1
|
Poudel BH, Fletcher S, Wilton SD, Aung-Htut M. Limb Girdle Muscular Dystrophy Type 2B (LGMD2B): Diagnosis and Therapeutic Possibilities. Int J Mol Sci 2024; 25:5572. [PMID: 38891760 PMCID: PMC11171558 DOI: 10.3390/ijms25115572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/11/2024] [Accepted: 05/16/2024] [Indexed: 06/21/2024] Open
Abstract
Dysferlin is a large transmembrane protein involved in critical cellular processes including membrane repair and vesicle fusion. Mutations in the dysferlin gene (DYSF) can result in rare forms of muscular dystrophy; Miyoshi myopathy; limb girdle muscular dystrophy type 2B (LGMD2B); and distal myopathy. These conditions are collectively known as dysferlinopathies and are caused by more than 600 mutations that have been identified across the DYSF gene to date. In this review, we discuss the key molecular and clinical features of LGMD2B, the causative gene DYSF, and the associated dysferlin protein structure. We also provide an update on current approaches to LGMD2B diagnosis and advances in drug development, including splice switching antisense oligonucleotides. We give a brief update on clinical trials involving adeno-associated viral gene therapy and the current progress on CRISPR/Cas9 mediated therapy for LGMD2B, and then conclude by discussing the prospects of antisense oligomer-based intervention to treat selected mutations causing dysferlinopathies.
Collapse
Affiliation(s)
- Bal Hari Poudel
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA 6150, Australia; (B.H.P.); (S.F.); (S.D.W.)
- Perron Institute for Neurological and Translational Science, The University of Western Australia, Perth, WA 6009, Australia
- Central Department of Biotechnology, Tribhuvan University, Kirtipur, Kathmandu 44618, Nepal
| | - Sue Fletcher
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA 6150, Australia; (B.H.P.); (S.F.); (S.D.W.)
| | - Steve D. Wilton
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA 6150, Australia; (B.H.P.); (S.F.); (S.D.W.)
- Perron Institute for Neurological and Translational Science, The University of Western Australia, Perth, WA 6009, Australia
| | - May Aung-Htut
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA 6150, Australia; (B.H.P.); (S.F.); (S.D.W.)
- Perron Institute for Neurological and Translational Science, The University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
2
|
Bouchard C, Tremblay JP. Portrait of Dysferlinopathy: Diagnosis and Development of Therapy. J Clin Med 2023; 12:6011. [PMID: 37762951 PMCID: PMC10531777 DOI: 10.3390/jcm12186011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Dysferlinopathy is a disease caused by a dysferlin deficiency due to mutations in the DYSF gene. Dysferlin is a membrane protein in the sarcolemma and is involved in different functions, such as membrane repair and vesicle fusion, T-tubule development and maintenance, Ca2+ signalling, and the regulation of various molecules. Miyoshi Myopathy type 1 (MMD1) and Limb-Girdle Muscular Dystrophy 2B/R2 (LGMD2B/LGMDR2) are two possible clinical presentations, yet the same mutations can cause both presentations in the same family. They are therefore grouped under the name dysferlinopathy. Onset is typically during the teenage years or young adulthood and is characterized by a loss of Achilles tendon reflexes and difficulty in standing on tiptoes or climbing stairs, followed by a slow progressive loss of strength in limb muscles. The MRI pattern of patient muscles and their biopsies show various fibre sizes, necrotic and regenerative fibres, and fat and connective tissue accumulation. Recent tools were developed for diagnosis and research, especially to evaluate the evolution of the patient condition and to prevent misdiagnosis caused by similarities with polymyositis and Charcot-Marie-Tooth disease. The specific characteristic of dysferlinopathy is dysferlin deficiency. Recently, mouse models with patient mutations were developed to study genetic approaches to treat dysferlinopathy. The research fields for dysferlinopathy therapy include symptomatic treatments, as well as antisense-mediated exon skipping, myoblast transplantation, and gene editing.
Collapse
Affiliation(s)
- Camille Bouchard
- Département de Médecine Moléculaire, Université Laval, Québec, QC G1V 0A6, Canada;
- Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec, QC G1E 6W2, Canada
| | - Jacques P. Tremblay
- Département de Médecine Moléculaire, Université Laval, Québec, QC G1V 0A6, Canada;
- Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec, QC G1E 6W2, Canada
| |
Collapse
|
3
|
Deori NM, Infant T, Thummer RP, Nagotu S. Characterization of the Multiple Domains of Pex30 Involved in Subcellular Localization of the Protein and Regulation of Peroxisome Number. Cell Biochem Biophys 2023; 81:39-47. [PMID: 36462131 DOI: 10.1007/s12013-022-01122-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 11/22/2022] [Indexed: 12/05/2022]
Abstract
Pex30 is a peroxisomal protein whose role in peroxisome biogenesis via the endoplasmic reticulum has been established. It is a 58 KDa multi-domain protein that facilitates contact site formation between various organelles. The present study aimed to investigate the role of various domains of the protein in its sub-cellular localization and regulation of peroxisome number. For this, we created six truncations of the protein (1-87, 1-250, 1-352, 88-523, 251-523 and 353-523) and tagged GFP at the C-terminus. Biochemical methods and fluorescence microscopy were used to characterize the effect of truncation on expression and localization of the protein. Quantitative analysis was performed to determine the effect of truncation on peroxisome number in these cells. Expression of the truncated variants in cells lacking PEX30 did not cause any effect on cell growth. Interestingly, variable expression and localization of the truncated variants in both peroxisome-inducing and non-inducing medium was observed. Truncated variants depicted different distribution patterns such as punctate, reticulate and cytosolic fluorescence. Interestingly, lack of the complete dysferlin domain or C-Dysf resulted in increased peroxisome number similar to as reported for cells lacking Pex30. No contribution of this domain in the reticulate distribution of the proteins was also observed. Our results show an interesting role for the various domains of Pex30 in localization and regulation of peroxisome number.
Collapse
Affiliation(s)
- Nayan Moni Deori
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Terence Infant
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Rajkumar P Thummer
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Shirisha Nagotu
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| |
Collapse
|
4
|
Drescher DG, Drescher MJ, Selvakumar D, Annam NP. Analysis of Dysferlin Direct Interactions with Putative Repair Proteins Links Apoptotic Signaling to Ca 2+ Elevation via PDCD6 and FKBP8. Int J Mol Sci 2023; 24:4707. [PMID: 36902136 PMCID: PMC10002499 DOI: 10.3390/ijms24054707] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/19/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
Quantitative surface plasmon resonance (SPR) was utilized to determine binding strength and calcium dependence of direct interactions between dysferlin and proteins likely to mediate skeletal muscle repair, interrupted in limb girdle muscular dystrophy type 2B/R2. Dysferlin canonical C2A (cC2A) and C2F/G domains directly interacted with annexin A1, calpain-3, caveolin-3, affixin, AHNAK1, syntaxin-4, and mitsugumin-53, with cC2A the primary target and C2F lesser involved, overall demonstrating positive calcium dependence. Dysferlin C2 pairings alone showed negative calcium dependence in almost all cases. Like otoferlin, dysferlin directly interacted via its carboxy terminus with FKBP8, an anti-apoptotic outer mitochondrial membrane protein, and via its C2DE domain with apoptosis-linked gene (ALG-2/PDCD6), linking anti-apoptosis with apoptosis. Confocal Z-stack immunofluorescence confirmed co-compartmentalization of PDCD6 and FKBP8 at the sarcolemmal membrane. Our evidence supports the hypothesis that prior to injury, dysferlin C2 domains self-interact and give rise to a folded, compact structure as indicated for otoferlin. With elevation of intracellular Ca2+ in injury, dysferlin would unfold and expose the cC2A domain for interaction with annexin A1, calpain-3, mitsugumin 53, affixin, and caveolin-3, and dysferlin would realign from its interactions with PDCD6 at basal calcium levels to interact strongly with FKBP8, an intramolecular rearrangement facilitating membrane repair.
Collapse
Affiliation(s)
- Dennis G. Drescher
- Laboratory of Bio-otology, Department of Otolaryngology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Marian J. Drescher
- Laboratory of Bio-otology, Department of Otolaryngology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Dakshnamurthy Selvakumar
- Laboratory of Bio-otology, Department of Otolaryngology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Neeraja P. Annam
- Laboratory of Bio-otology, Department of Otolaryngology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
5
|
Barefield DY, Sell JJ, Tahtah I, Kearns SD, McNally EM, Demonbreun AR. Loss of dysferlin or myoferlin results in differential defects in excitation-contraction coupling in mouse skeletal muscle. Sci Rep 2021; 11:15865. [PMID: 34354129 PMCID: PMC8342512 DOI: 10.1038/s41598-021-95378-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 07/26/2021] [Indexed: 11/25/2022] Open
Abstract
Muscular dystrophies are disorders characterized by progressive muscle loss and weakness that are both genotypically and phenotypically heterogenous. Progression of muscle disease arises from impaired regeneration, plasma membrane instability, defective membrane repair, and calcium mishandling. The ferlin protein family, including dysferlin and myoferlin, are calcium-binding, membrane-associated proteins that regulate membrane fusion, trafficking, and tubule formation. Mice lacking dysferlin (Dysf), myoferlin (Myof), and both dysferlin and myoferlin (Fer) on an isogenic inbred 129 background were previously demonstrated that loss of both dysferlin and myoferlin resulted in more severe muscle disease than loss of either gene alone. Furthermore, Fer mice had disordered triad organization with visibly malformed transverse tubules and sarcoplasmic reticulum, suggesting distinct roles of dysferlin and myoferlin. To assess the physiological role of disorganized triads, we now assessed excitation contraction (EC) coupling in these models. We identified differential abnormalities in EC coupling and ryanodine receptor disruption in flexor digitorum brevis myofibers isolated from ferlin mutant mice. We found that loss of dysferlin alone preserved sensitivity for EC coupling and was associated with larger ryanodine receptor clusters compared to wildtype myofibers. Loss of myoferlin alone or together with a loss of dysferlin reduced sensitivity for EC coupling, and produced disorganized and smaller ryanodine receptor cluster size compared to wildtype myofibers. These data reveal impaired EC coupling in Myof and Fer myofibers and slightly potentiated EC coupling in Dysf myofibers. Despite high homology, dysferlin and myoferlin have differential roles in regulating sarcotubular formation and maintenance resulting in unique impairments in calcium handling properties.
Collapse
Affiliation(s)
- David Y Barefield
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, 303 E Superior Lurie 5-500, Chicago, IL, 60611, USA. .,Department of Cell and Molecular Physiology, Loyola University Chicago, 2160 S. 1st Ave, Maywood, IL, 60153, USA.
| | - Jordan J Sell
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, 303 E Superior Lurie 5-500, Chicago, IL, 60611, USA
| | - Ibrahim Tahtah
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, 303 E Superior Lurie 5-500, Chicago, IL, 60611, USA
| | - Samuel D Kearns
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, 303 E Superior Lurie 5-500, Chicago, IL, 60611, USA
| | - Elizabeth M McNally
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, 303 E Superior Lurie 5-500, Chicago, IL, 60611, USA
| | - Alexis R Demonbreun
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, 303 E Superior Lurie 5-500, Chicago, IL, 60611, USA. .,Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA. .,Center for Genetic Medicine, Northwestern University, 303 E Superior Lurie 5-512, Chicago, IL, 60611, USA.
| |
Collapse
|
6
|
Phospholipids: Identification and Implication in Muscle Pathophysiology. Int J Mol Sci 2021; 22:ijms22158176. [PMID: 34360941 PMCID: PMC8347011 DOI: 10.3390/ijms22158176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 07/24/2021] [Accepted: 07/26/2021] [Indexed: 12/29/2022] Open
Abstract
Phospholipids (PLs) are amphiphilic molecules that were essential for life to become cellular. PLs have not only a key role in compartmentation as they are the main components of membrane, but they are also involved in cell signaling, cell metabolism, and even cell pathophysiology. Considered for a long time to simply be structural elements of membranes, phospholipids are increasingly being viewed as sensors of their environment and regulators of many metabolic processes. After presenting their main characteristics, we expose the increasing methods of PL detection and identification that help to understand their key role in life processes. Interest and importance of PL homeostasis is growing as pathogenic variants in genes involved in PL biosynthesis and/or remodeling are linked to human diseases. We here review diseases that involve deregulation of PL homeostasis and present a predominantly muscular phenotype.
Collapse
|
7
|
Ganchinho Lucas S, Vieira Santos I, Pencas Alfaiate FJ, Lino I. A new dysferlin gene mutation in a Portuguese family with Miyoshi myopathy. BMJ Case Rep 2021; 14:14/7/e242341. [PMID: 34281941 DOI: 10.1136/bcr-2021-242341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Dysferlinopathies are autosomal recessive muscular dystrophies caused by mutations in the dysferlin gene (DYSF). A 33-year-old man was born to a non-consanguineous couple. At the age of 25 he stared to feel weakness of the distal lower limbs and also experienced episodes of rhabdomyolysis. Electromyography showed a myopathic pattern, and muscle biopsy revealed dystrophic changes with absence of dysferlin. Genetic analysis was positive for a mutation in the c3367_3368del DYSF gene (p.Lys1123GLUFS*2). After 8 years of disease evolution the symptomatology worsened. This is the first report of this mutation of the DYSF gene identified in a non-consanguineous Portuguese family, studied over 8 years. We believe the mutation is responsible for the Miyoshi myopathy. Disease progression cannot be predicted in either the patient or carrier family because there are no similar cases previously described in the literature.
Collapse
Affiliation(s)
| | | | | | - Ireneia Lino
- Unidade de Hospitalização Domiciliária Polivalente, Hospital do Espírito Santo EPE, Évora, Portugal
| |
Collapse
|
8
|
Yan HY, Xie YN, Han JZ, Song XQ. Mutation at a new allele of the dysferlin gene causes Miyoshi myopathy: A case report. JOURNAL OF MUSCULOSKELETAL & NEURONAL INTERACTIONS 2021; 21:397-400. [PMID: 34465679 PMCID: PMC8426653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Miyoshi myopathy (MM) is a rare autosomal recessive disorder caused by dysferlin (DYSF) gene mutation. Miyoshi myopathy-inducing mutation sites in the DYSF gene have been discovered worldwide. In the present study, a patient with progressive lower extremity weakness is reported, for which MM was diagnosed according to clinical manifestations, muscle biopsy, and immunohistochemistry. In addition, the DYSF gene of the patient and his parents was sequenced and analyzed and two heterozygous mutations of the DYSF gene (c.4756C> T and c.5316dupC) were discovered. The first mutation correlated with MM while the second was a new mutation. The patient was diagnosed with a compound heterozygous mutation. The mutation site is a new member of pathogenic MM gene mutations.
Collapse
Affiliation(s)
- Hai-Yan Yan
- Department of Neurology, Harrison International Peace Hospital, Hebei, China
| | - Ya-Nan Xie
- Department of Angiocardiopathy, The Second Hospital of Hebei Medical University, Hebei, China
| | - Jing-Zhe Han
- Department of Neurology, Harrison International Peace Hospital, Hebei, China,Corresponding author: Jing-Zhe Han M.D., Department of Neurology, Harrison International Peace Hospital, No. 2 Renmin Zhong Road, Taocheng District, Hengshui 053000, China E-mail:
| | - Xue-Qin Song
- Department of Neurology, The Second Hospital of Hebei Medical University, Hebei, China,Institute of Cardiocerebrovascular Disease, Hebei, China,Neurological Laboratory of Hebei Province, Hebei, China
| |
Collapse
|
9
|
Zimmermann N, Gibbons WJ, Homan SM, Prows DR. Heart disease in a mutant mouse model of spontaneous eosinophilic myocarditis maps to three loci. BMC Genomics 2019; 20:727. [PMID: 31601172 PMCID: PMC6788080 DOI: 10.1186/s12864-019-6108-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 09/20/2019] [Indexed: 12/17/2022] Open
Abstract
Background Heart disease (HD) is the major cause of morbidity and mortality in patients with hypereosinophilic diseases. Due to a lack of adequate animal models, our understanding of the pathophysiology of eosinophil-mediated diseases with heart complications is limited. We have discovered a mouse mutant, now maintained on an A/J inbred background, that spontaneously develops hypereosinophilia in multiple organs. Cellular infiltration into the heart causes an eosinophilic myocarditis, with affected mice of the mutant line (i.e., A/JHD) demonstrating extensive myocardial damage and remodeling that leads to HD and premature death, usually by 15-weeks old. Results Maintaining the A/JHD line for many generations established that the HD trait was heritable and implied the mode of inheritance was not too complex. Backcross and intercross populations generated from mating A/JHD males with females from four different inbred strains produced recombinant populations with highly variable rates of affected offspring, ranging from none in C57BL/6 J intercrosses, to a few mice with HD using 129S1/SvImJ intercrosses and C57BL/6 J backcrosses, but nearly 8% of intercrosses and > 17% of backcrosses from SJL/J related populations developed HD. Linkage analyses of these SJL/J derived recombinants identified three highly significant loci: a recessive locus mapping to distal chromosome 5 (LOD = 4.88; named Emhd1 for eosinophilic myocarditis to heart disease-1); and two dominant variants mapping to chromosome 17, one (Emhd2; LOD = 7.51) proximal to the major histocompatibility complex, and a second (Emhd3; LOD = 6.89) that includes the major histocompatibility region. Haplotype analysis identified the specific crossovers that defined the Emhd1 (2.65 Mb), Emhd2 (8.46 Mb) and Emhd3 (14.59 Mb) intervals. Conclusions These results indicate the HD trait in this mutant mouse model of eosinophilic myocarditis is oligogenic with variable penetrance, due to multiple segregating variants and possibly additional genetic or nongenetic factors. The A/JHD mouse model represents a unique and valuable resource to understand the interplay of causal factors that underlie the pathology of this newly discovered eosinophil-associated disease with cardiac complications.
Collapse
Affiliation(s)
- Nives Zimmermann
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - William J Gibbons
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Bldg. R. MLC 7016, Cincinnati, OH, 45229-3039, USA
| | - Shelli M Homan
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Bldg. R. MLC 7016, Cincinnati, OH, 45229-3039, USA
| | - Daniel R Prows
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA. .,Division of Human Genetics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Bldg. R. MLC 7016, Cincinnati, OH, 45229-3039, USA.
| |
Collapse
|
10
|
Ishiba R, Santos ALF, Almeida CF, Caires LC, Ribeiro AF, Ayub-Guerrieri D, Fernandes SA, Souza LS, Vainzof M. Faster regeneration associated to high expression of Fam65b and Hdac6 in dysferlin-deficient mouse. J Mol Histol 2019; 50:375-387. [DOI: 10.1007/s10735-019-09834-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/10/2019] [Indexed: 11/27/2022]
|
11
|
Haynes VR, Keenan SN, Bayliss J, Lloyd EM, Meikle PJ, Grounds MD, Watt MJ. Dysferlin deficiency alters lipid metabolism and remodels the skeletal muscle lipidome in mice. J Lipid Res 2019; 60:1350-1364. [PMID: 31203232 DOI: 10.1194/jlr.m090845] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 05/14/2019] [Indexed: 12/15/2022] Open
Abstract
Defects in the gene coding for dysferlin, a membrane-associated protein, affect many tissues, including skeletal muscles, with a resultant myopathy called dysferlinopathy. Dysferlinopathy manifests postgrowth with a progressive loss of skeletal muscle function, early intramyocellular lipid accumulation, and a striking later replacement of selective muscles by adipocytes. To better understand the changes underpinning this disease, we assessed whole-body energy homeostasis, skeletal muscle fatty acid metabolism, lipolysis in adipose tissue, and the skeletal muscle lipidome using young adult dysferlin-deficient male BLAJ mice and age-matched C57Bl/6J WT mice. BLAJ mice had increased lean mass and reduced fat mass associated with increased physical activity and increased adipose tissue lipolysis. Skeletal muscle fatty acid metabolism was remodeled in BLAJ mice, characterized by a partitioning of fatty acids toward storage rather than oxidation. Lipidomic analysis identified marked changes in almost all lipid classes examined in the skeletal muscle of BLAJ mice, including sphingolipids, phospholipids, cholesterol, and most glycerolipids but, surprisingly, not triacylglycerol. These observations indicate that an early manifestation of dysferlin deficiency is the reprogramming of skeletal muscle and adipose tissue lipid metabolism, which is likely to contribute to the progressive adverse histopathology in dysferlinopathies.
Collapse
Affiliation(s)
- Vanessa R Haynes
- Department of Physiology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia
| | - Stacey N Keenan
- Department of Physiology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia
| | - Jackie Bayliss
- Department of Physiology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia
| | - Erin M Lloyd
- School of Human Sciences University of Western Australia, Perth, Australia
| | - Peter J Meikle
- Metabolomics Laboratory Baker Heart Institute, Melbourne, Australia
| | - Miranda D Grounds
- School of Human Sciences University of Western Australia, Perth, Australia
| | - Matthew J Watt
- Department of Physiology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia
| |
Collapse
|
12
|
Lee JJA, Maruyama R, Duddy W, Sakurai H, Yokota T. Identification of Novel Antisense-Mediated Exon Skipping Targets in DYSF for Therapeutic Treatment of Dysferlinopathy. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 13:596-604. [PMID: 30439648 PMCID: PMC6234522 DOI: 10.1016/j.omtn.2018.10.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/05/2018] [Accepted: 10/05/2018] [Indexed: 12/20/2022]
Abstract
Dysferlinopathy is a progressive myopathy caused by mutations in the dysferlin (DYSF) gene. Dysferlin protein plays a major role in plasma-membrane resealing. Some patients with DYSF deletion mutations exhibit mild symptoms, suggesting some regions of DYSF can be removed without significantly impacting protein function. Antisense-mediated exon-skipping therapy uses synthetic molecules called antisense oligonucleotides to modulate splicing, allowing exons harboring or near genetic mutations to be removed and the open reading frame corrected. Previous studies have focused on DYSF exon 32 skipping as a potential therapeutic approach, based on the association of a mild phenotype with the in-frame deletion of exon 32. To date, no other DYSF exon-skipping targets have been identified, and the relationship between DYSF exon deletion pattern and protein function remains largely uncharacterized. In this study, we utilized a membrane-wounding assay to evaluate the ability of plasmid constructs carrying mutant DYSF, as well as antisense oligonucleotides, to rescue membrane resealing in patient cells. We report that multi-exon skipping of DYSF exons 26–27 and 28–29 rescues plasma-membrane resealing. Successful translation of these findings into the development of clinical antisense drugs would establish new therapeutic approaches that would be applicable to ∼5%–7% (exons 26–27 skipping) and ∼8% (exons 28–29 skipping) of dysferlinopathy patients worldwide.
Collapse
Affiliation(s)
- Joshua J A Lee
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
| | - Rika Maruyama
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
| | - William Duddy
- Northern Ireland Centre for Stratified Medicine, Altnagelvin Hospital Campus, Ulster University, Londonderry, United Kingdom
| | - Hidetoshi Sakurai
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Toshifumi Yokota
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada; The Friends of Garrett Cumming Research & Muscular Dystrophy Canada HM Toupin Neurological Science Research Chair, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
13
|
Dong X, Gao X, Dai Y, Ran N, Yin H. Serum exosomes can restore cellular function in vitro and be used for diagnosis in dysferlinopathy. Am J Cancer Res 2018; 8:1243-1255. [PMID: 29507617 PMCID: PMC5835933 DOI: 10.7150/thno.22856] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 11/17/2017] [Indexed: 11/10/2022] Open
Abstract
Purpose: It is challenging to deliver the full-length dysferlin gene or protein to restore cellular functions of dysferlin-deficient (DYSF-/-) myofibres in dysferlinopathy, a disease caused by the absence of dysferlin, which is currently without effective treatment. Exosomes, efficient membranous nanoscale carriers of biological cargoes, could be useful. Experimental design: Myotube- and human serum-derived exosomes were investigated for their capabilities of restoring dysferlin protein and cellular functions in murine and human DYSF-/- cells. Moreover, dysferlinopathic patient serum- and urine-derived exosomes were assessed for their abilities as diagnostic tools for dysferlinopathy. Results: Here we show that exosomes from dysferlin-expressing myotubes carry abundant dysferlin and enable transfer of full-length dysferlin protein to DYSF-/- myotubes. Exogenous dysferlin correctly localizes on DYSF-/- myotube membranes, enabling membrane resealing in response to injury. Human serum exosomes also carry dysferlin protein and improve membrane repair capabilities of human DYSF-/- myotubes irrespective of mutations. Lack of dysferlin in dysferlinopathic patient serum and urine exosomes enables differentiation between healthy controls and dysferlinopathic patients. Conclusions: Our findings provide evidence that exosomes are efficient carriers of dysferlin and can be employed for the treatment and non-invasive diagnosis of dysferlinopathy.
Collapse
|
14
|
Ullah MI, Ahmad A, Zarkovic M, Shah SS, Nasir A, Mahmood S, Ahmad W, Hubner CA, Hassan MJ. Novel duplication mutation of the DYSF gene in a Pakistani family with Miyoshi Myopathy. Saudi Med J 2017; 38:1190-1195. [PMID: 29209666 PMCID: PMC5787628 DOI: 10.15537/smj.2017.12.20989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objectives: To identify the underlying gene mutation in a large consanguineous Pakistani family. Methods: This is an observational descriptive study carried out at the Department of Biochemistry, Shifa International Hospital, Quaid-i-Azam University, and Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan from 2013-2016. Genomic DNA of all recruited family members was extracted and the Trusight one sequencing panel was used to assess genes associated with a neuro-muscular phenotype. Comparative modeling of mutated and wild-type protein was carried out by PyMOL tool. Results: Clinical investigations of an affected individual showed typical features of Miyoshi myopathy (MM) like elevated serum creatine kinase (CK) levels, distal muscle weakness, myopathic changes in electromyography (EMG) and muscle histopathology. Sequencing with the Ilumina Trusight one sequencing panel revealed a novel 22 nucleotide duplication (CTTCAACTTGTTTGACTCTCCT) in the DYSF gene (NM_001130987.1_c.897-918dup; p.Gly307Leufs5X), which results in a truncating frameshift mutation and perfectly segregated with the disease in this family. Protein modeling studies suggested a disruption in spatial configuration of the putative mutant protein. Conclusion: A novel duplication of 22 bases (c.897_918dup; p.Gly307Leufs5X) in the DYSF gene was identified in a family suffering from Miyoshi myopathy. Protein homology analysis proposes a disruptive impact of this mutation on protein function.
Collapse
Affiliation(s)
- Muhammad I Ullah
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Lahore, Pakistan. E-mail.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Sellers SL, Milad N, White Z, Pascoe C, Chan R, Payne GW, Seow C, Rossi F, Seidman MA, Bernatchez P. Increased nonHDL cholesterol levels cause muscle wasting and ambulatory dysfunction in the mouse model of LGMD2B. J Lipid Res 2017; 59:261-272. [PMID: 29175948 DOI: 10.1194/jlr.m079459] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/19/2017] [Indexed: 12/22/2022] Open
Abstract
Progressive limb and girdle muscle atrophy leading to loss of ambulation is a hallmark of dysferlinopathies, which include limb-girdle muscular dystrophy type 2B and Miyoshi myopathy. However, animal models fail to fully reproduce the disease severity observed in humans, with dysferlin-null (Dysf-/-) mice exhibiting minor muscle damage and weakness without dramatic ambulatory dysfunction. As we have previously reported significant Dysf expression in blood vessels, we investigated the role of vascular function in development of muscle pathology by generating a Dysf-deficient mouse model with vascular disease. This was achieved by crossing Dysf-/- mice with ApoE-/- mice, which have high levels of nonHDL-associated cholesterol. Double-knockout Dysf-/-ApoE-/- mice exhibited severe ambulatory dysfunction by 11 months of age. In limb-girdle muscles, histology confirmed dramatic muscle wasting, fibrofatty replacement, and myofiber damage in Dysf-/-ApoE-/- mice without affecting the ratio of centrally nucleated myofibers. Although there were no major changes in ex vivo diaphragm and soleus muscle function, histological analyses revealed these muscles to be untouched by damage and remodelling. In all, these data suggest that cholesterol may be deleterious to dysferlinopathic muscle and lead to ambulatory dysfunction. Moreover, differences in plasma lipid handling between mice and humans could be a key factor affecting dysferlinopathy severity.
Collapse
Affiliation(s)
- Stephanie L Sellers
- Department of Anesthesiology, Pharmacology & Therapeutics and UBC Centre for Heart Lung Innovation, University of British Columbia, Vancouver, Canada.,St. Paul's Hospital, University of British Columbia, Vancouver, Canada
| | - Nadia Milad
- Department of Anesthesiology, Pharmacology & Therapeutics and UBC Centre for Heart Lung Innovation, University of British Columbia, Vancouver, Canada.,St. Paul's Hospital, University of British Columbia, Vancouver, Canada
| | - Zoe White
- Department of Anesthesiology, Pharmacology & Therapeutics and UBC Centre for Heart Lung Innovation, University of British Columbia, Vancouver, Canada.,St. Paul's Hospital, University of British Columbia, Vancouver, Canada
| | - Chris Pascoe
- St. Paul's Hospital, University of British Columbia, Vancouver, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Rayleigh Chan
- Department of Anesthesiology, Pharmacology & Therapeutics and UBC Centre for Heart Lung Innovation, University of British Columbia, Vancouver, Canada.,St. Paul's Hospital, University of British Columbia, Vancouver, Canada
| | - Geoffrey W Payne
- Providence Health Care, University of Northern British Columbia, Prince George, Canada
| | - Chun Seow
- Department of Anesthesiology, Pharmacology & Therapeutics and UBC Centre for Heart Lung Innovation, University of British Columbia, Vancouver, Canada.,St. Paul's Hospital, University of British Columbia, Vancouver, Canada
| | - Fabio Rossi
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada.,Biomedical Research Centre, University of British Columbia, Vancouver, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Michael A Seidman
- St. Paul's Hospital, University of British Columbia, Vancouver, Canada.,Department of Pathology, Prince George, Canada
| | - Pascal Bernatchez
- Department of Anesthesiology, Pharmacology & Therapeutics and UBC Centre for Heart Lung Innovation, University of British Columbia, Vancouver, Canada .,St. Paul's Hospital, University of British Columbia, Vancouver, Canada
| |
Collapse
|
16
|
Abstract
Dysferlinopathy is an autosomal recessive muscular dystrophy characterized by the progressive loss of motility that is caused by mutations throughout the DYSF gene. There are currently no approved therapies that ameliorate or reverse dysferlinopathy. Gene delivery using adeno-associated vectors (AAVs) is a leading therapeutic strategy for genetic diseases; however, the large size of dysferlin cDNA (6.2 kB) precludes packaging into a single AAV capsid. Therefore, using 3D structural modeling and hypothesizing dysferlin C2 domain redundancy, a 30% smaller, dysferlin-like molecule amenable to single AAV vector packaging was engineered (termed Nano-Dysferlin). The intracellular distribution of Nano-Dysferlin was similar to wild-type dysferlin and neither demonstrated toxicity when overexpressed in dysferlin-deficient patient myoblasts. Intramuscular injection of AAV-Nano-Dysferlin in young dysferlin-deficient mice significantly improved muscle integrity and decreased muscle turnover 3 weeks after treatment, as determined by Evans blue dye uptake and central nucleated fibers, respectively. Systemically administered AAV-Nano-Dysferlin to young adult dysferlin-deficient mice restored motor function and improved muscle integrity nearly 8 months after a single injection. These preclinical data are the first report of a smaller dysferlin variant tailored for AAV single particle delivery that restores motor function and, therefore, represents an attractive candidate for the treatment of dysferlinopathy.
Collapse
|
17
|
Blazek AD, Paleo BJ, Weisleder N. Plasma Membrane Repair: A Central Process for Maintaining Cellular Homeostasis. Physiology (Bethesda) 2016; 30:438-48. [PMID: 26525343 DOI: 10.1152/physiol.00019.2015] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Plasma membrane repair is a conserved cellular response mediating active resealing of membrane disruptions to maintain homeostasis and prevent cell death and progression of multiple diseases. Cell membrane repair repurposes mechanisms from various cellular functions, including vesicle trafficking, exocytosis, and endocytosis, to mend the broken membrane. Recent studies increased our understanding of membrane repair by establishing the molecular machinery contributing to membrane resealing. Here, we review some of the key proteins linked to cell membrane repair.
Collapse
Affiliation(s)
- Alisa D Blazek
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Brian J Paleo
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Noah Weisleder
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio
| |
Collapse
|
18
|
Cárdenas AM, González-Jamett AM, Cea LA, Bevilacqua JA, Caviedes P. Dysferlin function in skeletal muscle: Possible pathological mechanisms and therapeutical targets in dysferlinopathies. Exp Neurol 2016; 283:246-54. [PMID: 27349407 DOI: 10.1016/j.expneurol.2016.06.026] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 06/22/2016] [Accepted: 06/23/2016] [Indexed: 12/18/2022]
Abstract
Mutations in the dysferlin gene are linked to a group of muscular dystrophies known as dysferlinopathies. These myopathies are characterized by progressive atrophy. Studies in muscle tissue from dysferlinopathy patients or dysferlin-deficient mice point out its importance in membrane repair. However, expression of dysferlin homologous proteins that restore sarcolemma repair function in dysferlinopathy animal models fail to arrest muscle wasting, therefore suggesting that dysferlin plays other critical roles in muscle function. In the present review, we discuss dysferlin functions in the skeletal muscle, as well as pathological mechanisms related to dysferlin mutations. Particular focus is presented related the effect of dysferlin on cell membrane related function, which affect its repair, vesicle trafficking, as well as Ca(2+) homeostasis. Such mechanisms could provide accessible targets for pharmacological therapies.
Collapse
Affiliation(s)
- Ana M Cárdenas
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile.
| | - Arlek M González-Jamett
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile; Programa de Anatomía y Biología del Desarrollo, ICBM, Facultad de Medicina, Departamento de Neurología y Neurocirugía, Hospital Clínico Universidad de Chile, Universidad de Chile, Santiago, Chile
| | - Luis A Cea
- Programa de Anatomía y Biología del Desarrollo, ICBM, Facultad de Medicina, Departamento de Neurología y Neurocirugía, Hospital Clínico Universidad de Chile, Universidad de Chile, Santiago, Chile
| | - Jorge A Bevilacqua
- Programa de Anatomía y Biología del Desarrollo, ICBM, Facultad de Medicina, Departamento de Neurología y Neurocirugía, Hospital Clínico Universidad de Chile, Universidad de Chile, Santiago, Chile
| | - Pablo Caviedes
- Programa de Farmacología Molecular y Clinica, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
19
|
Kim DW, Glendining KA, Grattan DR, Jasoni CL. Maternal Obesity in the Mouse Compromises the Blood-Brain Barrier in the Arcuate Nucleus of Offspring. Endocrinology 2016; 157:2229-42. [PMID: 27054554 DOI: 10.1210/en.2016-1014] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The arcuate nucleus (ARC) regulates body weight in response to blood-borne signals of energy balance. Blood-brain barrier (BBB) permeability in the ARC is determined by capillary endothelial cells (ECs) and tanycytes. Tight junctions between ECs limit paracellular entry of blood-borne molecules into the brain, whereas EC transporters and fenestrations regulate transcellular entry. Tanycytes appear to form a barrier that prevents free diffusion of blood-borne molecules. Here we tested the hypothesis that gestation in an obese mother alters BBB permeability in the ARC of offspring. A maternal high-fat diet model was used to generate offspring from normal-weight (control) and obese dams (OffOb). Evans Blue diffusion into the ARC was higher in OffOb compared with controls, indicating that ARC BBB permeability was altered. Vessels investing the ARC in OffOb had more fenestrations than controls, although the total number of vessels was not changed. A reduced number of tanycytic processes in the ARC of OffOb was also observed. The putative transporters, Lrp1 and dysferlin, were up-regulated and tight junction components were differentially expressed in OffOb compared with controls. These data suggest that maternal obesity during pregnancy can compromise BBB formation in the fetus, leading to altered BBB function in the ARC after birth.
Collapse
Affiliation(s)
- Dong Won Kim
- Centre for Neuroendocrinology, Department of Anatomy, University of Otago School of Medical Sciences, Dunedin 9054, New Zealand
| | - Kelly A Glendining
- Centre for Neuroendocrinology, Department of Anatomy, University of Otago School of Medical Sciences, Dunedin 9054, New Zealand
| | - David R Grattan
- Centre for Neuroendocrinology, Department of Anatomy, University of Otago School of Medical Sciences, Dunedin 9054, New Zealand
| | - Christine L Jasoni
- Centre for Neuroendocrinology, Department of Anatomy, University of Otago School of Medical Sciences, Dunedin 9054, New Zealand
| |
Collapse
|
20
|
Neuromuscular electrical stimulation promotes development in mice of mature human muscle from immortalized human myoblasts. Skelet Muscle 2016; 6:4. [PMID: 26925213 PMCID: PMC4769538 DOI: 10.1186/s13395-016-0078-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 01/06/2016] [Indexed: 12/25/2022] Open
Abstract
Background Studies of the pathogenic mechanisms underlying human myopathies and muscular dystrophies often require animal models, but models of some human diseases are not yet available. Methods to promote the engraftment and development of myogenic cells from individuals with such diseases in mice would accelerate such studies and also provide a useful tool for testing therapeutics. Here, we investigate the ability of immortalized human myogenic precursor cells (hMPCs) to form mature human myofibers following implantation into the hindlimbs of non-obese diabetic-Rag1nullIL2rγnull (NOD-Rag)-immunodeficient mice. Results We report that hindlimbs of NOD-Rag mice that are X-irradiated, treated with cardiotoxin, and then injected with immortalized control hMPCs or hMPCs from an individual with facioscapulohumeral muscular dystrophy (FSHD) develop mature human myofibers. Furthermore, intermittent neuromuscular electrical stimulation (iNMES) of the peroneal nerve of the engrafted limb enhances the development of mature fibers in the grafts formed by both immortal cell lines. With control cells, iNMES increases the number and size of the human myofibers that form and promotes closer fiber-to-fiber packing. The human myofibers in the graft are innervated, fully differentiated, and minimally contaminated with murine myonuclei. Conclusions Our results indicate that control and FSHD human myofibers can form in mice engrafted with hMPCs and that iNMES enhances engraftment and subsequent development of mature human muscle.
Collapse
|
21
|
Burch PM, Pogoryelova O, Goldstein R, Bennett D, Guglieri M, Straub V, Bushby K, Lochmüller H, Morris C. Muscle-Derived Proteins as Serum Biomarkers for Monitoring Disease Progression in Three Forms of Muscular Dystrophy. J Neuromuscul Dis 2015; 2:241-255. [PMID: 26870665 PMCID: PMC4746763 DOI: 10.3233/jnd-140066] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Background: Identifying translatable, non-invasive biomarkers of muscular dystrophy that better reflect the disease pathology than those currently available would aid the development of new therapies, the monitoring of disease progression and the response to therapy. Objective: The goal of this study was to evaluate a panel of serum protein biomarkers with the potential to specifically detect skeletal muscle injury. Method: Serum concentrations of skeletal troponin I (sTnI), myosin light chain 3 (Myl3), fatty acid binding protein 3 (FABP3) and muscle-type creatine kinase (CKM) proteins were measured in 74 Duchenne muscular dystrophy (DMD), 38 Becker muscular dystrophy (BMD) and 49 Limb-girdle muscular dystrophy type 2B (LGMD2B) patients and 32 healthy controls. Results: All four proteins were significantly elevated in the serum of these three muscular dystrophy patient populations when compared to healthy controls, but, interestingly, displayed different profiles depending on the type of muscular dystrophy. Additionally, the effects of patient age, ambulatory status, cardiac function and treatment status on the serum concentrations of the proteins were investigated. Statistical analysis revealed correlations between the serum concentrations and certain clinical endpoints including forced vital capacity in DMD patients and the time to walk ten meters in LGMD2B patients. Serum concentrations of these proteins were also elevated in two preclinical models of muscular dystrophy, the mdx mouse and the golden-retriever muscular dystrophy dog. Conclusions: These proteins, therefore, are potential muscular dystrophy biomarkers for monitoring disease progression and therapeutic response in both preclinical and clinical studies.
Collapse
Affiliation(s)
- Peter M Burch
- Worldwide Research & Development, Pfizer Inc., Groton, CT, USA
| | - Oksana Pogoryelova
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | | | - Donald Bennett
- Worldwide Research & Development, Pfizer Inc., Cambridge, MA, USA
| | - Michela Guglieri
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Volker Straub
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Kate Bushby
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Hanns Lochmüller
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Carl Morris
- Worldwide Research & Development, Pfizer Inc., Cambridge, MA, USA
| |
Collapse
|
22
|
Yin X, Wang Q, Chen T, Niu J, Ban R, Liu J, Mao Y, Pu C. CD4+ cells, macrophages, MHC-I and C5b-9 involve the pathogenesis of dysferlinopathy. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:3069-3075. [PMID: 26045819 PMCID: PMC4440128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 02/20/2015] [Indexed: 06/04/2023]
Abstract
OBJECTIVE Dysferlin is a sarcolemmal protein that plays an important role in membrane repair by regulating vesicle fusion with the sarcolemma. Mutations in the dysferlin gene (DYSF) lead to multiple clinical phenotypes, including Miyoshi myopathy (MM), limb girdle muscular dystrophy type 2B (LGMD 2B), and distal myopathy with anterior tibial onset (DMAT). Patients with dysferlinopathy also show muscle inflammation, which often leads to a misdiagnosis as inflammatory myopathy. In this study, we examined and analyzed the dyferlinopathy-associated immunological features. METHODS Comparative immunohistochemical analysis of inflammatory cell infiltration, and muscle expression of MHC-I and C5b-9 was performed using muscle biopsy samples from 14 patients with dysferlinopathy, 7 patients with polymyositis, and 8 patients with either Duchenne muscular dystrophy or Becker muscular dystrophy (DMD/BMD). RESULTS Immunohistochemical analysis revealed positive staining for immune response-related CD4+ cells, macrophages, MHC-I and C5b-9 in dysferlinopathy, which is in a different mode of polymyositis and DMD/BMD. CONCLUSION These results demonstrated the involvement of immune factors in the pathogenesis of dysferlinopathy.
Collapse
Affiliation(s)
- Xi Yin
- Department of Neurology, Chinese PLA General Hospital 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Qian Wang
- Department of Emergency, General Hospital of Chinese People's Armed Police Force 69 Yongding Road, Haidian District, Beijing 100039, China
| | - Ting Chen
- Department of Neurology, Chinese PLA General Hospital 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Junwei Niu
- Department of Neurology, Chinese PLA General Hospital 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Rui Ban
- Department of Neurology, Chinese PLA General Hospital 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Jiexiao Liu
- Department of Neurology, Chinese PLA General Hospital 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Yanling Mao
- Department of Neurology, Chinese PLA General Hospital 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Chuanqiang Pu
- Department of Neurology, Chinese PLA General Hospital 28 Fuxing Road, Haidian District, Beijing 100853, China
| |
Collapse
|
23
|
Sondergaard PC, Griffin DA, Pozsgai ER, Johnson RW, Grose WE, Heller KN, Shontz KM, Montgomery CL, Liu J, Clark KR, Sahenk Z, Mendell JR, Rodino-Klapac LR. AAV.Dysferlin Overlap Vectors Restore Function in Dysferlinopathy Animal Models. Ann Clin Transl Neurol 2015; 2:256-70. [PMID: 25815352 PMCID: PMC4369275 DOI: 10.1002/acn3.172] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 12/12/2014] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVE Dysferlinopathies are a family of untreatable muscle disorders caused by mutations in the dysferlin gene. Lack of dysferlin protein results in progressive dystrophy with chronic muscle fiber loss, inflammation, fat replacement, and fibrosis; leading to deteriorating muscle weakness. The objective of this work is to demonstrate efficient and safe restoration of dysferlin expression following gene therapy treatment. METHODS Traditional gene therapy is restricted by the packaging capacity limit of adeno-associated virus (AAV), however, use of a dual vector strategy allows for delivery of over-sized genes, including dysferlin. The two vector system (AAV.DYSF.DV) packages the dysferlin cDNA utilizing AAV serotype rh.74 through the use of two discrete vectors defined by a 1 kb region of homology. Delivery of AAV.DYSF.DV via intramuscular and vascular delivery routes in dysferlin deficient mice and nonhuman primates was compared for efficiency and safety. RESULTS Treated muscles were tested for dysferlin expression, overall muscle histology, and ability to repair following injury. High levels of dysferlin overexpression was shown for all muscle groups treated as well as restoration of functional outcome measures (membrane repair ability and diaphragm specific force) to wild-type levels. In primates, strong dysferlin expression was demonstrated with no safety concerns. INTERPRETATION Treated muscles showed high levels of dysferlin expression with functional restoration with no evidence of toxicity or immune response providing proof of principle for translation to dysferlinopathy patients.
Collapse
Affiliation(s)
| | | | - Eric R Pozsgai
- Center for Gene Therapy, Nationwide Children's Hospital Columbus, Ohio ; Biomedical Sciences Graduate Program, The Ohio State University Columbus, Ohio
| | - Ryan W Johnson
- Center for Gene Therapy, Nationwide Children's Hospital Columbus, Ohio
| | - William E Grose
- Center for Gene Therapy, Nationwide Children's Hospital Columbus, Ohio
| | - Kristin N Heller
- Center for Gene Therapy, Nationwide Children's Hospital Columbus, Ohio
| | - Kim M Shontz
- Center for Gene Therapy, Nationwide Children's Hospital Columbus, Ohio
| | | | - Joseph Liu
- Center for Gene Therapy, Nationwide Children's Hospital Columbus, Ohio
| | - Kelly Reed Clark
- Center for Gene Therapy, Nationwide Children's Hospital Columbus, Ohio ; Biomedical Sciences Graduate Program, The Ohio State University Columbus, Ohio
| | - Zarife Sahenk
- Center for Gene Therapy, Nationwide Children's Hospital Columbus, Ohio ; Department of Pediatrics, The Ohio State University Columbus, Ohio ; Department of Neurology, The Ohio State University Columbus, Ohio
| | - Jerry R Mendell
- Center for Gene Therapy, Nationwide Children's Hospital Columbus, Ohio ; Department of Pediatrics, The Ohio State University Columbus, Ohio ; Department of Neurology, The Ohio State University Columbus, Ohio
| | - Louise R Rodino-Klapac
- Center for Gene Therapy, Nationwide Children's Hospital Columbus, Ohio ; Biomedical Sciences Graduate Program, The Ohio State University Columbus, Ohio ; Department of Pediatrics, The Ohio State University Columbus, Ohio
| |
Collapse
|
24
|
Maves L. Recent advances using zebrafish animal models for muscle disease drug discovery. Expert Opin Drug Discov 2014; 9:1033-45. [PMID: 24931439 DOI: 10.1517/17460441.2014.927435] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
INTRODUCTION Animal models have enabled great progress in the discovery and understanding of pharmacological approaches for treating muscle diseases like Duchenne muscular dystrophy. AREAS COVERED With this article, the author provides the reader with a description of the zebrafish animal model, which has been employed to identify and study pharmacological approaches to muscle disease. In particular, the author focuses on how both large-scale chemical screens and targeted drug treatment studies have established zebrafish as an important model for muscle disease drug discovery. EXPERT OPINION There are a number of opportunities arising for the use of zebrafish models for further developing pharmacological approaches to muscle diseases, including studying drug combination therapies and utilizing genome editing to engineer zebrafish muscle disease models. It is the author's particular belief that the availability of a wide range of zebrafish transgenic strains for labeling immune cell types, combined with live imaging and drug treatment of muscle disease models, should allow for new elegant studies demonstrating how pharmacological approaches might influence inflammation and the immune response in muscle disease.
Collapse
Affiliation(s)
- Lisa Maves
- University of Washington School of Medicine, Department of Pediatrics, Division of Cardiology , Seattle, WA , USA
| |
Collapse
|
25
|
von Boxberg Y, Soares S, Féréol S, Fodil R, Bartolami S, Taxi J, Tricaud N, Nothias F. Giant scaffolding protein AHNAK1 interacts with β-dystroglycan and controls motility and mechanical properties of Schwann cells. Glia 2014; 62:1392-406. [PMID: 24796807 DOI: 10.1002/glia.22685] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 04/11/2014] [Accepted: 04/17/2014] [Indexed: 01/02/2023]
Abstract
The profound morphofunctional changes that Schwann cells (SCs) undergo during their migration and elongation on axons, as well as during axon sorting, ensheathment, and myelination, require their close interaction with the surrounding laminin-rich basal lamina. In contrast to myelinating central nervous system glia, SCs strongly and constitutively express the giant scaffolding protein AHNAK1, localized essentially underneath the outer, abaxonal plasma membrane. Using electron microscopy, we show here that in the sciatic nerve of ahnak1(-) (/) (-) mice the ultrastructure of myelinated, and unmyelinated (Remak) fibers is affected. The major SC laminin receptor β-dystroglycan co-immunoprecipitates with AHNAK1 shows reduced expression in ahnak1(-) (/) (-) SCs, and is no longer detectable in Cajal bands on myelinated fibers in ahnak1(-) (/) (-) sciatic nerve. Reduced migration velocity in a scratch wound assay of purified ahnak1(-) (/) (-) primary SCs cultured on a laminin substrate indicated a function of AHNAK1 in SC motility. This was corroborated by atomic force microscopy measurements, which revealed a greater mechanical rigidity of shaft and leading tip of ahnak1(-) (/) (-) SC processes. Internodal lengths of large fibers are decreased in ahnak1(-) (/) (-) sciatic nerve, and longitudinal extension of myelin segments is even more strongly reduced after acute knockdown of AHNAK1 in SCs of developing sciatic nerve. Together, our results suggest that by interfering in the cross-talk between the transmembrane form of the laminin receptor dystroglycan and F-actin, AHNAK1 influences the cytoskeleton organization of SCs, and thus plays a role in the regulation of their morphology and motility and lastly, the myelination process.
Collapse
Affiliation(s)
- Ysander von Boxberg
- Sorbonne Universités, UPMC CR18 (NPS), Paris, France; Neuroscience Paris Seine (NPS), CNRS UMR 8246, Paris, France; Neuroscience Paris Seine (NPS), INSERM U1130, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Grounds MD, Terrill JR, Radley-Crabb HG, Robertson T, Papadimitriou J, Spuler S, Shavlakadze T. Lipid accumulation in dysferlin-deficient muscles. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:1668-76. [PMID: 24685690 DOI: 10.1016/j.ajpath.2014.02.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 02/21/2014] [Accepted: 02/25/2014] [Indexed: 02/01/2023]
Abstract
Dysferlin is a membrane associated protein involved in vesicle trafficking and fusion. Defects in dysferlin result in limb-girdle muscular dystrophy type 2B and Miyoshi myopathy in humans and myopathy in A/J(dys-/-) and BLAJ mice, but the pathomechanism of the myopathy is not understood. Oil Red O staining showed many lipid droplets within the psoas and quadriceps muscles of dysferlin-deficient A/J(dys-/-) mice aged 8 and 12 months, and lipid droplets were also conspicuous within human myofibers from patients with dysferlinopathy (but not other myopathies). Electron microscopy of 8-month-old A/J(dys-/-) psoas muscles confirmed lipid droplets within myofibers and showed disturbed architecture of myofibers. In addition, the presence of many adipocytes was confirmed, and a possible role for dysferlin in adipocytes is suggested. Increased expression of mRNA for a gene involved in early lipogenesis, CCAAT/enhancer binding protein-δ, in 3-month-old A/J(dys-/-) quadriceps (before marked histopathology is evident), indicates early induction of lipogenesis/adipogenesis within dysferlin-deficient muscles. Similar results were seen for dysferlin-deficient BLAJ mice. These novel observations of conspicuous intermyofibrillar lipid and progressive adipocyte replacement in dysferlin-deficient muscles present a new focus for investigating the mechanisms that result in the progressive decline of muscle function in dysferlinopathies.
Collapse
Affiliation(s)
- Miranda D Grounds
- Schools of Anatomy, Physiology and Human Biology, University of Western Australia, Perth, Australia.
| | - Jessica R Terrill
- Schools of Anatomy, Physiology and Human Biology, University of Western Australia, Perth, Australia
| | - Hannah G Radley-Crabb
- Schools of Anatomy, Physiology and Human Biology, University of Western Australia, Perth, Australia; CHIRI Biosciences Research Precinct, School of Biomedical Sciences, Curtin University, Perth, Australia
| | - Terry Robertson
- Pathology and Laboratory Medicine, University of Western Australia, Perth, Australia
| | - John Papadimitriou
- Pathology and Laboratory Medicine, University of Western Australia, Perth, Australia
| | - Simone Spuler
- Muscle Research Unit, Experimental and Clinical Research Center, Berlin, Germany
| | - Tea Shavlakadze
- Schools of Anatomy, Physiology and Human Biology, University of Western Australia, Perth, Australia
| |
Collapse
|
27
|
Touznik A, Lee JJA, Yokota T. New developments in exon skipping and splice modulation therapies for neuromuscular diseases. Expert Opin Biol Ther 2014; 14:809-19. [PMID: 24620745 DOI: 10.1517/14712598.2014.896335] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
INTRODUCTION Antisense oligonucleotide (AON) therapy is a form of treatment for genetic or infectious diseases using small, synthetic DNA-like molecules called AONs. Recent advances in the development of AONs that show improved stability and increased sequence specificity have led to clinical trials for several neuromuscular diseases. Impressive preclinical and clinical data are published regarding the usage of AONs in exon-skipping and splice modulation strategies to increase dystrophin production in Duchenne muscular dystrophy (DMD) and survival of motor neuron (SMN) production in spinal muscular atrophy (SMA). AREAS COVERED In this review, we focus on the current progress and challenges of exon-skipping and splice modulation therapies. In addition, we discuss the recent failure of the Phase III clinical trials of exon 51 skipping (drisapersen) for DMD. EXPERT OPINION The main approach of AON therapy in DMD and SMA is to rescue ('knock up' or increase) target proteins through exon skipping or exon inclusion; conversely, most conventional antisense drugs are designed to knock down (inhibit) the target. Encouraging preclinical data using this 'knock up' approach are also reported to rescue dysferlinopathies, including limb-girdle muscular dystrophy type 2B, Miyoshi myopathy, distal myopathy with anterior tibial onset and Fukuyama congenital muscular dystrophy.
Collapse
Affiliation(s)
- Aleksander Touznik
- University of Alberta, Faculty of Medicine and Dentistry, Department of Medical Genetics , Edmonton, Alberta , Canada
| | | | | |
Collapse
|
28
|
Oulhen N, Onorato TM, Ramos I, Wessel GM. Dysferlin is essential for endocytosis in the sea star oocyte. Dev Biol 2013; 388:94-102. [PMID: 24368072 DOI: 10.1016/j.ydbio.2013.12.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 12/05/2013] [Accepted: 12/11/2013] [Indexed: 11/25/2022]
Abstract
Dysferlin is a calcium-binding transmembrane protein involved in membrane fusion and membrane repair. In humans, mutations in the dysferlin gene are associated with muscular dystrophy. In this study, we isolated plasma membrane-enriched fractions from full-grown immature oocytes of the sea star, and identified dysferlin by mass spectrometry analysis. The full-length dysferlin sequence is highly conserved between human and the sea star. We learned that in the sea star Patiria miniata, dysferlin RNA and protein are expressed from oogenesis to gastrulation. Interestingly, the protein is highly enriched in the plasma membrane of oocytes. Injection of a morpholino against dysferlin leads to a decrease of endocytosis in oocytes, and to a developmental arrest during gastrulation. These results suggest that dysferlin is critical for normal endocytosis during oogenesis and for embryogenesis in the sea star and that this animal may be a useful model for studying the relationship of dysferlin structure as it relates to its function.
Collapse
Affiliation(s)
- Nathalie Oulhen
- Department of Molecular and Cell Biology and Biochemistry, Brown University, Providence RI 02912, USA
| | - Thomas M Onorato
- Department of Molecular and Cell Biology and Biochemistry, Brown University, Providence RI 02912, USA
| | - Isabela Ramos
- Department of Molecular and Cell Biology and Biochemistry, Brown University, Providence RI 02912, USA
| | - Gary M Wessel
- Department of Molecular and Cell Biology and Biochemistry, Brown University, Providence RI 02912, USA.
| |
Collapse
|
29
|
Marty NJ, Holman CL, Abdullah N, Johnson CP. The C2 domains of otoferlin, dysferlin, and myoferlin alter the packing of lipid bilayers. Biochemistry 2013; 52:5585-92. [PMID: 23859474 DOI: 10.1021/bi400432f] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Ferlins are large multi-C2 domain membrane proteins involved in membrane fusion and fission events. In this study, we investigate the effects of binding of the C2 domains of otoferlin, dysferlin, and myoferlin on the structure of lipid bilayers. Fluorescence measurements indicate that multi-C2 domain constructs of myoferlin, dysferlin, and otoferlin change the lipid packing of both small unilamellar vesicles and giant plasma membrane vesicles. The activities of these proteins were enhanced in the presence of calcium and required negatively charged lipids like phosphatidylserine or phosphatidylglycerol for activity. Experiments with individual domains uncovered functional differences between the C2A domain of otoferlin and those of dysferlin and myoferlin, and truncation studies suggest that the effects of each subsequent C2 domain on lipid ordering appear to be additive. Finally, we demonstrate that the activities of these proteins on membranes are insensitive to high salt concentrations, suggesting a nonelectrostatic component to the interaction between ferlin C2 domains and lipid bilayers. Together, the data indicate that dysferlin, otoferlin, and myoferlin do not merely passively adsorb to membranes but actively sculpt lipid bilayers, which would result in highly curved or distorted membrane regions that could facilitate membrane fusion, membrane fission, or recruitment of other membrane-trafficking proteins.
Collapse
Affiliation(s)
- Naomi J Marty
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | | | | | | |
Collapse
|
30
|
Muscular dystrophy in dysferlin-deficient mouse models. Neuromuscul Disord 2013; 23:377-87. [DOI: 10.1016/j.nmd.2013.02.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 01/09/2013] [Accepted: 02/05/2013] [Indexed: 11/17/2022]
|