1
|
Milani M, Phou T, Prevot G, Ramos L, Cipelletti L. Space-resolved dynamic light scattering within a millimeter-sized drop: From Brownian diffusion to the swelling of hydrogel beads. Phys Rev E 2024; 109:064613. [PMID: 39021030 DOI: 10.1103/physreve.109.064613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/06/2024] [Indexed: 07/20/2024]
Abstract
We present a dynamic light scattering setup to probe, with time and space resolution, the microscopic dynamics of soft matter systems confined within millimeter-sized spherical drops. By using an ad hoc optical layout, we tackle the challenges raised by refraction effects due to the unconventional shape of the samples. We first validate the setup by investigating the dynamics of a suspension of Brownian particles. The dynamics measured at different positions in the drop, and hence different scattering angles, are found to be in excellent agreement with those obtained for the same sample in a conventional light scattering setup. We then demonstrate the setup capabilities by investigating a bead made of a polymer hydrogel undergoing swelling. The gel microscopic dynamics exhibit a space dependence that strongly varies with time elapsed since the beginning of swelling. Initially, the dynamics in the periphery of the bead are much faster than in the core, indicative of nonuniform swelling. As the swelling proceeds, the dynamics slow down and become more spatially homogeneous. By comparing the experimental results to numerical and analytical calculations for the dynamics of a homogeneous, purely elastic sphere undergoing swelling, we establish that the mean square displacement of the gel strands deviates from the affine motion inferred from the macroscopic deformation, evolving from fast diffusivelike dynamics at the onset of swelling to slower, yet supradiffusive, rearrangements at later stages.
Collapse
|
2
|
Abstract
Hydrogels are important structural and operative components of microfluidic systems, finding diverse utility in biological sample preparation and interrogation. One inherent challenge for integrating hydrogels into microfluidic tools is thermodynamic molecular partitioning, which reduces the in-gel concentration of molecular solutes (e.g., biomolecular regents), as compared to the solute concentration in an applied solution. Consequently, biomolecular reagent access to in-gel scaffolded biological samples (e.g., encapsulated cells, microbial cultures, target analytes) is adversely impacted in hydrogels. Further, biomolecular reagents are typically introduced to the hydrogel via diffusion. This passive process requires long incubation periods compared to active biomolecular delivery techniques. Electrotransfer is an active technique used in Western blots and other gel-based immunoassays that overcomes limitations of size exclusion (increasing the total probe mass delivered into gel) and expedites probe delivery, even in millimeter-thick slab gels. While compatible with conventional slab gels, electrotransfer has not been adapted to thin gels (50-250 μm thick), which are of great interest as components of open microfluidic devices (vs enclosed microchannel-based devices). Mechanically delicate, thin gels are often mounted on rigid support substrates (glass, plastic) that are electrically insulating. Consequently, to adapt electrotransfer to thin-gel devices, we replace rigid insulating support substrates with novel, mechanically robust, yet electrically conductive nanoporous membranes. We describe grafting nanoporous membranes to thin-polyacrylamide-gel layers via silanization, characterize the electrical conductivity of silane-treated nanoporous membranes, and report the dependence of in-gel immunoprobe concentration on transfer duration for passive diffusion and active electrotransfer. Alternative microdevice component layers─including the mechanically robust, electrically conductive nanoporous membranes reported here─provide new functionality for integration into an increasing array of open microfluidic systems.
Collapse
Affiliation(s)
- Andoni P Mourdoukoutas
- The UC Berkeley/UCSF Graduate Program in Bioengineering, University of California, Berkeley, California 94720, United States
| | - Amy E Herr
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
| |
Collapse
|
3
|
A minimally disruptive method for measuring water potential in planta using hydrogel nanoreporters. Proc Natl Acad Sci U S A 2021; 118:2008276118. [PMID: 34074748 PMCID: PMC8201978 DOI: 10.1073/pnas.2008276118] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Gaps in our ability to document local water relations in leaves compromise our ability to build complete models of leaf and plant function and our understanding of ecophysiological phenomena, such as response and adaptation to drought. Macroscopically, leaf water potential has been shown to impact vegetative growth and yield, susceptibility to disease, and, in extreme drought, plant viability, making it a promising candidate trait to improve water-use efficiency in plants. In this paper, we present a nanoscale sensor (AquaDust) that provides minimally disruptive measurements of water potential in leaves of intact plants at high spatial and temporal resolution. This creates opportunities for improving our understanding of the mechanisms coupling variations in water potential to biological and physical processes. Leaf water potential is a critical indicator of plant water status, integrating soil moisture status, plant physiology, and environmental conditions. There are few tools for measuring plant water status (water potential) in situ, presenting a critical barrier for developing appropriate phenotyping (measurement) methods for crop development and modeling efforts aimed at understanding water transport in plants. Here, we present the development of an in situ, minimally disruptive hydrogel nanoreporter (AquaDust) for measuring leaf water potential. The gel matrix responds to changes in water potential in its local environment by swelling; the distance between covalently linked dyes changes with the reconfiguration of the polymer, leading to changes in the emission spectrum via Förster Resonance Energy Transfer (FRET). Upon infiltration into leaves, the nanoparticles localize within the apoplastic space in the mesophyll; they do not enter the cytoplasm or the xylem. We characterize the physical basis for AquaDust’s response and demonstrate its function in intact maize (Zea mays L.) leaves as a reporter of leaf water potential. We use AquaDust to measure gradients of water potential along intact, actively transpiring leaves as a function of water status; the localized nature of the reporters allows us to define a hydraulic model that distinguishes resistances inside and outside the xylem. We also present field measurements with AquaDust through a full diurnal cycle to confirm the robustness of the technique and of our model. We conclude that AquaDust offers potential opportunities for high-throughput field measurements and spatially resolved studies of water relations within plant tissues.
Collapse
|
4
|
Tarasova N, Zanin A, Krivoborodov E, Toropygin I, Pascal E, Mezhuev Y. The New Approach to the Preparation of Polyacrylamide-Based Hydrogels: Initiation of Polymerization of Acrylamide with 1,3-Dimethylimidazolium (Phosphonooxy-)Oligosulphanide under Drying Aqueous Solutions. Polymers (Basel) 2021; 13:1806. [PMID: 34070935 PMCID: PMC8198900 DOI: 10.3390/polym13111806] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 05/21/2021] [Accepted: 05/27/2021] [Indexed: 01/06/2023] Open
Abstract
The new initiator of the polymerization of acrylamide, leading to the formation of crosslinked polyacrylamide, was discovered. The structure of the synthesized polyacrylamide was characterized by XRD, 1Н NMR, and 13С NMR spectroscopy. It was shown that 1,3-dimethylimidazolium (phosphonooxy-)oligosulphanide is able to initiate radical polymerization under drying aqueous solutions of acrylamide, even at room temperature. According to XRF data, the synthesized polyacrylamide gel contains 0.28 wt% of sulphur. The formed polymer network has a low crosslinking density and a high equilibrium degree of swelling. The swelling rate of polyacrylamide gel in water corresponds to the first order kinetic equation with the rate constant 6.2 × 10-2 min-1. The initiator is promising for combining acrylamide polymerization with the processes of gel molding and drying.
Collapse
Affiliation(s)
- Natalia Tarasova
- Institute of Chemistry and Problems of Sustainable Development, Dmitry Mendeleev University of Chemical Technology of Russia, 12047 Moscow, Russia; (N.T.); (E.K.); (E.P.); (Y.M.)
- Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry, Russian Academy of Sciences, 119017 Moscow, Russia
| | - Alexey Zanin
- Institute of Chemistry and Problems of Sustainable Development, Dmitry Mendeleev University of Chemical Technology of Russia, 12047 Moscow, Russia; (N.T.); (E.K.); (E.P.); (Y.M.)
| | - Efrem Krivoborodov
- Institute of Chemistry and Problems of Sustainable Development, Dmitry Mendeleev University of Chemical Technology of Russia, 12047 Moscow, Russia; (N.T.); (E.K.); (E.P.); (Y.M.)
| | - Ilya Toropygin
- V.N. Orekhovich Research Institute of Biomedical Chemistry, Russian Academy of Medical Sciences, 119121 Moscow, Russia;
| | - Ekaterina Pascal
- Institute of Chemistry and Problems of Sustainable Development, Dmitry Mendeleev University of Chemical Technology of Russia, 12047 Moscow, Russia; (N.T.); (E.K.); (E.P.); (Y.M.)
| | - Yaroslav Mezhuev
- Institute of Chemistry and Problems of Sustainable Development, Dmitry Mendeleev University of Chemical Technology of Russia, 12047 Moscow, Russia; (N.T.); (E.K.); (E.P.); (Y.M.)
| |
Collapse
|
5
|
Grist SM, Mourdoukoutas AP, Herr AE. 3D projection electrophoresis for single-cell immunoblotting. Nat Commun 2020; 11:6237. [PMID: 33277486 PMCID: PMC7718224 DOI: 10.1038/s41467-020-19738-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 10/20/2020] [Indexed: 12/21/2022] Open
Abstract
Immunoassays and mass spectrometry are powerful single-cell protein analysis tools; however, interfacing and throughput bottlenecks remain. Here, we introduce three-dimensional single-cell immunoblots to detect both cytosolic and nuclear proteins. The 3D microfluidic device is a photoactive polyacrylamide gel with a microwell array-patterned face (xy) for cell isolation and lysis. Single-cell lysate in each microwell is "electrophoretically projected" into the 3rd dimension (z-axis), separated by size, and photo-captured in the gel for immunoprobing and confocal/light-sheet imaging. Design and analysis are informed by the physics of 3D diffusion. Electrophoresis throughput is > 2.5 cells/s (70× faster than published serial sampling), with 25 immunoblots/mm2 device area (>10× increase over previous immunoblots). The 3D microdevice design synchronizes analyses of hundreds of cells, compared to status quo serial analyses that impart hours-long delay between the first and last cells. Here, we introduce projection electrophoresis to augment the heavily genomic and transcriptomic single-cell atlases with protein-level profiling.
Collapse
Affiliation(s)
- Samantha M Grist
- Department of Bioengineering, University of California, Berkeley, USA
| | - Andoni P Mourdoukoutas
- Department of Bioengineering, University of California, Berkeley, USA
- UC Berkeley - UCSF Graduate Program in Bioengineering, Berkeley, USA
| | - Amy E Herr
- Department of Bioengineering, University of California, Berkeley, USA.
- UC Berkeley - UCSF Graduate Program in Bioengineering, Berkeley, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
6
|
Neira HD, Jeeawoody S, Herr AE. Reversible Functionalization of Clickable Polyacrylamide Gels with Protein and Graft Copolymers. ADVANCED FUNCTIONAL MATERIALS 2020; 30:2005010. [PMID: 33708029 PMCID: PMC7942169 DOI: 10.1002/adfm.202005010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Indexed: 06/12/2023]
Abstract
Modular strategies to fabricate gels with tailorable chemical functionalities are relevant to applications spanning from biomedicine to analytical chemistry. Here, the properties of clickable poly(acrylamide-co-propargyl acrylate) (pAPA) hydrogels are modified via sequential in-gel copper-catalyzed azide-alkyne cycloaddition (CuAAC) reactions. Under optimized conditions, each in-gel CuAAC reaction proceeds with rate constants of ~0.003 s-1, ensuring uniform modifications for gels < 200 μm thick. Using the modular functionalization approach and a cleavable disulfide linker, pAPA gels were modified with benzophenone and acrylate groups. Benzophenone groups allow gel functionalization with unmodified proteins using photoactivation. Acrylate groups enabled copolymer grafting onto the gels. To release the functionalized unit, pAPA gels were treated with disulfide reducing agents, which triggered ~50 % release of immobilized protein and grafted copolymers. The molecular mass of grafted copolymers (~6.2 kDa) was estimated by monitoring the release process, expanding the tools available to characterize copolymers grafted onto hydrogels. Investigation of the efficiency of in-gel CuAAC reactions revealed limitations of the sequential modification approach, as well as guidelines to convert a pAPA gel with a single functional group into a gel with three distinct functionalities. Taken together, we see this modular framework to engineer multifunctional hydrogels as benefiting applications of hydrogels in drug delivery, tissue engineering, and separation science.
Collapse
Affiliation(s)
- Hector D Neira
- Department of Bioengineering, University of California Berkeley Berkeley, CA 94720 (USA)
| | - Shaheen Jeeawoody
- Department of Bioengineering, University of California Berkeley Berkeley, CA 94720 (USA)
| | - Amy E Herr
- Department of Bioengineering, University of California Berkeley Berkeley, CA 94720 (USA)
| |
Collapse
|
7
|
Gombert Y, Roncoroni F, Sánchez-Ferrer A, Spencer ND. The hierarchical bulk molecular structure of poly(acrylamide) hydrogels: beyond the fishing net. SOFT MATTER 2020; 16:9789-9798. [PMID: 33001127 DOI: 10.1039/d0sm01536a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The polymeric structure of hydrogels is commonly presented in the literature as resembling a fishing net. However, this simple view cannot fully capture all the unique properties of these materials. Crucial for a detailed description of the bulk structure in free-radical polymerized vinylic hydrogels is a thorough understanding of the cross-linker distribution. This work focuses on the precise role of the tetra-functional cross-linker in the hydrogel system: acrylamide-N,N'-methylenebis(acrylamide). Clusters of crosslinker smaller than 4 nm and their agglomerates, as well as polymer domains with sizes from the 100 nm to the μm-range, have been identified by means of both X-ray and visible-light scattering. Placed in the context of the extensive literature on this system, these observations demonstrate the heterogeneous organisation of the polymer within the hydrogel network structure, and can be accounted for by the different polymerization behavior of the monomer and crosslinker. Together with polymer-network chain-length approximations based on swelling experiments and structural observations with scanning electron microscopy, these results indicate a hierarchical structure of the polymer network surrounding pockets of water.
Collapse
Affiliation(s)
- Yvonne Gombert
- Laboratory for Surface Science and Technology, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland.
| | | | | | | |
Collapse
|
8
|
Yu CC(J, Barry NC, Wassie AT, Sinha A, Bhattacharya A, Asano S, Zhang C, Chen F, Hobert O, Goodman MB, Haspel G, Boyden ES. Expansion microscopy of C. elegans. eLife 2020; 9:e46249. [PMID: 32356725 PMCID: PMC7195193 DOI: 10.7554/elife.46249] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 03/30/2020] [Indexed: 12/20/2022] Open
Abstract
We recently developed expansion microscopy (ExM), which achieves nanoscale-precise imaging of specimens at ~70 nm resolution (with ~4.5x linear expansion) by isotropic swelling of chemically processed, hydrogel-embedded tissue. ExM of C. elegans is challenged by its cuticle, which is stiff and impermeable to antibodies. Here we present a strategy, expansion of C. elegans (ExCel), to expand fixed, intact C. elegans. ExCel enables simultaneous readout of fluorescent proteins, RNA, DNA location, and anatomical structures at resolutions of ~65-75 nm (3.3-3.8x linear expansion). We also developed epitope-preserving ExCel, which enables imaging of endogenous proteins stained by antibodies, and iterative ExCel, which enables imaging of fluorescent proteins after 20x linear expansion. We demonstrate the utility of the ExCel toolbox for mapping synaptic proteins, for identifying previously unreported proteins at cell junctions, and for gene expression analysis in multiple individual neurons of the same animal.
Collapse
Affiliation(s)
- Chih-Chieh (Jay) Yu
- Department of Biological Engineering, Massachusetts Institute of TechnologyCambridgeUnited States
- Media Lab, Massachusetts Institute of TechnologyCambridgeUnited States
- McGovern Institute, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Nicholas C Barry
- Media Lab, Massachusetts Institute of TechnologyCambridgeUnited States
- McGovern Institute, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Asmamaw T Wassie
- Department of Biological Engineering, Massachusetts Institute of TechnologyCambridgeUnited States
- McGovern Institute, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Anubhav Sinha
- Media Lab, Massachusetts Institute of TechnologyCambridgeUnited States
- McGovern Institute, Massachusetts Institute of TechnologyCambridgeUnited States
- Division of Health Sciences and Technology, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Abhishek Bhattacharya
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia UniversityNew YorkUnited States
| | - Shoh Asano
- Media Lab, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Chi Zhang
- Media Lab, Massachusetts Institute of TechnologyCambridgeUnited States
- McGovern Institute, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Fei Chen
- Broad Institute of MIT and HarvardCambridgeUnited States
| | - Oliver Hobert
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia UniversityNew YorkUnited States
| | - Miriam B Goodman
- Department of Molecular and Cellular Physiology, Stanford UniversityStanfordUnited States
| | - Gal Haspel
- Federated Department of Biological Sciences, New Jersey Institute of Technology and Rutgers University-NewarkNewarkUnited States
- The Brain Research Institute, New Jersey Institute of TechnologyNewarkUnited States
| | - Edward S Boyden
- Department of Biological Engineering, Massachusetts Institute of TechnologyCambridgeUnited States
- Media Lab, Massachusetts Institute of TechnologyCambridgeUnited States
- McGovern Institute, Massachusetts Institute of TechnologyCambridgeUnited States
- Koch Institute, Massachusetts Institute of TechnologyCambridgeUnited States
- Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
| |
Collapse
|
9
|
Abstract
Thermodynamic partitioning dictates solute loading and release from a hydrogel. Design of drug delivery vehicles, cell and tissue matrices, and immunoassay scaffolds that utilize hydrogel materials is informed by an understanding of the thermodynamic partitioning properties of those hydrogels. We develop aberration-compensated laser scanning confocal microscopy (AC-LSCM), a technique that can be applied to all fluorescence microscopy-based equilibrium partition coefficient measurements where the fluorescence is uniformly distributed in the reference material (e.g., many solutes in thermodynamic equilibrium). In this paper, we use AC-LSCM to measure spatially resolved in situ equilibrium partition coefficients of various fluorescently labeled solutes in single-layer and multilayer open hydrogels. In considering a dynamic material, we scrutinize solute interactions with a UV photoactive polyacrylamide gel that incorporates a benzophenone methacrylamide backbone. We observed strong agreement with an adjusted version of Ogston's ideal size-exclusion model for spatially resolved in situ equilibrium partition coefficients across a wide range of polyacrylamide hydrogel densities (R2 = 0.98). Partition coefficients of solutes differing in hydrodynamic radius were consistent with size-based theory in the photoactive hydrogels, but exceed those in unmodified polyacrylamide gels. This observation suggests a deviation from the size-exclusion model and a shift in the thermodynamic equilibrium state of the solutes toward the gel phase. AC-LSCM also resolves differential partitioning behavior of the model solute in two-layer gels, providing insight into the transport phenomena governing the partitioning in multilaminate gel structures. Furthermore, AC-LSCM identifies and quantifies depth-dependent axial aberrations that could confound quantitation, highlighting the need for the "aberration compensated" aspect of AC-LSCM.
Collapse
Affiliation(s)
- Alison Su
- The UC Berkeley/UCSF Graduate Program in Bioengineering, University of California Berkeley, Berkeley, California 94720, United States
| | - Benjamin E. Smith
- Department of Vision Sciences, University of California Berkeley, Berkeley, California 94720, United States
| | - Amy E. Herr
- The UC Berkeley/UCSF Graduate Program in Bioengineering, University of California Berkeley, Berkeley, California 94720, United States
- Department of Bioengineering, University of California Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
10
|
Girardo S, Träber N, Wagner K, Cojoc G, Herold C, Goswami R, Schlüßler R, Abuhattum S, Taubenberger A, Reichel F, Mokbel D, Herbig M, Schürmann M, Müller P, Heida T, Jacobi A, Ulbricht E, Thiele J, Werner C, Guck J. Standardized microgel beads as elastic cell mechanical probes. J Mater Chem B 2018; 6:6245-6261. [PMID: 32254615 DOI: 10.1039/c8tb01421c] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cell mechanical measurements are gaining increasing interest in biological and biomedical studies. However, there are no standardized calibration particles available that permit the cross-comparison of different measurement techniques operating at different stresses and time-scales. Here we present the rational design, production, and comprehensive characterization of poly-acrylamide (PAAm) microgel beads mimicking size and overall mechanics of biological cells. We produced mono-disperse beads at rates of 20-60 kHz by means of a microfluidic droplet generator, where the pre-gel composition was adjusted to tune the beads' elasticity in the range of cell and tissue relevant mechanical properties. We verified bead homogeneity by optical diffraction tomography and Brillouin microscopy. Consistent elastic behavior of microgel beads at different shear rates was confirmed by AFM-enabled nanoindentation and real-time deformability cytometry (RT-DC). The remaining inherent variability in elastic modulus was rationalized using polymer theory and effectively reduced by sorting based on forward-scattering using conventional flow cytometry. Our results show that PAAm microgel beads can be standardized as mechanical probes, to serve not only for validation and calibration of cell mechanical measurements, but also as cell-scale stress sensors.
Collapse
Affiliation(s)
- S Girardo
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47/49, 01307 Dresden, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Lee D, Ryu S. A Validation Study of the Repeatability and Accuracy of Atomic Force Microscopy Indentation Using Polyacrylamide Gels and Colloidal Probes. J Biomech Eng 2017; 139:2595195. [DOI: 10.1115/1.4035536] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Indexed: 01/06/2023]
Abstract
The elasticity of soft biological materials is a critical property to understand their biomechanical behaviors. Atomic force microscopy (AFM) indentation method has been widely employed to measure the Young's modulus (E) of such materials. Although the accuracy of the method has been recently evaluated based on comparisons with macroscale E measurements, the repeatability of the method has yet to be validated for rigorous biomechanical studies of soft elastic materials. We tested the AFM indentation method using colloidal probes and polyacrylamide (PAAM) gels of E < 20 kPa as a model soft elastic material after having identified optimal trigger force and probe speed. AFM indentations repeated with time intervals show that the method is well repeatable when performed carefully. Compared with the rheometric method and the confocal microscopy indentation method, the AFM indentation method is evaluated to have comparable accuracy and better precision, although these elasticity measurements appear to rely on the compositions of PAAM gels and the length scale of measurement. Therefore, we have confirmed that the AFM indentation method can reliably measure the elasticity of soft elastic materials.
Collapse
Affiliation(s)
- Donghee Lee
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588 e-mail:
| | - Sangjin Ryu
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588 e-mail:
| |
Collapse
|
12
|
Crosslinking of poly(vinylpyrrolidone)/acrylic acid with tragacanth gum for hydrogels formation for use in drug delivery applications. Carbohydr Polym 2017; 157:185-195. [DOI: 10.1016/j.carbpol.2016.09.086] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 09/27/2016] [Accepted: 09/27/2016] [Indexed: 12/21/2022]
|
13
|
Abstract
Applications as diverse as drug delivery and immunoassays require hydrogels to house high concentration macromolecular solutions. Yet, thermodynamic partitioning acts to lower the equilibrium concentration of macromolecules in the hydrogel, as compared to the surrounding liquid phase. For immunoassays that utilize a target antigen immobilized in the hydrogel, partitioning hinders introduction of detection antibody into the gel and, consequently, reduces the in-gel concentration of detection antibody, adversely impacting assay sensitivity. Recently, we developed a single-cell targeted proteomic assay with polyacrylamide gel electrophoresis of single cell lysates followed by an in-gel immunoassay. In the present work, we overcome partitioning that both limits analytical sensitivity and increases consumption of costly detection antibody by performing the immunoassay step after dehydrating the antigen-containing polyacrylamide gel. Gels are rehydrated with a solution of detection antibody. We hypothesized that matching the volume of detection antibody solution with the hydrogel water volume fraction would ensure that, at equilibrium, the detection antibody mass resides in the gel and not in the liquid surrounding the gel. Using this approach, we observe (compared with antibody incubation of hydrated gels): (i) 4-11 fold higher concentration of antibody in the dehydrated gels and in the single-cell assay (ii) higher fluorescence immunoassay signal, with up to 5-fold increases in signal-to-noise-ratio and (iii) reduced detection antibody consumption. We also find that detection antibody signal may be less well-correlated with target protein levels (GFP) using this method, suggesting a trade-off between analytical sensitivity and variation in immunoprobe signal. Our volume-matching approach for introducing macromolecular solutions to hydrogels increases the local in-gel concentration of detection antibody without requiring modification of the hydrogel structure, and thus we anticipate broad applicability to hydrogel-based assays, diagnostics, and drug delivery.
Collapse
Affiliation(s)
- Julea Vlassakis
- Department of Bioengineering and The UC Berkeley/UCSF Graduate Program in Bioengineering, University of California Berkeley , Berkeley, California 94720, United States
| | - Amy E Herr
- Department of Bioengineering and The UC Berkeley/UCSF Graduate Program in Bioengineering, University of California Berkeley , Berkeley, California 94720, United States
| |
Collapse
|
14
|
Lee D, Rahman MM, Zhou Y, Ryu S. Three-Dimensional Confocal Microscopy Indentation Method for Hydrogel Elasticity Measurement. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:9684-9693. [PMID: 26270154 DOI: 10.1021/acs.langmuir.5b01267] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The stiffness of the extracellular matrix (ECM) plays an important role in controlling cell functions. As an alternative to the ECM, hydrogels of tunable elasticity are widely used for in vitro cell mechanobiology studies. Therefore, characterizing the Young's modulus of the hydrogel substrate is crucial. In this paper, we propose a confocal microscopy indentation method for measuring the elasticity of polyacrylamide gel as a model hydrogel. Our new indentation method is based on three-dimensional imaging of the indented gel using confocal microscopy and automated image processing to measure indentation depth from the three-dimensional image stack. We tested and validated our method by indenting polyacrylamide gels of different rigidities with various sphere indentors and by comparing it with the rheometric method. Our measurements show consistent results regardless of the type of the indentors and agree with rheometric measurements. Therefore, the proposed confocal microscopy indentation method can accurately measure the stiffness of hydrogels.
Collapse
Affiliation(s)
- Donghee Lee
- Department of Mechanical & Materials Engineering and ‡Center for Biotechnology, University of Nebraska-Lincoln , Lincoln, Nebraska 68588, United States
| | - Md Mahmudur Rahman
- Department of Mechanical & Materials Engineering and ‡Center for Biotechnology, University of Nebraska-Lincoln , Lincoln, Nebraska 68588, United States
| | - You Zhou
- Department of Mechanical & Materials Engineering and ‡Center for Biotechnology, University of Nebraska-Lincoln , Lincoln, Nebraska 68588, United States
| | - Sangjin Ryu
- Department of Mechanical & Materials Engineering and ‡Center for Biotechnology, University of Nebraska-Lincoln , Lincoln, Nebraska 68588, United States
| |
Collapse
|
15
|
Bocourt M, Bada N, Acosta N, Bucio E, Peniche C. Synthesis and characterization of novel pH-sensitive chitosan-poly(acrylamide-co-itaconic acid) hydrogels. POLYM INT 2014. [DOI: 10.1002/pi.4699] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Michel Bocourt
- Centro de Biomateriales; Universidad de La Habana; Ave. Universidad s/n entre G y Ronda 10400 Havana Cuba
| | - Nancy Bada
- Centro de Biomateriales; Universidad de La Habana; Ave. Universidad s/n entre G y Ronda 10400 Havana Cuba
| | - Niuris Acosta
- Instituto de Estudios Biofuncionales/Dpto Química Física II, Facultad de Farmacia; Universidad Complutense de Madrid, Ciudad Universitaria; 28040 Madrid Spain
| | - Emilio Bucio
- Departamento de Química de Radiaciones y Radioquímica; Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Ciudad Universitaria; 04510 Mexico D.F. Mexico
| | - Carlos Peniche
- Centro de Biomateriales; Universidad de La Habana; Ave. Universidad s/n entre G y Ronda 10400 Havana Cuba
| |
Collapse
|
16
|
|
17
|
Suekama TC, Aziz V, Mohammadi Z, Berkland C, Gehrke SH. Synthesis and characterization of poly(N-vinyl formamide) hydrogels-A potential alternative to polyacrylamide hydrogels. ACTA ACUST UNITED AC 2012. [DOI: 10.1002/pola.26401] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
18
|
Begam T, Nagpal A, Singhal R. A study on copolymeric hydrogels based on acrylamide-methacrylate and its modified vinyl-amine-containing derivative. Des Monomers Polym 2012. [DOI: 10.1163/1568555041475329] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
19
|
Alveroglu E, Yilmaz Y. Estimation of the Generation and the Weight Fraction of Dense Polymer Regions in Heterogeneous Hydrogels. MACROMOL CHEM PHYS 2011. [DOI: 10.1002/macp.201100161] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
20
|
Alveroglu E, Gelir A, Yilmaz Y. Swelling Behavior of Chemically Ion-Doped Hydrogels. ACTA ACUST UNITED AC 2009. [DOI: 10.1002/masy.200950723] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
21
|
Bajpai AK, Bhanu S. PREPARATION OF A NOVEL SEMI-INTERPENETRATING POLYMER NETWORK (IPN) AND STUDY OF THE RELEASE DYNAMICS OF HUMAN BLOOD THROUGH THE IPN. INT J POLYM MATER PO 2004. [DOI: 10.1080/00914030490429843] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
22
|
Çaykara T. Effect of maleic acid content on network structure and swelling properties of poly(N-isopropylacrylamide-co-maleic acid) polyelectrolyte hydrogels. J Appl Polym Sci 2004. [DOI: 10.1002/app.20032] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
23
|
Çaykara T, Kantoğlu Ö. Thermal behavior and network structure of poly(N
-vinyl-2-pyrrolidone-crotonic acid) hydrogels prepared by radiation-induced polymerization. POLYM ADVAN TECHNOL 2004. [DOI: 10.1002/pat.423] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
24
|
Ionizable interpenetrating polymer networks of carboxymethyl cellulose and polyacrylic acid: Evaluation of water uptake. J Appl Polym Sci 2004. [DOI: 10.1002/app.20674] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
25
|
Chacko A, Mathew B. Polystyrene-supported polyoxyethylene bound potassium permanganate as a heterogeneous oxidizing agent. J Appl Polym Sci 2003. [DOI: 10.1002/app.13069] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
26
|
Bajpai AK, Shrivastava M. Water sorption dynamics of a binary copolymeric hydrogel of 2-hydroxyethyl methacrylate (HEMA). JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2003; 13:237-56. [PMID: 12102592 DOI: 10.1163/156856202320176501] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The water imbibing property of poly(2-hydroxyethyl methacrylate) (poly HEMA) has been improved by copolymerizing HEMA with acrylamide in the presence of a hydrophilic polymer such as polyethylene glycol (PEG). The hydrogel was characterized by IR spectral analysis and several network parameters such as average molecular weight between crosslinks (Mc), crosslink density (q) and number of elastically effective chains were evaluated. The swelling ratio of the hydrogel was found to be influenced by varying the chemical architecture of the hydrogel, i.e. by changing the proportions of PEG, HEMA, acrylamide and crosslinking agent in the feed mixture of the hydrogel. The degree of water sorption was studied as a function of the experimental conditions such as the pH and temperature of the swelling medium and presence of salt ions in the outer solution. The dynamics of the swelling process was studied quantitatively and kinetic constants such as the swelling exponent (n) and diffusion constant (D) were also evaluated. The hydrogels prepared of varying composition were judged for antithrombogenic nature of their surfaces by blood-clot formation test.
Collapse
Affiliation(s)
- A K Bajpai
- Bose Memorial Research Laboratory, Government Autonomous Science College, Jabalpur, India.
| | | |
Collapse
|
27
|
Swelling dynamics of a macromolecular hydrophilic network and evaluation of its potential for controlled release of agrochemicals. REACT FUNCT POLYM 2002. [DOI: 10.1016/s1381-5148(02)00168-2] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
28
|
Valencia J, Piérola IF. Equilibrium swelling properties of poly(N-vinylimidazole-co-sodium styrenesulfonate) hydrogels. Eur Polym J 2001. [DOI: 10.1016/s0014-3057(01)00159-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
29
|
Valencia J, Piérola IF. Swelling kinetics of poly(N-vinylimidazole-co-sodium styrenesulfonate) hydrogels. J Appl Polym Sci 2001. [DOI: 10.1002/app.10059] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
30
|
Abusafieh A, Siegler S, Kalidindi SR. Development of self-anchoring bone implants. I. Processing and material characterization. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH 2000; 38:314-27. [PMID: 9421752 DOI: 10.1002/(sici)1097-4636(199724)38:4<314::aid-jbm3>3.0.co;2-r] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We recently designed and produced a family of new swelling-type materials that are potentially capable of self-fixation in bone. These materials are designed to absorb body fluids and swell by small amounts, which will allow the implants made from these materials to achieve self-fixation by an expansion-fit mechanism. The developed material system is essentially a crosslinked random copolymer based on poly (methyl methacrylate-acrylic acid). For potential structural (load-bearing) bioimplant applications, we reinforced this copolymer with AS-4 carbon and Kevlar 49 fibers. The details of processing these materials and the steps involved in optimizing their microstructures are presented in this article. A set of mechanical tests were performed on these materials in both dry and swollen conditions to measure their moduli and yield strengths. In the dry state, the copolymers were found to exhibit Young's moduli in the range of 3 to 4 GPa and yield strengths in the range of 70 to 85 MPa. The reinforced composites exhibited moduli in the range of 15 to 65 GPa and yield strengths in the range of 125 to 500 MPa. Upon controlling the volumetric swelling in these materials to be less than about 10%, the loss in mechanical properties was found to be less than about 30%. These hygromechanical properties are well suited for self-anchoring bone implant applications.
Collapse
Affiliation(s)
- A Abusafieh
- Department of Materials Engineering, Drexel University, Philadelphia, Pennsylvania, USA
| | | | | |
Collapse
|
31
|
Saraydin D, Karadağ E, Güven O. Super Water-Retainer Hydrogels: Crosslinked Acrylamide/Succinic Acid Copolymers. Polym J 1997. [DOI: 10.1295/polymj.29.631] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
32
|
Peppas NA, Khare AR. Preparation, structure and diffusional behavior of hydrogels in controlled release. Adv Drug Deliv Rev 1993. [DOI: 10.1016/0169-409x(93)90025-y] [Citation(s) in RCA: 462] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
33
|
Chemistry and physics of “agricultural” hydrogels. POLYELECTROLYTES HYDROGELS CHROMATOGRAPHIC MATERIALS 1992. [DOI: 10.1007/3-540-55109-3_3] [Citation(s) in RCA: 152] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
34
|
Gehrke SH, Palasis M, Akhtar MK. Effect of synthesis conditions on properties of poly(N-isopropylacrylamide) gels. POLYM INT 1992. [DOI: 10.1002/pi.4990290107] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|