA–ILRI) Hub, P.O. Box 30709-00100, Nairobi 00100, Kenya; (S.M.); (S.A.); (F.N.); (L.K.); (M.K.); (J.H.); (S.G.)
| | - Fredrick Ngángá
- Biosciences eastern and central Africa-International Livestock Research Institute (BecA–ILRI) Hub, P.O. Box 30709-00100, Nairobi 00100, Kenya; (S.M.); (S.A.); (F.N.); (L.K.); (M.K.); (J.H.); (S.G.)
| | - Leah Kago
- Biosciences eastern and central Africa-International Livestock Research Institute (BecA–ILRI) Hub, P.O. Box 30709-00100, Nairobi 00100, Kenya; (S.M.); (S.A.); (F.N.); (L.K.); (M.K.); (J.H.); (S.G.)
| | - Martina Kyallo
- Biosciences eastern and central Africa-International Livestock Research Institute (BecA–ILRI) Hub, P.O. Box 30709-00100, Nairobi 00100, Kenya; (S.M.); (S.A.); (F.N.); (L.K.); (M.K.); (J.H.); (S.G.)
| | - Jagger Harvey
- Biosciences eastern and central Africa-International Livestock Research Institute (BecA–ILRI) Hub, P.O. Box 30709-00100, Nairobi 00100, Kenya; (S.M.); (S.A.); (F.N.); (L.K.); (M.K.); (J.H.); (S.G.)
- Feed the Future Innovation Lab for the Reduction of Post-Harvest Loss, and Department of Plant Pathology; Kansas State University, Manhattan, KS 66506, USA
| | - Sita Ghimire
- Biosciences eastern and central Africa-International Livestock Research Institute (BecA–ILRI) Hub, P.O. Box 30709-00100, Nairobi 00100, Kenya; (S.M.); (S.A.); (F.N.); (L.K.); (M.K.); (J.H.); (S.G.)
| |
Collapse
|
48
|
Khan MK, Pandey A, Athar T, Choudhary S, Deval R, Gezgin S, Hamurcu M, Topal A, Atmaca E, Santos PA, Omay MR, Suslu H, Gulcan K, Inanc M, Akkaya MS, Kahraman A, Thomas G. Fusarium head blight in wheat: contemporary status and molecular approaches. 3 Biotech 2020; 10:172. [PMID: 32206506 PMCID: PMC7080935 DOI: 10.1007/s13205-020-2158-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/28/2020] [Indexed: 02/07/2023] Open
Abstract
Fusarium head blight (FHB) disease that occurs in wheat is caused by Fusarium graminearum and is a major risk to wheat yield. Although several research efforts focusing on FHB have been conducted in the past several decades, conditions have become more critical due to the increase in its virulent forms. In such a scenario, conferring complete resistance in plants seems to be difficult for handling this issue. The phenotyping for FHB and finding a solution for it at the genetic level comprises a long-term process as FHB infection is largely affected by environmental conditions. Modern molecular strategies have played a crucial role in revealing the host-pathogen interaction in FHB. The integration of molecular biology-based methods such as genome-wide association studies and marker-based genomic selection has provided potential cultivars for breeding programs. In this review, we aim at outlining the contemporary status of the studies conducted on FHB in wheat. The influence of FHB in wheat on animals and human health is also discussed. In addition, a summary of the advancement in the molecular technologies for identifying and developing the FHB-resistant wheat genetic resources is provided. It also suggests the future measures that are required to reduce the world's vulnerability to FHB which was one of the main goals of the US Wheat and Barley Scab Initiative.
Collapse
Affiliation(s)
- Mohd. Kamran Khan
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya, 42079 Turkey
| | - Anamika Pandey
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya, 42079 Turkey
| | - Tabinda Athar
- Faculty of Agriculture, Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040 Pakistan
| | - Saumya Choudhary
- Department of Molecular and Cellular Engineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad, 211007 India
- Biomedical Informatics Centre, National Institute of Pathology–Indian Council of Medical Research, New Delhi, 110029 India
| | - Ravi Deval
- Department of Biotechnology, Invertis University, Bareilly, India
| | - Sait Gezgin
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya, 42079 Turkey
| | - Mehmet Hamurcu
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya, 42079 Turkey
| | - Ali Topal
- Department of Field Crops, Selcuk University, Konya, 42079 Turkey
| | - Emel Atmaca
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya, 42079 Turkey
| | - Pamela Aracena Santos
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya, 42079 Turkey
| | - Makbule Rumeysa Omay
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya, 42079 Turkey
| | - Hatice Suslu
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya, 42079 Turkey
| | - Kamer Gulcan
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya, 42079 Turkey
| | - Merve Inanc
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya, 42079 Turkey
| | - Mahinur S. Akkaya
- School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian, 116023 Liaoning China
| | - Abdullah Kahraman
- Department of Field Crops, Faculty of Agriculture, Harran University, Sanliurfa, 63300 Turkey
| | - George Thomas
- Department of Molecular and Cellular Engineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad, 211007 India
| |
Collapse
|
49
|
Tang H, Darwish WS, El‐Ghareeb WR, Al‐Humam NA, Chen L, Zhong R, Xiao Z, Ma J. Microbial quality and formation of biogenic amines in the meat and edible offal of Camelus dromedaries with a protection trial using gingerol and nisin. Food Sci Nutr 2020; 8:2094-2101. [PMID: 32328276 PMCID: PMC7174210 DOI: 10.1002/fsn3.1503] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/16/2020] [Accepted: 02/18/2020] [Indexed: 12/15/2022] Open
Abstract
This study aimed firstly at the investigation of the microbial status of the camel meat and edible offal including liver, kidneys, lungs, rumen, and duodenum distributed at local markets of Egypt. Total plate count, total psychrophilic counts, total Enterobacteriaceae count, the most probable number of coliforms, and total mold counts were monitored at the collected samples. The produced biogenic amines (BA) in the camel meat and offal were further estimated. An experimental trial to investigate the antimicrobial potentials of either nisin, gingerol, or an equal mixture of both using camel muscle as a food matrix was conducted. The achieved results declared a high microbial load in the camel meat and the offal. Duodenum and rumen had the highest microbial counts followed by lungs, kidneys, liver, and muscle, respectively. Similarly, duodenum and rumen had the highest levels of BA, including tyramine, spermine, putrescine, cadaverine, and histamine. Both of nisin and ginger showed significant antimicrobial properties in a concentration-dependent manner. Thus, efficient hygienic measures during the handling of camel meat are highly recommended. In addition, using nisin, gingerol, or a mixture of both is an efficient strategy for improving the microbiological quality of the camel meat.
Collapse
Affiliation(s)
- Hui Tang
- Henry Fok School of Food Science and EngineeringShaoguan UniversityShaoguanChina
| | - Wageh Sobhy Darwish
- Food Control DepartmentFaculty of Veterinary MedicineZagazig UniversityZagazigEgypt
- Department of Health Science and TechnologyFaculty of Health SciencesHokkaido UniversitySapporoJapan
| | - Waleed Rizk El‐Ghareeb
- Department of Veterinary Public Health and Animal HusbandryCollege of Veterinary MedicineKing Faisal UniversityHofufSaudi Arabia
| | - Naser A. Al‐Humam
- Department of Microbiology and ParasitologyCollege of Veterinary MedicineKing Faisal UniversityHofufSaudi Arabia
| | - Lin Chen
- Henry Fok School of Food Science and EngineeringShaoguan UniversityShaoguanChina
| | - Rui‐Min Zhong
- Henry Fok School of Food Science and EngineeringShaoguan UniversityShaoguanChina
| | - Zi‐Jun Xiao
- Henry Fok School of Food Science and EngineeringShaoguan UniversityShaoguanChina
| | - Jin‐Kui Ma
- School of Food & Pharmaceutical EngineeringZhaoqing UniversityZhaoqingChina
| |
Collapse
|
50
|
Kebede H, Liu X, Jin J, Xing F. Current status of major mycotoxins contamination in food and feed in Africa. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.106975] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|