1
|
Guarneri F, Romeo C, Scali F, Zoppi S, Formenti N, Maisano AM, Catania S, Gottschalk M, Alborali GL. Serotype diversity and antimicrobial susceptibility profiles of Actinobacillus pleuropneumoniae isolated in Italian pig farms from 2015 to 2022. Vet Res 2024; 55:48. [PMID: 38594744 PMCID: PMC11005290 DOI: 10.1186/s13567-024-01305-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/21/2024] [Indexed: 04/11/2024] Open
Abstract
Actinobacillus pleuropneumoniae (APP) is a bacterium frequently associated with porcine pleuropneumonia. The acute form of the disease is highly contagious and often fatal, resulting in significant economic losses for pig farmers. Serotype diversity and antimicrobial resistance (AMR) of APP strains circulating in north Italian farms from 2015 to 2022 were evaluated retrospectively to investigate APP epidemiology in the area. A total of 572 strains isolated from outbreaks occurring in 337 different swine farms were analysed. The majority of isolates belonged to serotypes 9/11 (39.2%) and 2 (28.1%) and serotype diversity increased during the study period, up to nine different serotypes isolated in 2022. The most common resistances were against tetracycline (53% of isolates) and ampicillin (33%), followed by enrofloxacin, florfenicol and trimethoprim/sulfamethoxazole (23% each). Multidrug resistance (MDR) was common, with a third of isolates showing resistance to more than three antimicrobial classes. Resistance to the different classes and MDR varied significantly depending on the serotype. In particular, the widespread serotype 9/11 was strongly associated with florfenicol and enrofloxacin resistance and showed the highest proportion of MDR isolates. Serotype 5, although less common, showed instead a concerning proportion of trimethoprim/sulfamethoxazole resistance. Our results highlight how the typing of circulating serotypes and the analysis of their antimicrobial susceptibility profile are crucial to effectively manage APP infection and improve antimicrobial stewardship.
Collapse
Affiliation(s)
- Flavia Guarneri
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Brescia, Italy
| | - Claudia Romeo
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Brescia, Italy.
- Globe Institute, University of Copenhagen, Copenhagen, Denmark.
| | - Federico Scali
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Brescia, Italy
| | - Simona Zoppi
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle D'Aosta, Turin, Italy
| | - Nicoletta Formenti
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Brescia, Italy
| | - Antonio Marco Maisano
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Brescia, Italy
| | | | - Marcelo Gottschalk
- Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada
| | - G Loris Alborali
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Brescia, Italy
| |
Collapse
|
2
|
Ozawa M, Kawano M, Abo H, Issiki Y, Kumakawa M, Kawanishi M, Kojima A, Iwamoto S. Characterization of Actinobacillus pleuropneumoniae isolated from pigs in Japan using whole genome sequencing. Comp Immunol Microbiol Infect Dis 2023; 102:102062. [PMID: 37741218 DOI: 10.1016/j.cimid.2023.102062] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 09/25/2023]
Abstract
We conducted whole-genome sequencing to investigate the serotypes, the presence of virulence and antimicrobial resistance genes, and the genetic relationships among isolates of Actinobacillus. pleuropneumoniae derived from diseased pigs. Serotype 2 (71.2%) was the most common, but the prevalence of serotypes 6 (13.6%) and 15 (6.8%) increased. Existing vaccines are considered ineffective on the isolates belonging to serotypes 6 and 15. The phylogenetic tree based on core genome single nucleotide polymorphisms showed that the isolates were clustered by serotype. Of the isolates, 62.5% did not have an antimicrobial resistance gene, including a florfenicol resistance gene, but 32.2% had a tetracycline resistance gene. The antimicrobial resistant phenotype and genotype were almost identical. The plasmid-derived contigs harbored resistance genes of aminoglycosides, tetracyclines, β-lactams, phenicols, or sulfonamides. It has been suggested that isolates with different genetic properties from vaccine strains are circulating; however, antimicrobial resistance may not be widespread.
Collapse
Affiliation(s)
- Manao Ozawa
- National Veterinary Assay Laboratory, Ministry of Agriculture, Forestry and Fisheries, 1-15-1, Tokura, Kokubunji, Tokyo 185-8511, Japan.
| | - Motoshi Kawano
- National Veterinary Assay Laboratory, Ministry of Agriculture, Forestry and Fisheries, 1-15-1, Tokura, Kokubunji, Tokyo 185-8511, Japan
| | - Hitoshi Abo
- National Veterinary Assay Laboratory, Ministry of Agriculture, Forestry and Fisheries, 1-15-1, Tokura, Kokubunji, Tokyo 185-8511, Japan
| | - Yukari Issiki
- National Veterinary Assay Laboratory, Ministry of Agriculture, Forestry and Fisheries, 1-15-1, Tokura, Kokubunji, Tokyo 185-8511, Japan
| | - Mio Kumakawa
- National Veterinary Assay Laboratory, Ministry of Agriculture, Forestry and Fisheries, 1-15-1, Tokura, Kokubunji, Tokyo 185-8511, Japan
| | - Michiko Kawanishi
- National Veterinary Assay Laboratory, Ministry of Agriculture, Forestry and Fisheries, 1-15-1, Tokura, Kokubunji, Tokyo 185-8511, Japan
| | - Akemi Kojima
- National Veterinary Assay Laboratory, Ministry of Agriculture, Forestry and Fisheries, 1-15-1, Tokura, Kokubunji, Tokyo 185-8511, Japan
| | - Shoko Iwamoto
- National Veterinary Assay Laboratory, Ministry of Agriculture, Forestry and Fisheries, 1-15-1, Tokura, Kokubunji, Tokyo 185-8511, Japan
| |
Collapse
|
3
|
TO H, KONNAI M, TESHIMA K, TSUTSUMI N, ITO S, SATO M, SHIBUYA K, NAGAI S. Pulmonary lesions with asteroid bodies in a pig experimentally infected with Actinobacillus pleuropneumoniae serovar 15. J Vet Med Sci 2023; 85:1131-1135. [PMID: 37612056 PMCID: PMC10600533 DOI: 10.1292/jvms.23-0202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/16/2023] [Indexed: 08/25/2023] Open
Abstract
Five pigs experimentally infected with Actinobacillus pleuropneumoniae serovar 15 isolated in our previous study were pathologically examined. One pig died at 2 days post inoculation (dpi) and four pigs were euthanized at 7 dpi. Autopsy revealed fibrinohemorrhagic pleuropneumonia in all pigs. Histopathologically, the lesions were characterized by extensive hemorrhage and necrosis, fibrin deposition, and multifocal abscesses composed of numerous neutrophils including oat cells and numerous Gram-negative bacilli. In one survived pig, asteroid body formation was confirmed in the lung. The bacteria within the abscesses and asteroid bodies were immunohistochemically positive for antiserum raised against A. pleuropneumoniae serovar 15. This is the first report describing porcine pleuropneumonia with asteroid bodies in a pig experimentally infected with A. pleuropneumoniae serovar 15.
Collapse
Affiliation(s)
- Ho TO
- Nippon Institute for Biological Science, Tokyo, Japan
- Faculty of Agriculture and Aquaculture, University of Cuu
Long, Vinh Long, VietNam
| | - Masaki KONNAI
- Nippon Institute for Biological Science, Tokyo, Japan
| | - Kaho TESHIMA
- Nippon Institute for Biological Science, Tokyo, Japan
| | | | - Soma ITO
- Nippon Institute for Biological Science, Tokyo, Japan
| | - Masumi SATO
- Nippon Institute for Biological Science, Tokyo, Japan
| | | | - Shinya NAGAI
- Nippon Institute for Biological Science, Tokyo, Japan
| |
Collapse
|
4
|
Yao X, Song Q, Zhu W, Wei J, Shao D, Liu K, Li Z, Qiu Y, Ma Z, Xia L, Li B. Characterization of small plasmids carrying florfenicol resistance gene floR in Actinobacillus pleuropneumoniae and Pasteurella multocida isolates from swine in China. Front Vet Sci 2023; 10:1084491. [PMID: 36793377 PMCID: PMC9922843 DOI: 10.3389/fvets.2023.1084491] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/12/2023] [Indexed: 02/03/2023] Open
Abstract
Actinobacillus pleuropneumoniae and Pasteurella multocida are two important bacterial pathogens in swine industry. In the present study, resistance profiles of nine commonly used antibiotics of A. pleuropneumoniae and P. multocida isolates of swine origin from different regions of China were investigated by determination of minimum inhibitory concentrations (MICs). In addition, genetic relationship of the florfenicol-resistant A. pleuropneumoniae and P. multocida isolates was determined by pulsed-field gel electrophoresis (PFGE). The genetic basis of florfenicol resistance in these isolates were explored by floR detection and whole genome sequencing. High resistance rates (>25%) of florfenicol, tetracycline and trimethoprim- sulfamethoxazole were observed for both bacteria. No ceftiofur- and tiamulin- resistant isolates were detected. Furthermore, all the 17 florfenicol-resistant isolates (nine for A. pleuropneumoniae and eight for P. multocida) were positive for floR gene. The presence of similar PFGE types in these isolates suggested that clonal expansion of some floR-producing strains occurred in the pig farms from same regions. WGS and PCR screening showed that three plasmids, named pFA11, pMAF5, and pMAF6, were the cargos of the floR genes in the 17 isolates. Plasmid pFA11 exhibited novel structure and carried several resistance genes, including floR, sul2, aacC2d, strA, strB, and bla ROB - 1. Plasmids pMAF5 and pMAF6 were presented in A. pleuropneumoniae and P. multocida isolates from different regions, suggesting horizontal transfer of the two plasmids are important for the floR dissemination in these Pasteurellaceae pathogens. Further studies of florfenicol resistance and its transfer vectors in Pasteurellaceae bacteria of veterinary origin are warranted.
Collapse
Affiliation(s)
- Xiaohui Yao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China,College of Veterinary Medicine, Xinjiang Agricultural University, Urmuqi, China
| | - Qiangqiang Song
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China,College of Veterinary Medicine, Xinjiang Agricultural University, Urmuqi, China
| | - Wei Zhu
- Tengzhou Animal Disease Prevention and Control Center of Shandong Province, Tengzhou, China
| | - Jianchao Wei
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Donghua Shao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Ke Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Zongjie Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yafeng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Zhiyong Ma
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Lining Xia
- College of Veterinary Medicine, Xinjiang Agricultural University, Urmuqi, China,*Correspondence: Lining Xia ✉
| | - Beibei Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China,Beibei Li ✉
| |
Collapse
|
5
|
Rattanapanadda P, Kuo HC, Chang SK, Tell LA, Shia WY, Chou CC. Effect of Carbonyl Cyanide Chlorophenylhydrazone on Intrabacterial Concentration and Antimicrobial Activity of Amphenicols against Swine Resistant Actinobacillus pleuropneumoniae and Pasteurella multocida. Vet Res Commun 2022; 46:903-916. [PMID: 35322371 DOI: 10.1007/s11259-022-09917-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 03/15/2022] [Indexed: 12/13/2022]
Abstract
Effects and mechanism of carbonyl cyanide chlorophenylhydrazone (CCCP) on antimicrobial activity of florfenicol (FF) and thiamphenicol (TAP) were investigated against amphenicol-resistant Actinobacillus pleuropneumoniae and Pasteurella multocida isolated from diseased swine. Broth microdilution and time-kill assays indicated that CCCP dose-dependently and substantially (4-32 fold MIC reduction) improved amphenicol antimicrobial activity. When combined with CCCP at the lowest literature reported dose (2-5 μg/mL), 85% FF resistant A. pleuropneumoniae and 92% resistant P. multocida showed significantly reduced FF MICs (≥ 4-fold). In contrast, none or few of the susceptible A. pleuropneumoniae and P. multocida had FF MICs reduction ≥ 4-fold. 90% FF resistant A. pleuropneumoniae and 96% resistant P. multocida carried the floR gene, indicating strong association with the FloR efflux pump. With CCCP, the intracellular FF concentration increased by 71% in floR+ resistant A. pleuropneumoniae and 156% in floR+ resistant P. multocida strains but not the susceptible strains. The degree of reduction in TAP MICs was found consistently in parallel to FF for both bacteria. Taken together, partially attributed to blockage of drug-efflux, the combination of FF or TAP with CCCP at sub-cytotoxic concentrations was demonstrated and showed feasibility to combat amphenicol-resistant A. pleuropneumoniae and P. multocida isolated from diseased swine.
Collapse
Affiliation(s)
- Porjai Rattanapanadda
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan, 402.,Department of Livestock Development, Ministry of Agriculture and Cooperatives, Bangkok, 10400, Thailand
| | - Hung-Chih Kuo
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chiayi University, Chiayi, Taiwan, 600
| | - Shao-Kuang Chang
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan, 106
| | - Lisa Ann Tell
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Wei-Yau Shia
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan, 402
| | - Chi-Chung Chou
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan, 402.
| |
Collapse
|
6
|
Rattanapanadda P, Kuo HC, Vickroy TW, Sung CH, Rairat T, Lin TL, Yeh SY, Chou CC. In vitro and in vivo Synergistic Effects of Florfenicol and Thiamphenicol in Combination Against Swine Actinobacillus pleuropneumoniae and Pasteurella multocida. Front Microbiol 2019; 10:2430. [PMID: 31749775 PMCID: PMC6842999 DOI: 10.3389/fmicb.2019.02430] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 10/08/2019] [Indexed: 12/16/2022] Open
Abstract
Potential synergism between florfenicol (FF) and thiamphenicol (TAP) was investigated for in vitro efficacy against Actinobacillus pleuropneumoniae and/or Pasteurella multocida as well as in vivo efficacy in swine. Among isolates of A. pleuropneumoniae (n = 58) and P. multocida (n = 79) from pigs in Taiwan that were tested, high percentages showed resistance to FF (52 and 53%, respectively) and TAP (57 and 53%, respectively). Checkerboard microdilution assay indicated that synergism [fractional inhibitory concentration index (FICI) ≤ 0.5] was detected in 17% of A. pleuropneumoniae (all serovar 1) and 24% of P. multocida isolates. After reconfirming the strains showing FICI ≤ 0.625 with time kill assay, the synergism increased to around 32% against both bacteria and the number could further increase to 40% against resistant A. pleuropneumoniae and 65% against susceptible P. multocida isolates. A challenge-treatment trial in pigs with P. multocida showed that the FF + TAP dosage at ratios correspondent to their MIC deduction was equally effective to the recommended dosages. Further on the combination, the resistant mutation frequency is very low when A. pleuropneumoniae is grown with FF + TAP and similar to the exposure to sub-inhibitory concentration of FF or TAP alone. The degree of minimum inhibitory concentration (MIC) reduction in FF could reach 75% (1/4 MIC) or more (up to 1/8 MIC for P. multocida, 1/16 for A. pleuropneumoniae) when combined with 1/4 MIC of TAP (or 1/8 for A. pleuropneumoniae). The synergism or FICI ≤ 0.625 of FF with oxytetracycline (47%), doxycycline (69%), and erythromycin (56%) was also evident, and worth further investigation for FF as a central modulator facilitating synergistic effects with these antimicrobials. Taken together, synergistic FF + TAP combination was effective against swine pulmonary isolates of A. pleuropneumoniae and P. multocida both in vitro and in vivo. Thus, this study may offer a potential alternative for the treatment of A. pleuropneumoniae and P. multocida infections and has the potential to greatly reduce drug residues and withdrawal time.
Collapse
Affiliation(s)
- Porjai Rattanapanadda
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Hung-Chih Kuo
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chiayi University, Chiayi, Taiwan
| | - Thomas W. Vickroy
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - Chi-Hsuan Sung
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Tirawat Rairat
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Tsai-Lu Lin
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Sze-Yu Yeh
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Chi-Chung Chou
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
7
|
Teshima K, Hirano H, Ushiyama K, Shibuya K, Nagai S, Sasakawa C, To H. Isolation and characterization of atypical Actinobacillus pleuropneumoniae serovar 15 lacking the apxIICA genes in Japan. J Vet Med Sci 2019; 81:480-485. [PMID: 30713216 PMCID: PMC6451906 DOI: 10.1292/jvms.18-0421] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Six atypical Actinobacillus pleuropneumoniae serovar 15 strains were isolated from pneumonic lesions of naturally infected dead pigs from the same farm in Japan. Genetic
analyses of apx genes revealed that the atypical isolates contained the toxin-associated genes apxIBD, apxIIICA, apxIIIBD, and apxIVA, but
not apxIICA. Coinciding with the result of the atypical gene profile, analyses of toxin protein production revealed that these atypical isolates expressed only ApxIII but
not ApxII. A mouse pathogenicity test showed that the atypical isolate tested seemed to be less virulent than the typical isolates. This is the first report describing the emergence of
atypical A. pleuropneumoniae serovar 15, which does not produce ApxII due to the absence of apxIICA genes, in Japan.
Collapse
Affiliation(s)
- Kaho Teshima
- Nippon Institute for Biological Science, Tokyo 198-0024, Japan
| | - Haruna Hirano
- Yamanashi Prefecture Eastern Livestock Hygiene Service Center, 1001-1 Karakashiwa, Ishawa, Fuefuki, Yamanashi 406-0034, Japan
| | - Kazutada Ushiyama
- Yamanashi Prefecture Eastern Livestock Hygiene Service Center, 1001-1 Karakashiwa, Ishawa, Fuefuki, Yamanashi 406-0034, Japan
| | | | - Shinya Nagai
- Nippon Institute for Biological Science, Tokyo 198-0024, Japan
| | - Chihiro Sasakawa
- Nippon Institute for Biological Science, Tokyo 198-0024, Japan.,Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chiba 260-8637, Japan
| | - Ho To
- Nippon Institute for Biological Science, Tokyo 198-0024, Japan
| |
Collapse
|
8
|
Shinkai H, Terada K, Toki D, Tohno M, Uenishi H. Q969R polymorphism in NLRP3 is associated with immune responses to vaccination against bacterial infections in pigs. Anim Sci J 2018; 89:1043-1050. [DOI: 10.1111/asj.13020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 01/11/2018] [Indexed: 11/28/2022]
Affiliation(s)
- Hiroki Shinkai
- Animal Bioregulation Unit; Division of Animal Sciences; Institute of Agrobiological Sciences; National Agriculture and Food Research Organization (NARO); Tsukuba Ibaraki Japan
| | - Kei Terada
- Shizuoka Swine and Poultry Experiment Center; Kikugawa Shizuoka Japan
| | - Daisuke Toki
- Animal Research Division; Institute of Japan Association for Techno-innovation in Agriculture, Forestry and Fisheries (JATAFF); Tsukuba Ibaraki Japan
| | - Masanori Tohno
- Feed Preparation Unit; Division of Animal Feeding and Management Research; Institute of Livestock and Grassland Science; National Agriculture and Food Research Organization (NARO); Nasushiobara Tochigi Japan
| | - Hirohide Uenishi
- Animal Bioregulation Unit; Division of Animal Sciences; Institute of Agrobiological Sciences; National Agriculture and Food Research Organization (NARO); Tsukuba Ibaraki Japan
| |
Collapse
|
9
|
Michael GB, Bossé JT, Schwarz S. Antimicrobial Resistance in Pasteurellaceae of Veterinary Origin. Microbiol Spectr 2018; 6:10.1128/microbiolspec.arba-0022-2017. [PMID: 29916344 PMCID: PMC11633590 DOI: 10.1128/microbiolspec.arba-0022-2017] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Indexed: 12/20/2022] Open
Abstract
Members of the highly heterogeneous family Pasteurellaceae cause a wide variety of diseases in humans and animals. Antimicrobial agents are the most powerful tools to control such infections. However, the acquisition of resistance genes, as well as the development of resistance-mediating mutations, significantly reduces the efficacy of the antimicrobial agents. This article gives a brief description of the role of selected members of the family Pasteurellaceae in animal infections and of the most recent data on the susceptibility status of such members. Moreover, a review of the current knowledge of the genetic basis of resistance to antimicrobial agents is included, with particular reference to resistance to tetracyclines, β-lactam antibiotics, aminoglycosides/aminocyclitols, folate pathway inhibitors, macrolides, lincosamides, phenicols, and quinolones. This article focusses on the genera of veterinary importance for which sufficient data on antimicrobial susceptibility and the detection of resistance genes are currently available (Pasteurella, Mannheimia, Actinobacillus, Haemophilus, and Histophilus). Additionally, the role of plasmids, transposons, and integrative and conjugative elements in the spread of the resistance genes within and beyond the aforementioned genera is highlighted to provide insight into horizontal dissemination, coselection, and persistence of antimicrobial resistance genes. The article discusses the acquisition of diverse resistance genes by the selected Pasteurellaceae members from other Gram-negative or maybe even Gram-positive bacteria. Although the susceptibility status of these members still looks rather favorable, monitoring of their antimicrobial susceptibility is required for early detection of changes in the susceptibility status and the newly acquired/developed resistance mechanisms.
Collapse
Affiliation(s)
- Geovana B Michael
- Institute of Microbiology and Epizootics, Freie Universität Berlin, Berlin, D-14163 Germany
| | - Janine T Bossé
- Section of Pediatrics, Department of Medicine London, Imperial College London, London W2 1PG, United Kingdom
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Freie Universität Berlin, Berlin, D-14163 Germany
| |
Collapse
|
10
|
Wu HC, Yeh PH, Hsueh KJ, Yang WJ, Chu CY. Recombinant ApxIV protein enhances protective efficacy against Actinobacillus pleuropneumoniae in mice and pigs. J Appl Microbiol 2018; 124:1366-1376. [PMID: 29431246 DOI: 10.1111/jam.13726] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 01/23/2018] [Accepted: 01/31/2018] [Indexed: 11/28/2022]
Abstract
AIMS Available bacterins, commercial or autogenous, for Actinobacillus pleuropneumoniae disease control have, thus far, shown debatable protective efficacy and only in homologous challenges. Our study sought to determine whether the addition of reombinant protein ApxIV to the multicomponent vaccine could enhance protection against homologous and heterologous challenge of A. pleuropneumoniae. METHODS AND RESULTS The virulence of ApxI, ApxII, ApxIV and OMP were cloned and expressed using a prokaryotic system; these recombinant proteins were combined with inactivated A. pleuropneumoniae serovar 1 to formulate different multicomponent vaccines. Immune response and protective efficacy of the vaccines were evaluated in mice and pigs. A protection rate of 67% was observed against heterologous challenge in mice vaccinated with the rApxIV formulation. Piglets vaccinated with vaccine containing ApxIV produced significantly higher antibody titre and provided complete protection and reduced gross lesions by 67% when compared with the nonimmunized group after homologous challenge. Additionally, flow cytometry analysis showed significant cellular immune response. CONCLUSIONS The results of our vaccination experiments revealed that a combination of inactivated bacteria and the recombinant antigens rApxI, rApxII, rApxIV and rOMP can provide effective protection against heterologous A. pleuropneumoniae challenge. SIGNIFICANCE AND IMPACT OF THE STUDY The addition of ApxIV to the multicomponent vaccine could enhance homologous and heterologous protection in mice and pigs, respectively, against challenge by A. pleuropneumoniae.
Collapse
Affiliation(s)
- H-C Wu
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - P-H Yeh
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - K-J Hsueh
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan.,Department of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - W-J Yang
- Institute of Biotechnology, National University of Kaohsiung, Kaohsiung, Taiwan
| | - C-Y Chu
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| |
Collapse
|
11
|
Teshima K, Lee J, To H, Kamada T, Tazumi A, Hirano H, Maruyama M, Ogawa T, Nagai S, Turni C, Tsutsumi N. Application of an enzyme-linked immunosorbent assay for detection of antibodies to Actinobacillus pleuropneumoniae serovar 15 in pig sera. J Vet Med Sci 2017; 79:1968-1972. [PMID: 29070770 PMCID: PMC5745173 DOI: 10.1292/jvms.17-0374] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
An indirect enzyme-linked immunosorbent assay (ELISA) using lipopolysaccharide extract as
antigen was evaluated for detection of antibodies to Actinobacillus
pleuropneumoniae serovar 15. The serovar 15 ELISA had a higher sensitivity and
specificity than latex agglutination test for 63 and 80 sera from pigs experimentally
infected and not infected with A. pleuropneumoniae, respectively. When
the serovar 15 ELISA was applied to 454 field sera, high rates of seropositivity were
found in pigs from farms infected with A. pleuropneumoniae serovar 15,
but not in those from farms free of A. pleuropneumoniae serovar 15. The
results suggest that the serovar 15 ELISA may be useful for the serological surveillance
of infection with A. pleuropneumoniae serovar 15.
Collapse
Affiliation(s)
- Kaho Teshima
- Nippon Institute for Biological Science, 9-2221-1, Shinmachi, Ome, Tokyo 198-0024, Japan
| | - Jina Lee
- Nippon Institute for Biological Science, 9-2221-1, Shinmachi, Ome, Tokyo 198-0024, Japan
| | - Ho To
- Nippon Institute for Biological Science, 9-2221-1, Shinmachi, Ome, Tokyo 198-0024, Japan
| | - Takashi Kamada
- Nippon Institute for Biological Science, 9-2221-1, Shinmachi, Ome, Tokyo 198-0024, Japan
| | - Akihiro Tazumi
- Nippon Institute for Biological Science, 9-2221-1, Shinmachi, Ome, Tokyo 198-0024, Japan
| | - Haruna Hirano
- Yamanashi Prefecture Eastern Livestock Hygiene Service Center, 1001-1 Karakashiwa, Ishiwa, Fuefuki, Yamanashi 406-0034, Japan
| | - Minoru Maruyama
- Yamanashi Prefecture Livestock Dairy Technology Center, 963-1, Otokuro, Chuou, Yamanashi 409-3812, Japan
| | - Torata Ogawa
- Fukuoka Prefecture Central Livestock Hygiene Service Center, 4-14-5, Hakozakihutou, Higashi, Fukuoka, Fukuoka 812-0051, Japan
| | - Shinya Nagai
- Nippon Institute for Biological Science, 9-2221-1, Shinmachi, Ome, Tokyo 198-0024, Japan
| | - Conny Turni
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Ecosciences Precinct, Dutton Park, QLD, Australia
| | - Nobuyuki Tsutsumi
- Nippon Institute for Biological Science, 9-2221-1, Shinmachi, Ome, Tokyo 198-0024, Japan
| |
Collapse
|
12
|
To H, Teshima K, Nagai S, Zielinski GC, Koyama T, Lee J, Bessone FA, Nagano T, Oshima A, Tsutsumi N. Characterization of Actinobacillus pleuropneumoniae field strains antigenically related to the 3-6-8-15 group from diseased pigs in Japan and Argentina. Rev Argent Microbiol 2017; 50:12-22. [PMID: 28886933 DOI: 10.1016/j.ram.2017.04.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 03/08/2017] [Accepted: 04/20/2017] [Indexed: 11/30/2022] Open
Abstract
The objectives of this study were to determine the serovar of a collection of Actinobacillus pleuropneumoniae strains within the 3-6-8-15 cross-reacting group and to analyze their phenotypic and genetic properties. Based on the serological tests, forty-seven field strains of Actinobacillus pleuropneumoniae isolated from lungs with pleuropneumonia lesions in Japan and Argentina were found to be serovars belonging to the 3-6-8-15 cross-reacting group. By using a capsule loci-based PCR, twenty-nine (96.7%) and one (3.3%) from Japan were identified as serovars 15 and 8, respectively, whereas seventeen (100%) from Argentina were identified as serovar 8. The findings suggested that serovars 8 and 15 were prevalent within the 3-6-8-15 cross-reacting group, in Argentina and Japan, respectively. Phenotypic analyses revealed that the protein patterns observed on SDS-PAGE and the lipopolysaccharide antigen detected by immunoblotting of the reference and field strains of serovars 8 and 15 were similar to each other. Genetic (16S rDNA, apxIIA, apxIIIA, cps, cpx genes, apx and omlA patterns) analyses revealed that the apxIIA and apxIIIA genes of the field strains of serovars 8 and 15 were similar to those of the reference strains of serovars 3, 4, 6, 8 and 15. The results obtained in the present study may be useful for the development of more effective vaccines against disease caused by A. pleuropneumoniae by including the homologous antigens to the most prevalent serovars in specific geographical areas.
Collapse
Affiliation(s)
- Ho To
- Nippon Institute for Biological Science, 9-2221-1 Shinmachi, Ome, Tokyo 198-0024, Japan.
| | - Kaho Teshima
- Nippon Institute for Biological Science, 9-2221-1 Shinmachi, Ome, Tokyo 198-0024, Japan
| | - Shinya Nagai
- Nippon Institute for Biological Science, 9-2221-1 Shinmachi, Ome, Tokyo 198-0024, Japan
| | - Gustavo C Zielinski
- Animal Health Group, Estacion Experimental Agropecuaria Marcos Juarez, INTA, CC n°21 (2580), Marcos Juarez, Province of Cordoba, Argentina.
| | - Tomohiro Koyama
- Nippon Institute for Biological Science, 9-2221-1 Shinmachi, Ome, Tokyo 198-0024, Japan
| | - Jina Lee
- Nippon Institute for Biological Science, 9-2221-1 Shinmachi, Ome, Tokyo 198-0024, Japan
| | - Fernando A Bessone
- Animal Health Group, Estacion Experimental Agropecuaria Marcos Juarez, INTA, CC n°21 (2580), Marcos Juarez, Province of Cordoba, Argentina
| | - Tetsuji Nagano
- Nippon Institute for Biological Science, 9-2221-1 Shinmachi, Ome, Tokyo 198-0024, Japan
| | - Atsushi Oshima
- Nippon Institute for Biological Science, 9-2221-1 Shinmachi, Ome, Tokyo 198-0024, Japan
| | - Nobuyuki Tsutsumi
- Nippon Institute for Biological Science, 9-2221-1 Shinmachi, Ome, Tokyo 198-0024, Japan
| |
Collapse
|
13
|
|
14
|
Morioka A, Shimazaki Y, Uchiyama M, Suzuki S. Serotyping reanalysis of unserotypable Actinobacillus pleuropneumoniae isolates by agar gel diffusion test. J Vet Med Sci 2016; 78:723-5. [PMID: 26726101 PMCID: PMC4873870 DOI: 10.1292/jvms.15-0538] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We observed increasing unserotypable (UT) Actinobacillus
pleuropneumoniae isolates using agar gel diffusion (AGD) test. To reanalyze
their serovar, we performed rapid slide agglutination (RSA) test and multiplex PCR for 47
UT isolates. Of these, 25 were serovar 1 (UT-serovar 1), 20 were serovar 2 (UT-serovar 2)
and 2 were serovar 15 (UT-serovar 15). We examined serotyping antigen extraction
temperature to determine heat influence. UT-serovar 1 and 15 were influenced by heat,
because their precipitation lines were observed in the case of low antigen extraction
temperature. To investigate the relationship between antigenicity and genotype, we
performed pulsed-field gel electrophoresis (PFGE) analysis using UT-serovar 2 and 15. The
predominant PFGE pattern of UT-serovar 2 was identical to that of serovar 2.
Collapse
Affiliation(s)
- Ayako Morioka
- National Veterinary Assay Laboratory, Ministry of Agriculture, Forestry and Fisheries, 1-15-1 Tokura, Kokubunji, Tokyo 185-8511, Japan
| | | | | | | |
Collapse
|
15
|
Harada K, Usui M, Asai T. Application of enrofloxacin and orbifloxacin disks approved in Japan for susceptibility testing of representative veterinary respiratory pathogens. J Vet Med Sci 2014; 76:1427-30. [PMID: 25008965 PMCID: PMC4221182 DOI: 10.1292/jvms.14-0266] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In this study,
susceptibilities of Pasteurella multocida, Mannheimia
haemolytica and Actinobacillus pleuropneumoniae to
enrofloxacin and orbifloxacin were tested using an agar diffusion method with the
commercial disks and a broth microdilution method. Good correlation between the 2 methods
for enrofloxacin and orbifloxacin was observed for P. multocida (r =
−0.743 and −0.818, respectively), M. haemolytica (r = −0.739 and −0.800,
respectively) and A. pleuropneumoniae (r = −0.785 and −0.809,
respectively). Based on the Clinical and Laboratory Standards Institute interpretive
criteria for enrofloxacin, high-level categorical agreement between the 2 methods was
found for P. multocida (97.9%), M. haemolytica (93.8%)
and A. pleuropneumoniae (92.0%). Our findings indicate that the tested
commercial disks can be applied for susceptibility testing of veterinary respiratory
pathogens.
Collapse
Affiliation(s)
- Kazuki Harada
- Laboratory of Veterinary Internal Medicine, Faculty of Agriculture, Tottori University, 101 Minami 4-chome, Koyama, Tottori 680-8533, Japan
| | | | | |
Collapse
|
16
|
Luna-Castro S, Aguilar-Romero F, Samaniego-Barrón L, Godínez-Vargas D, de la Garza M. Effect of bovine apo-lactoferrin on the growth and virulence of Actinobacillus pleuropneumoniae. Biometals 2014; 27:891-903. [DOI: 10.1007/s10534-014-9752-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Accepted: 05/15/2014] [Indexed: 01/01/2023]
|
17
|
Yoo AN, Cha SB, Shin MK, Won HK, Kim EH, Choi HW, Yoo HS. Serotypes and antimicrobial resistance patterns of the recent Korean Actinobacillus pleuropneumoniae
isolates. Vet Rec 2014; 174:223. [DOI: 10.1136/vr.101863] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- A. N. Yoo
- Department of Infectious Diseases; College of Veterinary Medicine and Brain Korea 21 Program for Veterinary Science; Seoul National University; Seoul 151-742 Korea
| | - S. B. Cha
- Department of Infectious Diseases; College of Veterinary Medicine and Brain Korea 21 Program for Veterinary Science; Seoul National University; Seoul 151-742 Korea
| | - M. K. Shin
- Department of Infectious Diseases; College of Veterinary Medicine and Brain Korea 21 Program for Veterinary Science; Seoul National University; Seoul 151-742 Korea
| | - H. K. Won
- Department of Infectious Diseases; College of Veterinary Medicine and Brain Korea 21 Program for Veterinary Science; Seoul National University; Seoul 151-742 Korea
- ChoongAng Vaccine Laboratory Co. Ltd.; Daejeon 305-348 Korea
| | - E. H. Kim
- ChoongAng Vaccine Laboratory Co. Ltd.; Daejeon 305-348 Korea
| | - H. W. Choi
- ChoongAng Vaccine Laboratory Co. Ltd.; Daejeon 305-348 Korea
| | - H. S. Yoo
- Department of Infectious Diseases; College of Veterinary Medicine and Brain Korea 21 Program for Veterinary Science; Seoul National University; Seoul 151-742 Korea
| |
Collapse
|
18
|
Ito H, Katsuragi K, Akama S, Yuzawa H. Isolation of atypical genotype Actinobacillus pleuropneumoniae serotype 6 in Japan. J Vet Med Sci 2013; 76:601-4. [PMID: 24369182 PMCID: PMC4064151 DOI: 10.1292/jvms.13-0245] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
We describe here isolation of genetically atypical serotype 6
Actinobacillus pleuropneumoniae in Japan indistinguishable by the
multiplex PCR that can discriminate between immunologically cross-reactive serotypes 3, 6
and 8. Nucleotide sequence analysis of capsular export and biosynthesis genes revealed
that the atypical isolates have capsular polysaccharide export and synthesis gene
sequences that are distinct from those of the serotype 6 reference strain. The atypical
strains contain a sequence that is identical with both serotype 3- and 6-specific primers,
which causes cross-reactions in multiplex PCR.
Collapse
Affiliation(s)
- Hiroya Ito
- National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan
| | | | | | | |
Collapse
|
19
|
Hosoi Y, Asai T, Koike R, Tsuyuki M, Sugiura K. Use of veterinary antimicrobial agents from 2005 to 2010 in Japan. Int J Antimicrob Agents 2013; 41:489-90. [PMID: 23434535 DOI: 10.1016/j.ijantimicag.2013.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Revised: 01/11/2013] [Accepted: 01/16/2013] [Indexed: 11/18/2022]
|
20
|
Genetic variability in swine leukocyte antigen class II and Toll-like receptors affects immune responses to vaccination for bacterial infections in pigs. Comp Immunol Microbiol Infect Dis 2012; 35:523-32. [PMID: 22658914 DOI: 10.1016/j.cimid.2012.05.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 04/16/2012] [Accepted: 05/08/2012] [Indexed: 12/13/2022]
Abstract
The genes encoding swine leukocyte antigen (SLA) and Toll-like receptor (TLR) are highly polymorphic in pig populations, and likely have influences on infection and the effects of vaccination. We explored the associations of different genotypes of SLA class II and of the genes TLR1, TLR4, TLR5, and TLR6 with antibody responses after vaccination against Erysipelothrix rhusiopathiae (ER) and Actinobacillus pleuropneumoniae (APP) serotypes 1, 2, and 5 in 191 Duroc pigs maintained under specific pathogen-free conditions. We demonstrated close relationships between SLA class II and ER antibody response and between TLR genes other than TLR4 and APP antibody responses. Pigs with specific haplotypes in SLA class II or TLR5 showed decreased antibody response to ER vaccination or increased responses to APP2 and APP5 vaccination, respectively. It might be possible to breed for responsiveness to vaccination and to implement new vaccine development strategies unaffected by genetic backgrounds of pigs.
Collapse
|
21
|
Archambault M, Harel J, Gouré J, Tremblay YDN, Jacques M. Antimicrobial susceptibilities and resistance genes of Canadian isolates of Actinobacillus pleuropneumoniae. Microb Drug Resist 2011; 18:198-206. [PMID: 22204596 DOI: 10.1089/mdr.2011.0150] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Actinobacillus pleuropneumoniae is the causative agent of porcine pleuropneumonia, a severe and highly contagious respiratory disease responsible for economic losses in the swine industry worldwide. Although antimicrobial resistance in A. pleuropneumoniae has been recently reported in different countries, the current situation in Canada is unknown. The aim of the current study was to determine the antimicrobial susceptibilities of 43 strains of A. pleuropneumoniae isolated in Canada. In addition, antimicrobial resistance genes were detected with an oligonucleotide microarray. The impact of biofilm formation on susceptibility to antimicrobials was also evaluated. All isolates were susceptible to ceftiofur, florfenicol, enrofloxacin, erythromycin, clindamycin, trimethoprim/sulfamethoxazole, and tilmicosin. A low level of resistance was observed toward tiamulin, penicillin, and ampicillin as well as danofloxacin. We observed a high level of resistance to chlortetracycline (88.4%) and oxytetracycline (90.7%). The strains showing resistance to tetracycline antimicrobials contained at least one of the following tet genes: tetB, tetO, tetH, or tetC. Five isolates showed multiresistance to penicillins (bla(ROB-1)), streptomycin [aph3'' (strA)], sulfonamides (sulII), and tetracyclines (tetO) antimicrobials whereas three others showed multiresistance to streptomycin [aph3'' (strA)], sulfonamides (sulII), and tetracyclines (tetB, tetO, or tetB/tetH) antimicrobials. To the best of our knowledge, this is the first description of tetC gene in Pasteurellaceae. Finally, cells of A. pleuropneumoniae in a biofilm were 100 to 30,000 times more resistant to antimicrobials than their planktonic counterparts.
Collapse
Affiliation(s)
- Marie Archambault
- Centre de Recherche en Infectiologie Porcine, Faculté de Médecine Vétérinaire, Université de Montréal , St-Hyacinthe, Québec, Canada
| | | | | | | | | |
Collapse
|
22
|
Vanni M, Merenda M, Barigazzi G, Garbarino C, Luppi A, Tognetti R, Intorre L. Antimicrobial resistance of Actinobacillus pleuropneumoniae isolated from swine. Vet Microbiol 2011; 156:172-7. [PMID: 22104584 DOI: 10.1016/j.vetmic.2011.10.022] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 10/14/2011] [Accepted: 10/17/2011] [Indexed: 10/16/2022]
Abstract
The aim of this retrospective study was to evaluate the antimicrobial resistance rates and the trend in resistance of Actinobacillus pleuropneumoniae isolated from pigs in Italy from 1994 to 2009. A total of 992 A. pleuropneumoniae isolates were tested for their susceptibility to a panel of antimicrobial agents in a disk diffusion method. Resistance to 7 drugs (amoxicillin, amoxicillin/clavulanic acid, ampicillin, cefquinome, cotrimoxazole, penicillin G and tilmicosin) showed a significant increasing trend over the time, while for 2 drugs (gentamycin and marbofloxacin) a significant decrease was observed. Resistance to the remaining 14 antimicrobial agents tested did not change significantly over the study period. Most of the isolates retained high susceptibility to antimicrobials usually effective against A. pleuropneumoniae such as amphenicols, fluoroquinolones and ceftiofur. However, high rates of resistance were observed for potentiated sulfa drugs, tetracyclines and penicillins which are currently recommended antimicrobials for pig pleuropneumonia therapy. Our results suggest the importance of continued monitoring of A. pleuropneumoniae clinical isolates in order to choose the most appropriate treatment of infections and to control the increase of resistance to currently used antimicrobials.
Collapse
Affiliation(s)
- Michele Vanni
- Section of Veterinary Pharmacology & Toxicology, Department of Veterinary Clinics, Faculty of Veterinary Medicine, University of Pisa, Pisa, Italy.
| | | | | | | | | | | | | |
Collapse
|
23
|
Ito H. Development of a cps-based multiplex PCR for typing of Actinobacillus pleuropneumoniae serotypes 1, 2 and 5. J Vet Med Sci 2010; 72:653-5. [PMID: 20068267 DOI: 10.1292/jvms.09-0529] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A cps-based multiplex PCR for typing of Actinobacillus pleuropneumoniae serotypes 1, 2 and 5 was developed. This method should be specific and practical in Japan where more than 88% of isolates are serotypes 1, 2 or 5.
Collapse
Affiliation(s)
- Hiroya Ito
- National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan.
| |
Collapse
|