1
|
Yen TY, Hsu C, Lee NC, Wu CS, Wang H, Lee KY, Lin CR, Lu CY, Tsai ML, Liu TY, Lin C, Chen CY, Chang LY, Lai F, Huang LM. Signatures of lower respiratory tract microbiome in children with severe community-acquired pneumonia using shotgun metagenomic sequencing. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2024:S1684-1182(24)00217-2. [PMID: 39643526 DOI: 10.1016/j.jmii.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 11/02/2024] [Accepted: 11/28/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND Severe community-acquired pneumonia was associated with high morbidity and mortality in children. However, species-level microbiome of lower airway was sparse, and we used shotgun metagenomic next-generation sequencing to explore microbial signatures. METHODS We conducted a prospective cohort study to recruit children under 18 who required admission to an intensive care unit for community-acquired pneumonia between December 2019 and February 2022. Lower respiratory specimens were collected on admission for shotgun metagenomic sequencing. The children were divided into two groups. Critical cases were patients with respiratory failure requiring endotracheal ventilator support, and severe cases did not require intubation. Signatures of lower respiratory tract microbiome were compared between groups using an exact k-mer matching metagenomic analysis pipeline (Kraken 2) and a metagenome-assembled genomes pipeline (MetaWRAP). RESULTS Totally 66 children were enrolled, and 27 children were critical cases, and the rest were severe cases. There were significant differences in microbial community structure between different severity groups, and microbial abundance was negatively correlated with disease severity. The results showed that Haemophilus influenzae was more prominent in children who were critical, accompanied with increased expression of intracellular transport, secretion, and vesicle transport genes. Rothia mucilaginosa, Dolosigranulum pigrum, and Prevotella melaninogenica tended to be present in less severe community-acquired pneumonia group. CONCLUSION This study demonstrated that significantly different microbial community was associated with severity of community-acquired pneumonia requiring intensive care admission. Species-level shotgun metagenomic sequencing facilitates the exploration of potentially pathogenic or protective microbes and shed the light of probiotic development in lower respiratory tract.
Collapse
Affiliation(s)
- Ting-Yu Yen
- Department of Pediatrics, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ching Hsu
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - Ni-Chung Lee
- Department of Pediatrics, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Medical Genetics, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chao-Szu Wu
- Department of Medical Genetics, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsin Wang
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - Kuan-Yi Lee
- Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan
| | - Chia-Ray Lin
- Department of Pediatrics, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chun-Yi Lu
- Department of Pediatrics, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Mo-Li Tsai
- Department of Pediatrics, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tzu-Yu Liu
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan; Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan; Smart Medicine and Health Informatics Program, National Taiwan University, Taipei, Taiwan
| | - Che Lin
- Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan; Smart Medicine and Health Informatics Program, National Taiwan University, Taipei, Taiwan; Center for Advanced Computing and Imaging in Biomedicine, National Taiwan University, Taipei, Taiwan
| | - Chien-Yu Chen
- Smart Medicine and Health Informatics Program, National Taiwan University, Taipei, Taiwan; Center for Advanced Computing and Imaging in Biomedicine, National Taiwan University, Taipei, Taiwan; Department of Biomechatronics Engineering, National Taiwan University, Taipei, Taiwan
| | - Luan-Yin Chang
- Department of Pediatrics, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | - Feipei Lai
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan; Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan; Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan
| | - Li-Min Huang
- Department of Pediatrics, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
2
|
Martínez A, Velázquez L, Díaz R, Huaiquipán R, Pérez I, Muñoz A, Valdés M, Sepúlveda N, Paz E, Quiñones J. Impact of Novel Foods on the Human Gut Microbiome: Current Status. Microorganisms 2024; 12:1750. [PMID: 39338424 PMCID: PMC11433882 DOI: 10.3390/microorganisms12091750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
The microbiome is a complex ecosystem of microorganisms that inhabit a specific environment. It plays a significant role in human health, from food digestion to immune system strengthening. The "Novel Foods" refer to foods or ingredients that have not been consumed by humans in the European Union before 1997. Currently, there is growing interest in understanding how "Novel Foods" affect the microbiome and human health. The aim of this review was to assess the effects of "Novel Foods" on the human gut microbiome. Research was conducted using scientific databases, focusing on the literature published since 2000, with an emphasis on the past decade. In general, the benefits derived from this type of diet are due to the interaction between polyphenols, oligosaccharides, prebiotics, probiotics, fibre content, and the gut microbiome, which selectively promotes specific microbial species and increases microbial diversity. More research is being conducted on the consumption of novel foods to demonstrate how they affect the microbiome and, thus, human health. Consumption of novel foods with health-promoting properties should be further explored to maintain the diversity and functionality of the gut microbiome as a potential tool to prevent the onset and progression of chronic diseases.
Collapse
Affiliation(s)
- Ailín Martínez
- Doctoral Program in Science Major in Applied Cellular and Molecular Biology, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4800000, Chile;
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
| | - Lidiana Velázquez
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
- Faculty of Agricultural and Environmental Sciences, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4780000, Chile;
| | - Rommy Díaz
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
- Faculty of Agricultural and Environmental Sciences, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4780000, Chile;
| | - Rodrigo Huaiquipán
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
- Doctoral Program in Agrifood and Environment Sciences, Universidad de La Frontera, Temuco 4780000, Chile
| | - Isabela Pérez
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
- Doctoral Program in Agrifood and Environment Sciences, Universidad de La Frontera, Temuco 4780000, Chile
| | - Alex Muñoz
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
- Doctoral Program in Agrifood and Environment Sciences, Universidad de La Frontera, Temuco 4780000, Chile
| | - Marcos Valdés
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
- Doctoral Program in Agrifood and Environment Sciences, Universidad de La Frontera, Temuco 4780000, Chile
| | - Néstor Sepúlveda
- Faculty of Agricultural and Environmental Sciences, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4780000, Chile;
- Doctoral Program in Agrifood and Environment Sciences, Universidad de La Frontera, Temuco 4780000, Chile
| | - Erwin Paz
- UWA Institute of Agriculture, The University of Western Australia, Perth 6009, Australia;
| | - John Quiñones
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
- Faculty of Agricultural and Environmental Sciences, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4780000, Chile;
| |
Collapse
|
3
|
Glieca S, Quarta E, Bottari B, Lal VC, Sonvico F, Buttini F. The role of airways microbiota on local and systemic diseases: a rationale for probiotics delivery to the respiratory tract. Expert Opin Drug Deliv 2024; 21:991-1005. [PMID: 39041243 DOI: 10.1080/17425247.2024.2380334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 07/10/2024] [Indexed: 07/24/2024]
Abstract
INTRODUCTION Recent discoveries in the field of lung microbiota have enabled the investigation of new therapeutic interventions involving the use of inhaled probiotics. AREAS COVERED This review provides an overview of what is known about the correlation between airway dysbiosis and the development of local and systemic diseases, and how this knowledge can be exploited for therapeutic interventions. In particular, the review focused on attempts to formulate probiotics that can be deposited directly on the airways. EXPERT OPINION Despite considerable progress since the emergence of respiratory microbiota restoration as a new research field, numerous clinical implications and benefits remain to be determined. In the case of local diseases, once the pathophysiology is understood, manipulating the lung microbiota through probiotic administration is an approach that can be exploited. In contrast, the effect of pulmonary dysbiosis on systemic diseases remains to be clarified; however, this approach could represent a turning point in their treatment.
Collapse
Affiliation(s)
| | - Eride Quarta
- Food and Drug Department, University of Parma, Parma, Italy
| | | | | | - Fabio Sonvico
- Food and Drug Department, University of Parma, Parma, Italy
- Interdepartmental Center for Innovation in Health Products, Biopharmanet_TEC, University of Parma, Parma, Italy
| | - Francesca Buttini
- Food and Drug Department, University of Parma, Parma, Italy
- Interdepartmental Center for Innovation in Health Products, Biopharmanet_TEC, University of Parma, Parma, Italy
| |
Collapse
|
4
|
Lushington GH, Linde A, Melgarejo T. Bacterial Proteases as Potentially Exploitable Modulators of SARS-CoV-2 Infection: Logic from the Literature, Informatics, and Inspiration from the Dog. BIOTECH 2023; 12:61. [PMID: 37987478 PMCID: PMC10660736 DOI: 10.3390/biotech12040061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/19/2023] [Accepted: 10/18/2023] [Indexed: 11/22/2023] Open
Abstract
(1) Background: The COVID-19 pandemic left many intriguing mysteries. Retrospective vulnerability trends tie as strongly to odd demographics as to exposure profiles, genetics, health, or prior medical history. This article documents the importance of nasal microbiome profiles in distinguishing infection rate trends among differentially affected subgroups. (2) Hypothesis: From a detailed literature survey, microbiome profiling experiments, bioinformatics, and molecular simulations, we propose that specific commensal bacterial species in the Pseudomonadales genus confer protection against SARS-CoV-2 infections by expressing proteases that may interfere with the proteolytic priming of the Spike protein. (3) Evidence: Various reports have found elevated Moraxella fractions in the nasal microbiomes of subpopulations with higher resistance to COVID-19 (e.g., adolescents, COVID-19-resistant children, people with strong dietary diversity, and omnivorous canines) and less abundant ones in vulnerable subsets (the elderly, people with narrower diets, carnivorous cats and foxes), along with bioinformatic evidence that Moraxella bacteria express proteases with notable homology to human TMPRSS2. Simulations suggest that these proteases may proteolyze the SARS-CoV-2 spike protein in a manner that interferes with TMPRSS2 priming.
Collapse
Affiliation(s)
| | - Annika Linde
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA 91766, USA;
| | - Tonatiuh Melgarejo
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA 91766, USA;
| |
Collapse
|
5
|
Banerjee A, Somasundaram I, Das D, Jain Manoj S, Banu H, Mitta Suresh P, Paul S, Bisgin A, Zhang H, Sun XF, Duttaroy AK, Pathak S. Functional Foods: A Promising Strategy for Restoring Gut Microbiota Diversity Impacted by SARS-CoV-2 Variants. Nutrients 2023; 15:nu15112631. [PMID: 37299594 DOI: 10.3390/nu15112631] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/24/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Natural herbs and functional foods contain bioactive molecules capable of augmenting the immune system and mediating anti-viral functions. Functional foods, such as prebiotics, probiotics, and dietary fibers, have been shown to have positive effects on gut microbiota diversity and immune function. The use of functional foods has been linked to enhanced immunity, regeneration, improved cognitive function, maintenance of gut microbiota, and significant improvement in overall health. The gut microbiota plays a critical role in maintaining overall health and immune function, and disruptions to its balance have been linked to various health problems. SARS-CoV-2 infection has been shown to affect gut microbiota diversity, and the emergence of variants poses new challenges to combat the virus. SARS-CoV-2 recognizes and infects human cells through ACE2 receptors prevalent in lung and gut epithelial cells. Humans are prone to SARS-CoV-2 infection because their respiratory and gastrointestinal tracts are rich in microbial diversity and contain high levels of ACE2 and TMPRSS2. This review article explores the potential use of functional foods in mitigating the impact of SARS-CoV-2 variants on gut microbiota diversity, and the potential use of functional foods as a strategy to combat these effects.
Collapse
Affiliation(s)
- Antara Banerjee
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai 603103, Tamil Nadu, India
| | - Indumathi Somasundaram
- Department of Biotechnology Engineering, Kolhapur Institute of Technology's College of Engineering, Kolhapur 416012, Maharashtra, India
| | - Diptimayee Das
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai 603103, Tamil Nadu, India
| | - Samatha Jain Manoj
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai 603103, Tamil Nadu, India
| | - Husaina Banu
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai 603103, Tamil Nadu, India
| | - Pavane Mitta Suresh
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai 603103, Tamil Nadu, India
| | - Sujay Paul
- School of Engineering and Sciences, Tecnologico de Monterrey, Campus Queretaro, San Pablo 76130, Mexico
| | - Atil Bisgin
- Department of Medical Genetics, Medical Faculty, Cukurova University, Adana 01250, Turkey
| | - Hong Zhang
- Department of Medical Sciences, School of Medicine, Orebro University, SE-701 82 Orebro, Sweden
| | - Xiao-Feng Sun
- Division of Ocology, Department of Biomedical and Clinical Sciences, Linkoping University, SE-581 83 Linkoping, Sweden
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0313 Oslo, Norway
| | - Surajit Pathak
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai 603103, Tamil Nadu, India
| |
Collapse
|
6
|
Romani A, Sergi D, Zauli E, Voltan R, Lodi G, Vaccarezza M, Caruso L, Previati M, Zauli G. Nutrients, herbal bioactive derivatives and commensal microbiota as tools to lower the risk of SARS-CoV-2 infection. Front Nutr 2023; 10:1152254. [PMID: 37324739 PMCID: PMC10267353 DOI: 10.3389/fnut.2023.1152254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/15/2023] [Indexed: 06/17/2023] Open
Abstract
The SARS-CoV-2 outbreak has infected a vast population across the world, causing more than 664 million cases and 6.7 million deaths by January 2023. Vaccination has been effective in reducing the most critical aftermath of this infection, but some issues are still present regarding re-infection prevention, effectiveness against variants, vaccine hesitancy and worldwide accessibility. Moreover, although several old and new antiviral drugs have been tested, we still lack robust and specific treatment modalities. It appears of utmost importance, facing this continuously growing pandemic, to focus on alternative practices grounded on firm scientific bases. In this article, we aim to outline a rigorous scientific background and propose complementary nutritional tools useful toward containment, and ultimately control, of SARS-CoV-2 infection. In particular, we review the mechanisms of viral entry and discuss the role of polyunsaturated fatty acids derived from α-linolenic acid and other nutrients in preventing the interaction of SARS-CoV-2 with its entry gateways. In a similar way, we analyze in detail the role of herbal-derived pharmacological compounds and specific microbial strains or microbial-derived polypeptides in the prevention of SARS-CoV-2 entry. In addition, we highlight the role of probiotics, nutrients and herbal-derived compounds in stimulating the immunity response.
Collapse
Affiliation(s)
- Arianna Romani
- Department of Environmental and Prevention Sciences and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Domenico Sergi
- Department of Translational Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Enrico Zauli
- Department of Translational Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Rebecca Voltan
- Department of Environmental and Prevention Sciences and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Giada Lodi
- Department of Environmental and Prevention Sciences and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Mauro Vaccarezza
- Curtin Medical School & Curtin Health Innovation Research Institute (CHIRI), Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | - Lorenzo Caruso
- Department of Environmental and Prevention Sciences and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Maurizio Previati
- Department of Translational Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Giorgio Zauli
- Research Department, King Khaled Eye Specialistic Hospital, Riyadh, Saudi Arabia
| |
Collapse
|
7
|
Ortiz Moyano R, Raya Tonetti F, Fukuyama K, Elean M, Tomokiyo M, Suda Y, Melnikov V, Kitazawa H, Villena J. The Respiratory Commensal Bacterium Corynebacterium pseudodiphtheriticum as a Mucosal Adjuvant for Nasal Vaccines. Vaccines (Basel) 2023; 11:vaccines11030611. [PMID: 36992195 PMCID: PMC10058227 DOI: 10.3390/vaccines11030611] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
Previously, we demonstrated that nasally administered Corynebacterium pseudodiphteriticum 090104 (Cp) or its bacterium-like particles (BLPs) increase the resistance of mice against bacterial and viral respiratory pathogens by modulating the innate immunity. In this work, we evaluated the ability of Cp and BLPs to stimulate alveolar macrophages, and to enhance the humoral immune response induced by a commercial vaccine against Streptococcus pneumoniae. In the first set of experiments, Cp or the BLPs were incubated with primary cultures of murine alveolar macrophages and the phagocytic activity, and the production of cytokines was evaluated. The results revealed that Cp and BLPs were efficiently phagocyted by respiratory macrophages and that both treatments triggered the production of TNF-α, IFN-γ, IL-6, and IL-1β. In the second set of experiments, 3-week-old Swiss mice were intranasally immunized at days 0, 14, and 28 with the pneumococcal vaccine Prevenar®13 (PCV), Cp + PCV, or BLPs + PCV. On day 33, samples of bronco-alveolar lavages (BAL) and serum were collected for the study of specific antibodies. In addition, immunized mice were challenged with S. pneumoniae serotypes 6B or 19F on day 33 and sacrificed on day 35 (day 2 post-infection) to evaluate the resistance to the infection. Both Cp + PCV and BLPs + PCV groups had higher specific serum IgG and BAL IgA antibodies than the PCV control mice. In addition, the mice that were immunized with Cp + PCV or BLPs + PCV had lower lung and blood pneumococcal cell counts as well as lower levels of BAL albumin and LDH, indicating a reduced lung damage compared to the control mice. Improved levels of anti-pneumococcal antibodies were also detected in the serum and BAL samples after the challenges with the pathogens. The results demonstrated that C. pseudodiphteriticum 090104 and its bacterium-like particles are capable of stimulating the respiratory innate immune system serving as adjuvants to potentiate the adaptive humoral immune response. Our study is a step forward in the positioning of this respiratory commensal bacterium as a promising mucosal adjuvant for vaccine formulations aimed at combating respiratory infectious diseases.
Collapse
Affiliation(s)
- Ramiro Ortiz Moyano
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucumán 4000, Argentina; (R.O.M.); (F.R.T.); (M.E.)
| | - Fernanda Raya Tonetti
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucumán 4000, Argentina; (R.O.M.); (F.R.T.); (M.E.)
| | - Kohtaro Fukuyama
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan; (K.F.); (M.T.)
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
| | - Mariano Elean
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucumán 4000, Argentina; (R.O.M.); (F.R.T.); (M.E.)
| | - Mikado Tomokiyo
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan; (K.F.); (M.T.)
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
| | - Yoshihito Suda
- Department of Food, Agriculture and Environment, Miyagi University, Sendai 980-8572, Japan;
| | - Vyacheslav Melnikov
- Gabrichevsky Research Institute for Epidemiology and Microbiology, 125212 Moscow, Russia;
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan; (K.F.); (M.T.)
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
- Correspondence: (H.K.); (J.V.)
| | - Julio Villena
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucumán 4000, Argentina; (R.O.M.); (F.R.T.); (M.E.)
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan; (K.F.); (M.T.)
- Correspondence: (H.K.); (J.V.)
| |
Collapse
|
8
|
Tonetti FR, Tomokiyo M, Fukuyama K, Elean M, Moyano RO, Yamamuro H, Shibata R, Quilodran-Vega S, Kurata S, Villena J, Kitazawa H. Post-immunobiotics increase resistance to primary respiratory syncytial virus infection and secondary pneumococcal pneumonia. Benef Microbes 2023; 14:209-221. [PMID: 37128181 DOI: 10.3920/bm2022.0118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/02/2023] [Indexed: 05/03/2023]
Abstract
Previously, we demonstrated that post-immunobiotics derived from Lactobacillus gasseri TMT36, TMT39, and TMT40 strains (HK36, HK39 and HK40, respectively) differentially regulated Toll-like receptor 3 (TLR3)-mediated antiviral respiratory immunity in infant mice. In this work, we investigated whether the HK36, HK39 and HK40 nasal treatments were able to improve the resistance against primary respiratory syncytial virus (RSV) infection and secondary pneumococcal pneumonia. Our results demonstrated that the three treatments increased the resistance to primary viral infection by reducing variations in body weight, RSV titers and lung damage of infected infant mice. Post-immunobiotics significantly enhanced the expressions of interferon (IFN)-λ, IFN-β, IFN-γ, interleukin(IL) - 1β, IL-6, IL-27, Mx1, RNAseL and 2'-5'-oligoadenylate synthetase 1 (OAS1) genes and decreased tumour necrosis factor (TNF)-α in alveolar macrophages of RSV-challenged mice. In addition, the studies in the model of RSV-Streptococcus pneumoniae superinfection showed that the HK39 and HK40 treatments were capable of reducing lung damage, lung bacterial cell counts, and the dissemination of S. pneumoniae into the blood of infant mice. The protective effect was associated with increases in IFN-β, IFN-γ, IL-10, and IL-27 in the respiratory tract. This study demonstrates that the nasal application of the post-immunobiotics HK39 and HK40 stimulates innate respiratory immunity and enhances the defences against primary RSV infection and secondary pneumococcal pneumonia offering an alternative to combat respiratory superinfections in children, which can be fatal.
Collapse
Affiliation(s)
- F Raya Tonetti
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), 145 Batalla de Chacabuco st., 4000 Tucuman, Argentina
| | - M Tomokiyo
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aobaku, 980-8572 Sendai, Japan
- Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aobaku, 980-8572 Sendai, Japan
| | - K Fukuyama
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aobaku, 980-8572 Sendai, Japan
- Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aobaku, 980-8572 Sendai, Japan
| | - M Elean
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), 145 Batalla de Chacabuco st., 4000 Tucuman, Argentina
| | - R Ortiz Moyano
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), 145 Batalla de Chacabuco st., 4000 Tucuman, Argentina
| | - H Yamamuro
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aobaku, 980-8572 Sendai, Japan
- Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aobaku, 980-8572 Sendai, Japan
| | - R Shibata
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aobaku, 980-8572 Sendai, Japan
- Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aobaku, 980-8572 Sendai, Japan
| | - S Quilodran-Vega
- Laboratory of Food Microbiology, Faculty of Veterinary Sciences, University of Concepción, Avenida Vicente Méndez 595, 3801061 Chillán, Chile
| | - S Kurata
- Laboratory of Molecular Genetics, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba 6-3, Aramaki, Aoba-ku, 980-8578 Sendai, Japan
| | - J Villena
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aobaku, 980-8572 Sendai, Japan
- Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aobaku, 980-8572 Sendai, Japan
| | - H Kitazawa
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), 145 Batalla de Chacabuco st., 4000 Tucuman, Argentina
- Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aobaku, 980-8572 Sendai, Japan
| |
Collapse
|
9
|
Tomokiyo M, Tonetti FR, Yamamuro H, Shibata R, Fukuyama K, Gobbato N, Albarracin L, Rajoka MSR, Kober AKMH, Ikeda-Ohtsubo W, Villena J, Kitazawa H. Modulation of Alveolar Macrophages by Postimmunobiotics: Impact on TLR3-Mediated Antiviral Respiratory Immunity. Cells 2022; 11:2986. [PMID: 36230948 PMCID: PMC9562200 DOI: 10.3390/cells11192986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/17/2022] Open
Abstract
Beneficial microbes with immunomodulatory capacities (immunobiotics) and their non-viable forms (postimmunobiotics) could be effectively utilized in formulations towards the prevention of respiratory viral infections. In this study, novel immunobiotic strains with the ability to increase antiviral immunity in porcine alveolar macrophages were selected from a library of Lactobacillus gasseri. Postimmunobiotics derived from the most remarkable strains were also evaluated in their capacity to modulate the immune response triggered by Toll-like receptor 3 (TLR3) in alveolar macrophages and to differentially regulate TLR3-mediated antiviral respiratory immunity in infant mice. We provide evidence that porcine alveolar macrophages (3D4/31 cells) are a useful in vitro tool for the screening of new antiviral immunobiotics and postimmunobiotics by assessing their ability to modulate the expression IFN-β, IFN-λ1, RNAseL, Mx2, and IL-6, which can be used as prospective biomarkers. We also demonstrate that the postimmunobiotics derived from the Lactobacillus gasseri TMT36, TMT39 and TMT40 (HK36, HK39 or HK40) strains modulate the innate antiviral immune response of alveolar macrophages and reduce lung inflammatory damage triggered by TLR3 activation in vivo. Although our findings should be deepened and expanded, the results of the present work provide a scientific rationale for the use of nasally administered HK36, HK39 or HK40 to beneficially modulate TLR3-triggerd respiratory innate immune response.
Collapse
Affiliation(s)
- Mikado Tomokiyo
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8576, Japan
- Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8576, Japan
| | - Fernanda Raya Tonetti
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli CERELA-CONICET, San Miguel de Tucuman, Tucuman CP4000, Argentina
| | - Hikari Yamamuro
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8576, Japan
- Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8576, Japan
| | - Ryoko Shibata
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8576, Japan
- Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8576, Japan
| | - Kohtaro Fukuyama
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8576, Japan
- Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8576, Japan
| | - Nadia Gobbato
- Laboratory of Immunology, Microbiology Institute, Faculty of Biochemestry, Chemestry and Pharmacy, National University of Tucuman, Tucuman CP4000, Argentina
| | - Leonardo Albarracin
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8576, Japan
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli CERELA-CONICET, San Miguel de Tucuman, Tucuman CP4000, Argentina
| | - Muhammad Shahid Riaz Rajoka
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8576, Japan
- Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8576, Japan
| | - A. K. M. Humayun Kober
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8576, Japan
- Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8576, Japan
- Department of Dairy and Poultry Science, Chattogram Veterinary and Animal Sciences University, Chittagong 4225, Bangladesh
| | - Wakako Ikeda-Ohtsubo
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8576, Japan
- Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8576, Japan
| | - Julio Villena
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8576, Japan
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli CERELA-CONICET, San Miguel de Tucuman, Tucuman CP4000, Argentina
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8576, Japan
- Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8576, Japan
| |
Collapse
|
10
|
Mancabelli L, Milani C, Fontana F, Lugli GA, Tarracchini C, Viappiani A, Ciociola T, Ticinesi A, Nouvenne A, Meschi T, Turroni F, Ventura M. Untangling the link between the human gut microbiota composition and the severity of the symptoms of the COVID-19 infection. Environ Microbiol 2022; 24:6453-6462. [PMID: 36086955 PMCID: PMC9538590 DOI: 10.1111/1462-2920.16201] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/05/2022] [Indexed: 01/12/2023]
Abstract
Recent pandemic infection caused by SARS-CoV-2 (COVID-19) led the scientific community to investigate the possible causes contributing to the physiopathology of this disease. In this context, analyses of the intestinal microbiota highlighted possible correlation between host-associated bacterial communities and development of the COVID-19. Nevertheless, a detailed investigation of the role of the human microbiota in the severity of the symptoms of this disease is still lacking. This study performed a comprehensive meta-analysis of 323 faecal samples from public and novel Italian data sets based on the shotgun metagenomic approach. In detail, the comparative analyses revealed possible differences in the microbial biodiversity related to the individual health status, highlighting a species richness decrease in COVID-19 patients with a severe prognosis. Moreover, healthy subjects resulted characterized by a higher abundance of protective and health-supporting bacterial species, while patients affected by COVID-19 disease displayed a significant increase of opportunistic pathogen bacteria involved in developing putrefactive dysbiosis. Furthermore, prediction of the microbiome functional capabilities suggested that individuals affected by COVID-19 subsist in an unbalanced metabolism characterized by an overrepresentation of enzymes involved in the protein metabolism at the expense of carbohydrates oriented pathways, which can impact on disease severity and in excessive systemic inflammation.
Collapse
Affiliation(s)
- Leonardo Mancabelli
- Department of Medicine and SurgeryUniversity of ParmaParmaItaly,Interdepartmental Research Centre "Microbiome Research Hub"University of ParmaParmaItaly
| | - Christian Milani
- Interdepartmental Research Centre "Microbiome Research Hub"University of ParmaParmaItaly,Laboratory of Probiogenomics, Department of ChemistryLife Sciences and Environmental Sustainability, University of ParmaParmaItaly
| | - Federico Fontana
- Laboratory of Probiogenomics, Department of ChemistryLife Sciences and Environmental Sustainability, University of ParmaParmaItaly
| | - Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of ChemistryLife Sciences and Environmental Sustainability, University of ParmaParmaItaly
| | - Chiara Tarracchini
- Laboratory of Probiogenomics, Department of ChemistryLife Sciences and Environmental Sustainability, University of ParmaParmaItaly
| | | | - Tecla Ciociola
- Department of Medicine and SurgeryUniversity of ParmaParmaItaly
| | - Andrea Ticinesi
- Interdepartmental Research Centre "Microbiome Research Hub"University of ParmaParmaItaly,Geriatric‐Rehabilitation DepartmentAzienda Ospedaliero‐Universitaria di ParmaParmaItaly
| | - Antonio Nouvenne
- Interdepartmental Research Centre "Microbiome Research Hub"University of ParmaParmaItaly,Geriatric‐Rehabilitation DepartmentAzienda Ospedaliero‐Universitaria di ParmaParmaItaly
| | - Tiziana Meschi
- Interdepartmental Research Centre "Microbiome Research Hub"University of ParmaParmaItaly,Geriatric‐Rehabilitation DepartmentAzienda Ospedaliero‐Universitaria di ParmaParmaItaly
| | - Francesca Turroni
- Interdepartmental Research Centre "Microbiome Research Hub"University of ParmaParmaItaly,Laboratory of Probiogenomics, Department of ChemistryLife Sciences and Environmental Sustainability, University of ParmaParmaItaly
| | - Marco Ventura
- Interdepartmental Research Centre "Microbiome Research Hub"University of ParmaParmaItaly,Laboratory of Probiogenomics, Department of ChemistryLife Sciences and Environmental Sustainability, University of ParmaParmaItaly
| |
Collapse
|
11
|
Dentice Maidana S, Ortiz Moyano R, Vargas JM, Fukuyama K, Kurata S, Melnikov V, Jure MÁ, Kitazawa H, Villena J. Respiratory Commensal Bacteria Increase Protection against Hypermucoviscous Carbapenem-Resistant Klebsiella pneumoniae ST25 Infection. Pathogens 2022; 11:pathogens11091063. [PMID: 36145495 PMCID: PMC9501321 DOI: 10.3390/pathogens11091063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/16/2022] [Accepted: 09/17/2022] [Indexed: 12/18/2022] Open
Abstract
In a previous work, we demonstrated that nasally administered Corynebacterium pseudodiphtheriticum 090104 beneficially modulated the respiratory innate immune response and improved the protection against Respiratory Syncytial Virus and Streptococcus pneumoniae in mice. In this work, we aimed to evaluate whether the immunomodulatory 090104 strain was able to enhance the resistance against the respiratory infection induced by hypermucoviscous carbapenemase-producing (KPC-2) Klebsiella pneumoniae strains belonging to the sequence type (ST) 25. The nasal treatment of mice with C. pseudodiphtheriticum 090104 before the challenge with multiresistant K. pneumoniae ST25 strains significantly reduced lung bacterial cell counts and lung tissue damage. The protective effect of the 090104 strain was related to its ability to regulate the respiratory innate immune response triggered by K. pneumoniae challenge. C. pseudifteriticum 090104 differentially modulated the recruitment of leukocytes into the lung and the production of TNF-α, IFN-γ and IL-10 levels in the respiratory tract and serum. Our results make an advance in the positioning of C. pseudodiphtheriticum 090104 as a next-generation probiotic for the respiratory tract and encourage further research of this bacterium as a promising alternative to develop non-antibiotic therapeutical approaches to enhance the prevention of infections produced by microorganisms with multiple resistance to antimicrobials such as KPC-2-producing hypermucoviscous K. pneumoniae strains belonging to ST25.
Collapse
Affiliation(s)
- Stefania Dentice Maidana
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), San Miguel de Tucumán 4000, Argentina
- Laboratory of Antimicrobials, Institute of Microbiology “Luis C. Verna”, Faculty of Biochemistry, Chemistry and Pharmacy, National University of Tucuman, San Miguel de Tucumán 4000, Argentina
| | - Ramiro Ortiz Moyano
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), San Miguel de Tucumán 4000, Argentina
| | - Juan Martin Vargas
- Laboratory of Antimicrobials, Institute of Microbiology “Luis C. Verna”, Faculty of Biochemistry, Chemistry and Pharmacy, National University of Tucuman, San Miguel de Tucumán 4000, Argentina
| | - Kohtaro Fukuyama
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Shoichiro Kurata
- Laboratory of Molecular Genetics, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Vyacheslav Melnikov
- Gabrichevsky Research Institute for Epidemiology and Microbiology, 125212 Moscow, Russia
| | - María Ángela Jure
- Laboratory of Antimicrobials, Institute of Microbiology “Luis C. Verna”, Faculty of Biochemistry, Chemistry and Pharmacy, National University of Tucuman, San Miguel de Tucumán 4000, Argentina
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Correspondence: (H.K.); (J.V.)
| | - Julio Villena
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), San Miguel de Tucumán 4000, Argentina
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Correspondence: (H.K.); (J.V.)
| |
Collapse
|