1
|
Dong R, Yu J, Yu F, Yang S, Qian Q, Zha Y. IGF-1/IGF-1R blockade ameliorates diabetic kidney disease through normalizing Snail1 expression in a mouse model. Am J Physiol Endocrinol Metab 2019; 317:E686-E698. [PMID: 31361542 DOI: 10.1152/ajpendo.00071.2019] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
This study investigated the role of insulin-like growth factor-1/insulin-like growth factor-1 receptor (IGF-1/IGF-1R) in the genesis and progression of diabetic kidney disease (DKD) in a streptozotocin (STZ)-induced mouse diabetes model. We showed elevated IGF-1 expression in the DKD kidneys after 16 wk of diabetic onset. Intraperitoneal administration of IGF-1R inhibitor (glycogen synthase kinase-3β, GSK4529) from week 8 to week 16 postdiabetes induction ameliorated urinary albumin excretion and kidney histological changes due to diabetes, including amelioration of glomerulomegaly, inflammatory infiltration, and tubulointerstitial fibrosis. The GSK4529 treatment also attenuated alterations in renal tubular expression of E-cad and matrix protein fibronectin. Moreover, renal fibrosis in DKD (without treatment) was associated with Snail1 overexpression that was effectively prevented by IGF-1R inhibition. Further experiments in cultured renal epithelial cells (NRK) showed that IGF-1 silencing reproduced in vivo effects of IGF-1R inhibition with markedly attenuated Snail1 expression and near normalization of the Ecad1 and fibronectin expression pattern. Further Snail1 silencing prevented high-glucose-induced changes without affecting IGF-1 expression, consistent with Snail1 acting downstream to IGF-1. The antifibrotic effects were also shown with benazepril or insulin treatment but to a much lesser degree. In summary, in STZ-induced diabetic mice, activation of IGF-1 in diabetic kidneys induces fibrogenesis through Snail1 upregulation. The diabetes-related histological and functional changes, as well as fibrogenesis, can be attenuated by IGF-1/IGF-1R inhibition.
Collapse
Affiliation(s)
- Rong Dong
- Guizhou University School of medicine, Gui Yang, China
- Department of Nephrology, Guizhou Provincial People's Hospital, Gui Yang, China
- NHC Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People's Hospital, Gui Yang, China
| | - Jiali Yu
- Department of Nephrology, Guizhou Provincial People's Hospital, Gui Yang, China
| | - Funxun Yu
- NHC Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People's Hospital, Gui Yang, China
| | - Song Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Gui Yang, China
| | - Qi Qian
- Department of Medicine, Division of Nephrology and Hypertension, Mayo Clinic, College of Medicine, Rochester, Minnesota
| | - Yan Zha
- Guizhou University School of medicine, Gui Yang, China
- Department of Nephrology, Guizhou Provincial People's Hospital, Gui Yang, China
| |
Collapse
|
2
|
Abstract
Insulin-like growth factor (IGF)-binding protein-2 (IGFBP-2), one of the most abundant circulating IGFBPs, is known to attenuate the biological action of IGF-1. Although the effect of IGFBP-2 in preventing metabolic disorders is well known, its regulatory mechanism remains unclear. In the present study, we demonstrated the transcriptional regulation of the Igfbp-2 gene by peroxisome-proliferator-activated receptor (PPAR) α in the liver. During fasting, both Igfbp-2 and PPARα expression levels were increased. Wy14643, a selective PPARα agonist, significantly induced Igfbp-2 gene expression in primary cultured hepatocytes. However, Igfbp-2 gene expression in Pparα null mice was not affected by fasting or Wy14643. In addition, through transient transfection and chromatin immunoprecipitation assay in fasted livers, we determined that PPARα bound to the putative PPAR-responsive element between −511 bp and −499 bp on the Igfbp-2 gene promoter, indicating that the Igfbp-2 gene transcription is activated directly by PPARα. To explore the role of PPARα in IGF-1 signalling, we treated primary cultured hepatocytes with Wy14643 and observed a decrease in the number of IGF-1 receptors (IGF-1Rs) and in Akt phosphorylation. No inhibition was observed in the hepatocytes isolated from Pparα null mice. These results suggest that PPARα controls IGF-1 signalling through the up-regulation of hepatic Igfbp-2 transcription during fasting and Wy14643 treatment. Insulin-like growth factor (IGF)-binding protein-2 (IGFBP-2) is known to attenuate the biological action of IGF-1, but its regulatory mechanism remains unclear. We demonstrate the transcriptional regulation of the hepatic Igfbp-2 gene by peroxisome-proliferator-activated receptor (PPAR) α during fasting. We also show how PPARα controls IGF-1 signalling through IGFBP-2.
Collapse
|
3
|
Narayanan RP, Fu B, Heald AH, Siddals KW, Oliver RL, Hudson JE, Payton A, Anderson SG, White A, Ollier WER, Gibson JM. IGFBP2 is a biomarker for predicting longitudinal deterioration in renal function in type 2 diabetes. Endocr Connect 2012; 1:95-102. [PMID: 23781310 PMCID: PMC3681324 DOI: 10.1530/ec-12-0053] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 09/19/2012] [Indexed: 01/22/2023]
Abstract
OBJECTIVE Insulin-like growth factors are implicated in the development of diabetic nephropathy. IGF-binding protein 2 (IGFBP2) and IGF2 are expressed in the kidney, but their associations with diabetic nephropathy are unclear. We therefore tested the hypothesis that circulating levels of IGF2 and IGFBP2 predict longitudinal renal function in individuals with type 2 diabetes. DESIGN AND METHODS IGFBP2 and IGF2 measurements were performed in 436 individuals (263 males) with type 2 diabetes. Linear mixed-effect regression analysis was used to model the relationship between plasma IGFBP2 concentration and longitudinal changes in estimated glomerular filtration rate (eGFR) over an 8-year period. Analyses were also performed for IGF1, IGF2, IGFBP1 and IGFBP3 concentrations as predictors of longitudinal renal outcomes. RESULTS High IGFBP2 concentration at baseline was associated with a decreased eGFR over an 8-year period (β=-0.02, (95% confidence interval -0.03 to -0.01), P<0.001). High IGFBP1, IGFBP2 and IGFBP3 were also associated with low baseline eGFR concentration. CONCLUSION This study demonstrates that IGFBP2 is a predictor of longitudinal deterioration of renal function in type 2 diabetes.
Collapse
Affiliation(s)
- Ram P Narayanan
- Vascular Research GroupThe University of ManchesterManchester, M13 9PTUK
- Correspondence should be addressed to R P Narayanan B-202, Clinical Sciences Building, Salford Royal NHS Foundation Trust, Stott Lane, Salford M6 8HD, UK Email
| | - Bo Fu
- School of Community Based Medicine, The University of ManchesterManchester, M13 9PTUK
| | - Adrian H Heald
- Vascular Research GroupThe University of ManchesterManchester, M13 9PTUK
| | - Kirk W Siddals
- Vascular Research GroupThe University of ManchesterManchester, M13 9PTUK
| | - Robert L Oliver
- Vascular Research GroupThe University of ManchesterManchester, M13 9PTUK
| | - Julie E Hudson
- Vascular Research GroupThe University of ManchesterManchester, M13 9PTUK
| | - Antony Payton
- Centre for Integrated Genomic Medical Research, The University of ManchesterManchester, M13 9PTUK
| | - Simon G Anderson
- Cardiovascular Research GroupThe University of ManchesterManchester, M13 9PTUK
| | - Anne White
- Endocrinology and Diabetes, Faculty of Medical, Human and Life SciencesThe University of ManchesterManchester, M13 9PTUK
| | - William E R Ollier
- Centre for Integrated Genomic Medical Research, The University of ManchesterManchester, M13 9PTUK
- Salford R&D, Salford Royal Hospital NHS Foundation TrustSalford, M6 8HDUK
| | - J Martin Gibson
- Vascular Research GroupThe University of ManchesterManchester, M13 9PTUK
- Department of Endocrinology and DiabetesSalford Royal Hospital NHS Foundation TrustSalford, M6 8HDUK
| |
Collapse
|
4
|
Li Z, Miard S, Laplante M, Sonenberg N, Picard F. Insulin stimulates IGFBP-2 expression in 3T3-L1 adipocytes through the PI3K/mTOR pathway. Mol Cell Endocrinol 2012; 358:63-8. [PMID: 22410287 DOI: 10.1016/j.mce.2012.02.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2011] [Revised: 02/15/2012] [Accepted: 02/23/2012] [Indexed: 11/30/2022]
Abstract
Insulin-like growth factor binding protein 2 (IGFBP-2) has been implicated in the etiology of several diseases, including the metabolic syndrome. Although IGFBP-2 derives mostly from the liver, recent evidence in mice and humans indicate that aging and obesity are associated with altered IGFBP-2 levels in white adipocytes. The present study was aimed at determining the mechanisms that control IGFBP-2 expression in mature adipocytes. IGFBP-2 mRNA and protein expression in serum-deprived 3T3-L1 adipocytes were twofold increased by acute insulin treatment. Co-treatments with the phosphatidylinositol 3-kinase (PI3K) inhibitor wortmannin or the mammalian target of rapamycin (mTOR) inhibitor rapamycin blunted the effects of insulin. Coherently, IGFBP-2 mRNA levels were robustly increased in adipocytes lacking either TSC2 or 4E-BP1. Insulin triggered the recruitment of CAAT/enhancer binding protein α (C/EBPα) to the IGFBP-2 proximal promoter. These findings suggest that insulin upregulates IGFBP-2 expression through a PI3K/mTOR/C/EBPα pathway in white adipocytes.
Collapse
Affiliation(s)
- Zhuo Li
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Laval University, QC, Canada G1V 4G5
| | | | | | | | | |
Collapse
|
5
|
IGF-1 induction by acylated steryl β-glucosides found in a pre-germinated brown rice diet reduces oxidative stress in streptozotocin-induced diabetes. PLoS One 2011; 6:e28693. [PMID: 22194889 PMCID: PMC3237479 DOI: 10.1371/journal.pone.0028693] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Accepted: 11/14/2011] [Indexed: 11/24/2022] Open
Abstract
Background The pathology of diabetic neuropathy involves oxidative stress on pancreatic β-cells, and is related to decreased levels of Insulin-like growth factor 1 (IGF-1). Acylated steryl β-glucoside (PR-ASG) found in pre-germiated brown rice is a bioactive substance exhibiting properties that enhance activity of homocysteine-thiolactonase (HTase), reducing oxidative stress in diabetic neuropathy. The biological importance of PR-ASG in pancreatic β-cells remains unknown. Here we examined the effects of PR-ASG on IGF-1 and glucose metabolism in β-cells exposed to oxidative stress. Methodology/Principal Findings In the present study, a pre-germinated brown rice (PR)-diet was tested in streptozotocin (STZ)-induced diabetic rats. Compared with diabetic rats fed control diets, the PR-diet fed rats showed an improvement of serum metabolic and neurophysiological parameters. In addition, IGF-1 levels were found to be increased in the serum, liver, and pancreas of diabetic rats fed the PR-diet. The increased IGF-1 level in the pancreas led us to hypothesize that PR-ASG is protective for islet β-cells against the extensive injury of advanced or severe diabetes. Thus we examined PR-ASG to determine whether it showed anti-apoptotic, pro-proliferative effects on the insulin-secreting β-cells line, INS-1; and additionally, whether PR-ASG stimulated IGF-1 autocrine secretion/IGF-1-dependent glucose metabolism. We have demonstrated for the first time that PR-ASG increases IGF-1 production and secretion from pancreatic β-cells. Conclusion/Significance These findings suggest that PR-ASG may affect pancreatic β-cells through the activation of an IGF-1-dependent mechanism in the diabetic condition. Thus, intake of pre-germinated brown rice may have a beneficial effect in the treatment of diabetes, in particular diabetic neuropathy.
Collapse
|
6
|
Otto KJ, Wyse BD, Cabot PJ, Smith MT. Insulin Implants Prevent the Temporal Development of Mechanical Allodynia and Opioid Hyposensitivity for 24-Wks in Streptozotocin (STZ)-Diabetic Wistar Rats. PAIN MEDICINE 2011; 12:782-93. [DOI: 10.1111/j.1526-4637.2011.01102.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Otto KJ, Wyse BD, Cabot PJ, Smith MT. Longitudinal Study of Painful Diabetic Neuropathy in the Zucker Diabetic Fatty Rat Model of Type 2 Diabetes: Impaired Basal G-Protein Activity Appears to Underpin Marked Morphine Hyposensitivity at 6 Months. PAIN MEDICINE 2011; 12:437-50. [DOI: 10.1111/j.1526-4637.2011.01067.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
8
|
Kuchler U, Spilka T, Baron K, Tangl S, Watzek G, Gruber R. Intermittent parathyroid hormone fails to stimulate osseointegration in diabetic rats. Clin Oral Implants Res 2011; 22:518-23. [PMID: 21251075 DOI: 10.1111/j.1600-0501.2010.02047.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVES Diabetes is considered a risk factor in the osseointegration of dental implants, which suggests that these patients might benefit from anabolic therapies. Preclinical studies, including investigations by this research group, revealed that intermittent administration of parathyroid hormone (PTH) stimulates bone formation on the surface of titanium implants under physiological conditions. However, the anabolic effect of PTH on osseointegration under the hyperglycemic condition of diabetes is unknown. METHODS The ability of PTH to stimulate osseointegration was investigated in 40 female Wistar rats that were randomly divided into the following treatment groups: diabetes, diabetes plus PTH, control, and control plus PTH. Diabetes was induced by intraperitoneal injection of streptozotocin (45 mg/kg) at 1 week before implantation. Rats received PTH at a dose of 60 μg/kg or a vehicle by subcutaneous injection starting at the day of implant insertion into the tibia. Histomorphometric analysis was performed after 4 weeks. RESULTS The medullary peri-implant bone area significantly increased in rats receiving PTH in comparison with the control group (41±12% to 20±12%; P<0.01). Moreover, there was an increased bone-to-implant contact (BIC) area in animals treated with PTH (47±18% to 27±16%; P<0.05). In contrast, diabetic rats failed to benefit from the anabolic treatment. A similar peri-implant bone area occurred in the diabetes group, independent of treatment with PTH (13±9% to 15±6%; P>0.05). Moreover, PTH did not affect the BIC area under hyperglycemic conditions (16±12% to 16±8%; P>0.05). No significant changes were observed in the cortical compartment of all groups. CONCLUSION These results demonstrate that the metabolic characteristics of the diabetic rats produced a condition that was unable to respond to PTH treatment. These findings led us to hypothesize that metabolic control of diabetes might be a critical determinant when diabetic patients are undergoing anabolic therapy to enhance osseointegration.
Collapse
Affiliation(s)
- Ulrike Kuchler
- Department of Oral Surgery, Medical University of Vienna, Austria
| | | | | | | | | | | |
Collapse
|
9
|
Granado M, García-Cáceres C, Frago LM, Argente J, Chowen JA. The positive effects of growth hormone-releasing peptide-6 on weight gain and fat mass accrual depend on the insulin/glucose status. Endocrinology 2010; 151:2008-18. [PMID: 20219977 DOI: 10.1210/en.2009-1394] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Ghrelin and GH secretagogues, including GH-releasing peptide (GHRP)-6, stimulate food intake and adiposity. Because insulin modulates the hypothalamic response to GH secretagogues and acts synergistically with ghrelin on lipogenesis in vitro, we analyzed whether insulin plays a role in the metabolic effects of GHRP-6 in vivo. Streptozotocin-induced diabetic rats received saline, GHRP-6, insulin, or insulin plus GHRP-6 once daily for 8 wk. Rats receiving saline suffered hyperglycemia, hyperphagia, polydipsia, and weight loss. Insulin, but not GHRP-6, improved these parameters (P < 0.001 for all), as well as the diabetes-induced increase in hypothalamic mRNA levels of neuropeptide Y and agouti-related peptide and decrease in proopiomelanocortin. Cocaine amphetamine-related transcript mRNA levels were also reduced in diabetic rats, with GHRP-6 inducing a further decrease (P < 0.03) and insulin an increase. Diabetic rats receiving insulin plus GHRP-6 gained more weight and had increased epididymal fat mass and serum leptin levels compared with all other groups (P < 0.001). In epididymal adipose tissue, diabetic rats injected with saline had smaller adipocytes (P < 0.001), decreased fatty acid synthase (FAS; P < 0.001), and glucose transporter-4 (P < 0.001) and increased hormone sensitive lipase (P < 0.001) and proliferator-activated receptor-gamma mRNA levels (P < 0.01). Insulin normalized these parameters to control values. GHRP-6 treatment increased FAS and glucose transporter-4 gene expression and potentiated insulin's effect on epididymal fat mass, adipocyte size (P < 0.001), FAS (P < 0.001), and glucose transporter-4 (P < 0.05). In conclusion, GHRP-6 and insulin exert an additive effect on weight gain and visceral fat mass accrual in diabetic rats, indicating that some of GHRP-6's metabolic effects depend on the insulin/glucose status.
Collapse
Affiliation(s)
- Miriam Granado
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Avenida Menéndez Pelayo, Madrid, Spain
| | | | | | | | | |
Collapse
|
10
|
Leme JACA, Silveira RF, Gomes RJ, Moura RF, Sibuya CA, Mello MAR, Luciano E. Long-term physical training increases liver IGF-I in diabetic rats. Growth Horm IGF Res 2009; 19:262-266. [PMID: 19201234 DOI: 10.1016/j.ghir.2008.12.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2008] [Revised: 04/30/2008] [Accepted: 12/17/2008] [Indexed: 11/18/2022]
Abstract
Diabetes reduces the serum levels of insulin-like growth factor-I (IGF-I) and physical training may prevent this reduction. Almost all circulating IGF-I is produced and secreted by the liver. To examine the influence of moderate physical training on liver IGF-1 levels in diabetes, male Wistar rats were given a single dose of alloxan (30 mg/kg b.w.) to induce diabetes and then randomly allocated to sedentary or trained groups. The training protocol consisted of a 1h swimming session/day, five days/week for eight weeks with a load corresponding to 5% of the body weight. These two groups were compared with sedentary or trained non-diabetic rats (controls). A subcutaneous insulin tolerance test (ITT) was performed at the 6th week of experiment. At the end of the training period, the rats in all groups were sacrificed and blood was collected for the quantification of hematocrit and serum glucose, insulin, triglycerides, albumin, GH and IGF-1. Skeletal muscle and hepatic glycogen levels and hepatic triglyceride, protein, DNA and IGF-I concentrations were also determined. Diabetes reduced the serum insulin, GH and IGF-I concentrations, and the hepatic protein/DNA ratio and IGF-I concentrations, but increased serum glucose and triglyceride levels. Serum glucose removal during ITT was increased in the trained diabetic animals compared to sedentary control. Physical training reduced the serum glucose and triglyceride levels but increased the muscle glycogen content and restored the hepatic protein/DNA ratio and serum and hepatic IGF-I in diabetic rats. In conclusion, long-term chronic exercise improved the metabolic state and attenuated the reduction in serum and hepatic IGF-I concentrations caused by diabetes.
Collapse
Affiliation(s)
- J A C A Leme
- Department of Physical Education, São Paulo State University (UNESP), Bela Vista, Rio Claro, SP, Brazil.
| | | | | | | | | | | | | |
Collapse
|
11
|
Zakaria R, Rajikin MH, Yaacob NS, Nor NM. Immunolocalization of insulin-like growth factors and their receptors in the diabetic mouse oviduct and uterine tissues during the preimplantation period. Acta Histochem 2009; 111:52-60. [PMID: 18676006 DOI: 10.1016/j.acthis.2008.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Revised: 03/26/2008] [Accepted: 04/03/2008] [Indexed: 10/21/2022]
Abstract
The aim of the present study was to analyze the immunolocalization of insulin-like growth factor (IGF)-1 and IGF-2 and their receptors in the oviduct and uterus of control and diabetic mice. Sexually mature female ICR mice aged 6-8 weeks were rendered diabetic by streptozotocin (200 mg/kg, administered intraperitoneally). Oviductal and uterine tissues were obtained from the superovulated control and diabetic mice at 48, 72 and 96 h post-human chorionic gonadotropin (hCG) treatment. Localization of IGF-1, IGF-2, IGF-1R and IGF-2R was determined by immunohistochemistry and a semi-quantitative scoring of immunolabelling was performed using a standardized 5-point system. The immunohistochemical scorings for both IGF-1 and IGF-1R were significantly decreased in the oviducts of diabetic mice at 96 h post-hCG treatment. The scores for IGF-2 were significantly increased in the oviducts of diabetic mice at 48 and 72 h post-hCG treatment, and for IGF-2R at 72 h post-hCG treatment. However, there was no significant difference in the scores of IGFs and their receptors in the uterus of control and diabetic mice. In conclusion, the oviductal immunolabelling for IGFs and their receptors was significantly altered by maternal diabetes, which may be of importance in the pathogenesis of preimplantation diabetic embryopathy.
Collapse
|
12
|
Systemic Insulin-like Growth Factor-1 Reverses Hypoalgesia and Improves Mobility in a Mouse Model of Diabetic Peripheral Neuropathy. Mol Ther 2008; 16:1400-8. [DOI: 10.1038/mt.2008.115] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
13
|
Leme JACDA, Gomes RJ, de Mello MAR, Luciano E. Effects of short-term physical training on the liver IGF-I in diabetic rats. Growth Factors 2007; 25:9-14. [PMID: 17454145 DOI: 10.1080/08977190701210693] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
To investigate the influence of short-term physical training on IGF-I concentrations in diabetic rats, male wistar rats were distributed into four groups: sedentary control, trained control, sedentary diabetic and trained diabetic. Diabetes was induced by Alloxan (32 mg/kg b.w.) and training protocol consisted of swimming 1 h/day, 5 days/week, during 4 weeks, supporting 5% b.w. At the end of this period, rats were sacrificed and blood was collected for determinations of serum glucose, insulin, albumin, IGF-I and hematocrit. Liver samples were used to determine glycogen, protein, DNA and IGF-I concentrations. Diabetes reduced insulin and IGF-I concentrations in blood and liver protein, ratio protein/DNA and IGF-I concentrations in liver and increased glycemia. Physical training reduced serum glucose and recovered hepatic glycogen stores in diabetic rats and reduced serum and liver IGF-I concentrations. In conclusion, short-term physical training improved the metabolic conditions of diabetic rats, despite of impairing liver and blood IGF-I concentrations.
Collapse
|