1
|
Zhao SY, Sommer AJ, Bartlett D, Harbison JE, Irwin P, Coon KL. Microbiota Composition Associates With Mosquito Productivity Outcomes in Belowground Larval Habitats. Mol Ecol 2025; 34:e17614. [PMID: 39673091 DOI: 10.1111/mec.17614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/21/2024] [Accepted: 11/26/2024] [Indexed: 12/16/2024]
Abstract
Vector mosquitoes are well-adapted to habitats in urban areas, including belowground infrastructure such as stormwater systems. As a major source of larval habitat in population centers, control of larval populations in stormwater catch basins is an important tool for control of vector-borne disease. Larval development and adult phenotypes driving vectorial capacity in mosquitoes are modulated by the larval gut microbiota, which is recruited from the aquatic environment in which larvae develop. Laboratory studies have quantified microbe-mediated impacts on individual mosquito phenotypes, but more work is needed to characterise how microbiota variation shapes population-level outcomes. Here, we evaluated the relationship between habitat microbiota variation and mosquito population dynamics by simultaneously characterising microbiota diversity, water quality, and mosquito productivity in a network of stormwater catch basins in the Chicago metropolitan area. High throughput sequencing of 16S rRNA gene amplicons from water samples collected from 60 basins over an entire mosquito breeding season detected highly diverse bacterial communities that varied with measures of water quality and over time. In situ measurements of mosquito abundance in the same basins further varied by microbiota composition and the relative abundance of specific bacterial taxa. Altogether, these results illustrate the importance of habitat microbiota in shaping ecological processes that affect mosquito populations. They also lay the foundation for future studies to characterise the mechanisms by which specific bacterial taxa impact individual and population-level phenotypes related to mosquito vectorial capacity.
Collapse
Affiliation(s)
- Serena Y Zhao
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Andrew J Sommer
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Dan Bartlett
- Northwest Mosquito Abatement District, Wheeling, Illinois, USA
| | | | - Patrick Irwin
- Northwest Mosquito Abatement District, Wheeling, Illinois, USA
- Department of Entomology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kerri L Coon
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
2
|
Saleem F, Li E, Edge TA, Tran KL, Schellhorn HE. Identification of potential microbial risk factors associated with fecal indicator exceedances at recreational beaches. ENVIRONMENTAL MICROBIOME 2024; 19:4. [PMID: 38225663 PMCID: PMC10790499 DOI: 10.1186/s40793-024-00547-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/02/2024] [Indexed: 01/17/2024]
Abstract
BACKGROUND Fecal bacterial densities are proxy indicators of beach water quality, and beach posting decisions are made based on Beach Action Value (BAV) exceedances for a beach. However, these traditional beach monitoring methods do not reflect the full extent of microbial water quality changes associated with BAV exceedances at recreational beaches (including harmful cyanobacteria). This proof of concept study evaluates the potential of metagenomics for comprehensively assessing bacterial community changes associated with BAV exceedances compared to non-exceedances for two urban beaches and their adjacent river water sources. RESULTS Compared to non-exceedance samples, BAV exceedance samples exhibited higher alpha diversity (diversity within the sample) that could be further differentiated into separate clusters (Beta-diversity). For Beach A, Cyanobacterial sequences (resolved as Microcystis and Pseudanabaena at genus level) were significantly more abundant in BAV non-exceedance samples. qPCR validation supported the Cyanobacterial abundance results from metagenomic analysis and also identified saxitoxin genes in 50% of the non-exceedance samples. Microcystis sp and saxitoxin gene sequences were more abundant on non-exceedance beach days (when fecal indicator data indicated the beach should be open for water recreational purposes). For BAV exceedance days, Fibrobacteres, Pseudomonas, Acinetobacter, and Clostridium sequences were significantly more abundant (and positively correlated with fecal indicator densities) for Beach A. For Beach B, Spirochaetes (resolved as Leptospira on genus level) Burkholderia and Vibrio sequences were significantly more abundant in BAV exceedance samples. Similar bacterial diversity and abundance trends were observed for river water sources compared to their associated beaches. Antibiotic Resistance Genes (ARGs) were also consistently detected at both beaches. However, we did not observe a significant difference or correlation in ARGs abundance between BAV exceedance and non-exceedance samples. CONCLUSION This study provides a more comprehensive analysis of bacterial community changes associated with BAV exceedances for recreational freshwater beaches. While there were increases in bacterial diversity and some taxa of potential human health concern associated with increased fecal indicator densities and BAV exceedances (e.g. Pseudomonas), metagenomics analyses also identified other taxa of potential human health concern (e.g. Microcystis) associated with lower fecal indicator densities and BAV non-exceedances days. This study can help develop more targeted beach monitoring strategies and beach-specific risk management approaches.
Collapse
Affiliation(s)
- Faizan Saleem
- Department of Biology, McMaster University, 1280 Main St W., Hamilton, ON, L8S 4L8, Canada
| | - Enze Li
- Department of Biology, McMaster University, 1280 Main St W., Hamilton, ON, L8S 4L8, Canada
| | - Thomas A Edge
- Department of Biology, McMaster University, 1280 Main St W., Hamilton, ON, L8S 4L8, Canada
| | - Kevin L Tran
- Department of Biology, McMaster University, 1280 Main St W., Hamilton, ON, L8S 4L8, Canada
| | - Herb E Schellhorn
- Department of Biology, McMaster University, 1280 Main St W., Hamilton, ON, L8S 4L8, Canada.
| |
Collapse
|
3
|
Adhikari NP, Adhikari S. First report on the bacterial community composition, diversity, and functions in Ramsar site of Central Himalayas, Nepal. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:573. [PMID: 37060391 DOI: 10.1007/s10661-023-11158-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
Wetland bacterial communities are highly sensitive to altered hydrology and the associated change in water physicochemical and biological properties leading to shifts in community composition and diversity, hence affecting the ecological roles. However, relevant studies are lacking in the wetlands of central Himalayas Nepal. Thus, we aimed to explore the variation of bacterial communities, diversity, and ecologic functions in the wet and dry periods of a wetland (designed as Ramsar site, Ramsar no 2257) by using 16S rRNA gene-based Illumina MiSeq sequencing. We reported a pronounced variation in water physicochemical and biological properties (temperature, pH, Chla, DOC, and TN), bacterial diversity, and community composition. Bacterial communities in the dry season harbored significantly higher alpha diversity, while significantly higher richness and abundance were reflected in the wet season. Our results uncovered the effect of nutrients on bacterial abundance, richness, and community composition. Fourteen percent of the total OTUs were shared in two hydrological periods, and the largest portion of unique OTUs (58%) was observed in the dry season. Planctomycetes and Bacteroidetes dominated the wet season exclusive OTUs; meanwhile, Actinobacteria dominated the dry season exclusive OTUs. Bacteria in these wetlands exhibited divergent ecological functions during the dry and wet seasons. By disclosing the variation of water bacterial communities in different hydrologic periods and their relationship with environmental factors, this first-hand work in the Ramsar site of Nepal will develop a baseline dataset for the scientific community that will assist in understanding the wetland's microbial ecology and biogeography.
Collapse
Affiliation(s)
- Namita Paudel Adhikari
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China
- Institute of Tibetan Plateau Research Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Subash Adhikari
- Policy and Planning Commission, Government of Gandaki Province, Pokhara, 33700, Nepal.
| |
Collapse
|
4
|
Vignale FA, Bernal Rey D, Pardo AM, Almasqué FJ, Ibarra JG, Fernández Do Porto D, Turjanski AG, López NI, Helman RJM, Raiger Iustman LJ. Spatial and Seasonal Variations in the Bacterial Community of an Anthropogenic Impacted Urban Stream. MICROBIAL ECOLOGY 2023; 85:862-874. [PMID: 35701635 DOI: 10.1007/s00248-022-02055-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 06/02/2022] [Indexed: 05/04/2023]
Abstract
Environmental changes and human activities can alter the structure and diversity of aquatic microbial communities. In this work, we analyzed the bacterial community dynamics of an urban stream to understand how these factors affect the composition of river microbial communities. Samples were taken from a stream situated in Buenos Aires, Argentina, which flows through residential, peri-urban horticultural, and industrial areas. For sampling, two stations were selected: one influenced by a series of industrial waste treatment plants and horticultural farms (PL), and the other influenced by residential areas (R). Microbial communities were analyzed by sequence analysis of 16S rRNA gene amplicons along an annual cycle. PL samples showed high nutrient content compared with R samples. The diversity and richness of the R site were more affected by seasonality than those of the PL site. At the amplicon sequence variants level, beta diversity analysis showed a differentiation between cool-season (fall and winter) and warm-season (spring and summer) samples, as well as between PL and R sites. This demonstrated that there is spatial and temporal heterogeneity in the composition of the bacterial community, which should be considered if a bioremediation strategy is applied. The taxonomic composition analysis also revealed a differential seasonal cycle of phototrophs and chemoheterotrophs between the sampling sites, as well as different taxa associated with each sampling site. This analysis, combined with a comparative analysis of global rivers, allowed us to determine the genera Arcobacter, Simplicispira, Vogesella, and Sphingomonas as potential bioindicators of anthropogenic disturbance.
Collapse
Affiliation(s)
- Federico A Vignale
- Instituto de Química Biológica de La Facultad de Ciencias Exactas Y Naturales (IQUIBICEN)-CONICET, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Daissy Bernal Rey
- Instituto de Química Biológica de La Facultad de Ciencias Exactas Y Naturales (IQUIBICEN)-CONICET, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
- Instituto de Química Física de los Materiales, Medio Ambiente Y Energía (INQUIMAE)-CONICET, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Agustín M Pardo
- Instituto de Química Biológica de La Facultad de Ciencias Exactas Y Naturales (IQUIBICEN)-CONICET, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
- Facultad de Ciencias Exactas Y Naturales, Instituto de Cálculo, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Facundo J Almasqué
- Instituto de Química Biológica de La Facultad de Ciencias Exactas Y Naturales (IQUIBICEN)-CONICET, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - José G Ibarra
- Instituto de Química Biológica de La Facultad de Ciencias Exactas Y Naturales (IQUIBICEN)-CONICET, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Darío Fernández Do Porto
- Facultad de Ciencias Exactas Y Naturales, Instituto de Cálculo, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas Y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Adrián G Turjanski
- Instituto de Química Biológica de La Facultad de Ciencias Exactas Y Naturales (IQUIBICEN)-CONICET, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas Y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Nancy I López
- Instituto de Química Biológica de La Facultad de Ciencias Exactas Y Naturales (IQUIBICEN)-CONICET, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas Y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Renata J Menéndez Helman
- Instituto de Química Biológica de La Facultad de Ciencias Exactas Y Naturales (IQUIBICEN)-CONICET, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Laura J Raiger Iustman
- Instituto de Química Biológica de La Facultad de Ciencias Exactas Y Naturales (IQUIBICEN)-CONICET, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina.
- Departamento de Química Biológica, Facultad de Ciencias Exactas Y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina.
| |
Collapse
|
5
|
Odhiambo KA, Ogola HJO, Onyango B, Tekere M, Ijoma GN. Contribution of pollution gradient to the sediment microbiome and potential pathogens in urban streams draining into Lake Victoria (Kenya). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:36450-36471. [PMID: 36543987 DOI: 10.1007/s11356-022-24517-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
In sub-Saharan Africa (SSA), urban rivers/streams have long been subjected to anthropogenic pollution caused by urbanization, resulting in significantly altered chemical and biological properties of surface water and sediments. However, little is known about the diversity and structure of river microbial community composition and pathogens, as well as how they respond to anthropogenic inputs. High-throughput 16S rRNA amplicon sequencing and PICRUSt predictive function profiling were used in this study to conduct a comprehensive analysis of the spatial bacterial distribution and metabolic functions in sediment of two urban streams (Kisat and Auji) flowing through Kisumu City, Kenya. Results revealed that sediment samples from the highly urbanized mid and lower stream catchment zones of both streams had significantly higher levels of total organic carbon (TOC), total nitrogen (TN), total phosphorous (TP) than the less urbanized upper catchment zone, and were severely polluted with toxic heavy metals lead (Pb), cadmium (Cd), and copper (Cu). Differential distribution of Actinobacteria, Proteobacteria, Chloroflexi, and Verrucomicrobia in sediment bacterial composition was detected along stream catchment zones. The polluted mid and lower catchment zones were rich in Actinobacteria and Proteobacteria, as well as a variety of potential pathogenic taxa such as Corynebacterium, Staphylococcus, Cutibacterium, Turicella, Acinetobacter, and Micrococcus, as well as enteric bacteria such as Faecalibacterium, Shewanella, Escherichia, Klebsiella, Enterococcus, Prevotella, Legionella, Vibrio and Salmonella. Furthermore, PICRUSt metabolic inference analysis revealed an increasing enrichment in the sediments of genes associated with carbon and nitrogen metabolism, disease pathogenesis, and virulence. Environmental factors (TOC, Pb, Cd, TN, pH) and geographical distance as significant drivers of sediment bacterial community assembly, with the environmental selection to play a dominant role. In polluted river catchment zone sediment samples, Pb content was the most influential sediment property, followed by TOC and Cd content. Given the predicted increase in urbanization in SSA, further alteration of surface water and sediment microbiome due to urban river pollution is unavoidable, with potential long-term effects on ecosystem function and potential health hazards. As a result, this study provides valuable information for ecological risk assessment and management of urban rivers impacted by diffuse and point source anthropogenic inputs, which is critical for future proactive and sustainable urban waste management, monitoring, and water pollution control in low-income countries.
Collapse
Affiliation(s)
- Kennedy Achieng Odhiambo
- Department of Biological Sciences, Jaramogi Oginga Odinga University of Science and Technology, P.O Box 210, Bondo, 40601, Kenya
| | - Henry Joseph Oduor Ogola
- Department of Environmental Science, University of South Africa, Florida Science Campus, Roodepoort, 1709, South Africa.
| | - Benson Onyango
- Department of Biological Sciences, Jaramogi Oginga Odinga University of Science and Technology, P.O Box 210, Bondo, 40601, Kenya
| | - Memory Tekere
- Department of Environmental Science, University of South Africa, Florida Science Campus, Roodepoort, 1709, South Africa
| | - Grace N Ijoma
- Institute for the Development of Energy for African Sustainability (IDEAS), College of Science, Engineering and Technology, University of South Africa, Florida, Roodepoort, 1709, South Africa
| |
Collapse
|
6
|
Kodera SM, Sharma A, Martino C, Dsouza M, Grippo M, Lutz HL, Knight R, Gilbert JA, Negri C, Allard SM. Microbiome response in an urban river system is dominated by seasonality over wastewater treatment upgrades. ENVIRONMENTAL MICROBIOME 2023; 18:10. [PMID: 36805022 PMCID: PMC9938989 DOI: 10.1186/s40793-023-00470-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Microorganisms such as coliform-forming bacteria are commonly used to assess freshwater quality for drinking and recreational use. However, such organisms do not exist in isolation; they exist within the context of dynamic, interactive microbial communities which vary through space and time. Elucidating spatiotemporal microbial dynamics is imperative for discriminating robust community changes from ephemeral ecological trends, and for improving our overall understanding of the relationship between microbial communities and ecosystem health. We conducted a seven-year (2013-2019) microbial time-series investigation in the Chicago Area Waterways (CAWS): an urban river system which, in 2016, experienced substantial upgrades to disinfection processes at two wastewater reclamation plants (WRPs) that discharge into the CAWS and improved stormwater capture, to improve river water quality and reduce flooding. Using culture-independent and culture-dependent approaches, we compared CAWS microbial ecology before and after the intervention. RESULTS Examinations of time-resolved beta distances between WRP-adjacent sites showed that community similarity measures were often consistent with the spatial orientation of site locations to one another and to the WRP outfalls. Fecal coliform results suggested that upgrades reduced coliform-associated bacteria in the effluent and the downstream river community. However, examinations of whole community changes through time suggest that the upgrades did little to affect overall riverine community dynamics, which instead were overwhelmingly driven by yearly patterns consistent with seasonality. CONCLUSIONS This study presents a systematic effort to combine 16S rRNA gene amplicon sequencing with traditional culture-based methods to evaluate the influence of treatment innovations and systems upgrades on the microbiome of the Chicago Area Waterway System, representing the longest and most comprehensive characterization of the microbiome of an urban waterway yet attempted. We found that the systems upgrades were successful in improving specific water quality measures immediately downstream of wastewater outflows. Additionally, we found that the implementation of the water quality improvement measures to the river system did not disrupt the overall dynamics of the downstream microbial community, which remained heavily influenced by seasonal trends. Such results emphasize the dynamic nature of microbiomes in open environmental systems such as the CAWS, but also suggest that the seasonal oscillations remain consistent even when perturbed.
Collapse
Affiliation(s)
- Sho M Kodera
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Anukriti Sharma
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Cameron Martino
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, USA
| | | | - Mark Grippo
- Environmental Science Division, Argonne National Laboratory, University of Chicago, Lemont, IL, USA
| | - Holly L Lutz
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Rob Knight
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
- Department of Computer Science and Engineering, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Jack A Gilbert
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA.
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA.
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA.
| | - Cristina Negri
- Environmental Science Division, Argonne National Laboratory, University of Chicago, Lemont, IL, USA.
| | - Sarah M Allard
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA.
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
7
|
Matsui K, Miki T. Microbial community composition and function in an urban waterway with combined sewer overflows before and after implementation of a stormwater storage pipe. PeerJ 2023; 11:e14684. [PMID: 36650829 PMCID: PMC9840855 DOI: 10.7717/peerj.14684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/13/2022] [Indexed: 01/15/2023] Open
Abstract
When the wastewater volume exceeds the sewer pipe capacity during extreme rainfall events, untreated sewage discharges directly into rivers as combined sewer overflow (CSO). To compare the impacts of CSOs and stormwater on urban waterways, we assessed physicochemical water quality, the 16S rRNA gene-based bacterial community structure, and EcoPlate-based microbial functions during rainfall periods in an urban waterway before and after a stormwater storage pipe was commissioned. A temporal variation analysis showed that CSOs have significant impacts on microbial function and bacterial community structure, while their contributions to physicochemical parameters, bacterial abundance, and chlorophyll a were not confirmed. Heat map analysis showed that the impact of CSO on the waterway bacterial community structure was temporal and the bacterial community composition in CSO is distinct from that in sewers. Hierarchical clustering analysis revealed that the waterway physicochemical water qualities, bacterial community composition, and microbial community function were distinguishable from the upper reach of the river, rather than between CSO and stormwater. Changes in the relative abundance of tetracycline resistance (tet) genes-especially tet(M)-were observed after CSOs but did not coincide with changes in the microbial community composition, suggesting that the parameters affecting the microbial community composition and relative abundance of tet genes differ. After pipe implementation, however, stormwater did not contribute to the abundance of tet genes in the waterway. These results indicate that CSO-induced acute microbial disturbances in the urban waterway were alleviated by the implementation of a stormwater storage pipe and will support the efficiency of storage pipe operation for waterway management in urban areas.
Collapse
Affiliation(s)
- Kazuaki Matsui
- Department of Civil and Environmental Engineering, Kindai University, Higashiosaka, Japan
| | - Takeshi Miki
- Faculty of Advanced Science and Technology, Ryukoku University, Otsu, Shiga, Japan
| |
Collapse
|
8
|
Entezari S, Al MA, Mostashari A, Ganjidoust H, Ayati B, Yang J. Microplastics in urban waters and its effects on microbial communities: a critical review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:88410-88431. [PMID: 36327084 DOI: 10.1007/s11356-022-23810-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Microplastic (MP) pollution is one of the emerging threats to the water and terrestrial environment, forcing a new environmental challenge due to the growing trend of plastic released into the environment. Synthetic and non-synthetic plastic components can be found in rivers, lakes/reservoirs, oceans, mountains, and even remote areas, such as the Arctic and Antarctic ice sheets. MPs' main challenge is identifying, measuring, and evaluating their impacts on environmental behaviors, such as carbon and nutrient cycles, water and wastewater microbiome, and the associated side effects. However, until now, no standardized methodical protocols have been proposed for comparing the results of studies in different environments, especially in urban water and wastewater. This review briefly discusses MPs' sources, fate, and transport in urban waters and explains methodological uncertainty. The effects of MPs on urban water microbiomes, including urban runoff, sewage wastewater, stagnant water in plumbing networks, etc., are also examined in depth. Furthermore, this study highlights the pathway of MPs and their transport vectors to different parts of ecosystems and human life, particularly through mediating microbial communities, antibiotic-resistant genes, and biogeochemical cycles. Overall, we have briefly highlighted the present research gaps, the lack of appropriate policy for evaluating microplastics and their interactions with urban water microbiomes, and possible future initiatives.
Collapse
Affiliation(s)
- Saber Entezari
- Environmental Engineering Division, Faculty of Civil & Env. Eng., TMU, Tehran, Iran
| | - Mamun Abdullah Al
- Aquatic Eco-Health Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Amir Mostashari
- Environmental Engineering Division, Faculty of Civil & Env. Eng., TMU, Tehran, Iran
| | - Hossein Ganjidoust
- Environmental Engineering Division, Faculty of Civil & Env. Eng., TMU, Tehran, Iran.
| | - Bita Ayati
- Environmental Engineering Division, Faculty of Civil & Env. Eng., TMU, Tehran, Iran
| | - Jun Yang
- Aquatic Eco-Health Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
| |
Collapse
|
9
|
Bacterial community composition and functional potential associated with a variety of urban stormwater sources. Urban Ecosyst 2021. [DOI: 10.1007/s11252-021-01121-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
10
|
McClary-Gutierrez JS, Driscoll Z, Nenn C, Newton RJ. Human Fecal Contamination Corresponds to Changes in the Freshwater Bacterial Communities of a Large River Basin. Microbiol Spectr 2021; 9:e0120021. [PMID: 34494860 PMCID: PMC8557911 DOI: 10.1128/spectrum.01200-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 01/04/2023] Open
Abstract
Microbial water quality is generally monitored by culturable fecal indicator bacteria (FIB), which are intended to signal human health risk due to fecal pollution. However, FIB have limited utility in most urbanized watersheds as they do not discriminate among fecal pollution sources, tend to make up a small fraction of the total microbial community, and do not inform on pollution impacts on the native ecosystem. To move beyond these limitations, we assessed entire bacterial communities and investigated how bacterial diversity relates to traditional ecological and human health-relevant water quality indicators throughout the Milwaukee River Basin. Samples were collected from 16 sites on 5 days during the summer, including both wet and dry weather events, and were processed by 16S rRNA gene amplicon sequencing. Historical water quality at each sampling location, as opposed to upstream land use, was associated significantly with bacterial community alpha diversity. Source partitioning the sequence data was important for determining water quality relationships. Sewage-associated bacterial sequences were detected in all samples, and the relative abundance of sewage sequences was strongly associated with the human Bacteroides fecal marker. From this relationship, we developed a preliminary threshold for human sewage pollution when using bacterial community sequence data. Certain abundant freshwater bacterial sequences were also associated with human fecal pollution, suggesting their possible utility in water quality monitoring. This study sheds light on how bacterial community analysis can be used to supplement current water quality monitoring techniques to better understand interactions between ecological water quality and human health indicators. IMPORTANCE Surface waters in highly developed mixed-use watersheds are frequently impacted by a wide variety of pollutants, leading to a range of impairments that must be monitored and remediated. With advancing technologies, microbial community sequencing may soon become a feasible method for routine evaluation of the ecological quality and human health risk of a water body. In this study, we partnered with a local citizen science organization to evaluate the utility of microbial community sequencing for identifying pollution sources and ecological impairments in a large mixed-use watershed. We show that changes in microbial community diversity and composition are indicative of both long-term ecological impairments and short-term fecal pollution impacts. By source partitioning the sequence data, we also estimate a threshold target for human sewage pollution, which may be useful as a starting point for future development of sequencing-based water quality monitoring techniques.
Collapse
Affiliation(s)
| | - Zac Driscoll
- Milwaukee Riverkeeper, Milwaukee, Wisconsin, USA
| | - Cheryl Nenn
- Milwaukee Riverkeeper, Milwaukee, Wisconsin, USA
| | - Ryan J. Newton
- School of Freshwater Sciences, University of Wisconsin–Milwaukee, Milwaukee, Wisconsin, USA
| |
Collapse
|
11
|
Rao K, Zhang X, Wang M, Liu J, Guo W, Huang G, Xu J. The relative importance of environmental factors in predicting phytoplankton shifting and cyanobacteria abundance in regulated shallow lakes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 286:117555. [PMID: 34119865 DOI: 10.1016/j.envpol.2021.117555] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 05/30/2021] [Accepted: 06/05/2021] [Indexed: 06/12/2023]
Abstract
The phytoplankton community can be affected by multiple environmental factors such as climate, meteorology, hydrology, nutrients, and grazing. The complex interactive effects of these environmental factors as well as the resilience of phytoplankton communities further make the prediction of phytoplankton communities' dynamics challenging. In this study, we analyzed multiple environmental factors and their relative importance in predicting both phytoplankton shifting and cyanobacteria abundance in two regulated shallow lakes in central China. Our results indicated that the phytoplankton community in the study areas could be mainly classified into 1. Cryptophyta dominated group, 2. Biologically diverse group, and 3. Cyanobacteria dominated group. The Multinomial Logistic Regression model indicated the Cryptophyta dominated group was sensitive to temperature, while other groups were sensitive to both temperature and nutrients. The interactive effects of temperature and nutrients were synergistic in the cyanobacteria dominated group, while they were antagonistic or minor in other groups. The Negative Binomial Regression model suggested high total phosphorus and low total nitrogen but not temperature were responsible for high cyanobacteria abundance. The conditional plot indicated nutrients affected cyanobacteria abundance more significantly under low wind speeds and lake volume fluctuations, and cyanobacteria abundance in the cyanobacteria dominated group maintained high levels with increasing hydrological dynamics. Our results demonstrated that environmental factors played inconsistently significant roles in different phytoplankton groups, and reducing nutrients could decrease adverse effects of warming and water project constructions. Our models can also be applied to forecast phytoplankton shifting and cyanobacteria abundance in the management of regulated shallow lakes.
Collapse
Affiliation(s)
- Ke Rao
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, 430072, China; Hubei Key Laboratory of Water System Science for Sponge City Construction, Wuhan University, Wuhan, 430072, China; Hydrology and Water Resources Survey Bureau of Wuhan City, Wuhan, 430074, China
| | - Xiang Zhang
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, 430072, China; Hubei Key Laboratory of Water System Science for Sponge City Construction, Wuhan University, Wuhan, 430072, China.
| | - Mo Wang
- Hydrology and Water Resources Survey Bureau of Wuhan City, Wuhan, 430074, China
| | - Jianfeng Liu
- Changjiang River Scientific Research Institute, Changjiang Water Resources Commission, Wuhan, 430010, China
| | - Wenqi Guo
- Hydrology and Water Resources Survey Bureau of Wuhan City, Wuhan, 430074, China
| | - Guangwei Huang
- Graduate School of Global Environment Studies, Sophia University, Tokyo, 102-8554, Japan
| | - Jing Xu
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, 430072, China; Hubei Key Laboratory of Water System Science for Sponge City Construction, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
12
|
Govender R, Amoah ID, Adegoke AA, Singh G, Kumari S, Swalaha FM, Bux F, Stenström TA. Identification, antibiotic resistance, and virulence profiling of Aeromonas and Pseudomonas species from wastewater and surface water. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:294. [PMID: 33893564 DOI: 10.1007/s10661-021-09046-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 04/04/2021] [Indexed: 06/12/2023]
Abstract
Aquatic environments are hotspots for the spread of antibiotic-resistant bacteria and genes due to pollution caused mainly by anthropogenic activities. The aim of this study was to evaluate the impact of wastewater effluents, informal settlements, hospital, and veterinary clinic discharges on the occurrence, antibiotic resistance profile and virulence signatures of Aeromonas spp. and Pseudomonas spp. isolated from surface water and wastewater. High counts of Aeromonas spp. (2.5 (± 0.8) - 3.3 (± 0.4) log10 CFU mL-1) and Pseudomonas spp. (0.6 (± 1.0) - 1.8 (± 1.0) log10 CFU mL-1) were obtained. Polymerase chain reaction (PCR) and MALDI-TOF characterization identified four species of Aeromonas and five of Pseudomonas. The isolates displayed resistance to 3 or more antibiotics (71% of Aeromonas and 94% of Pseudomonas). Aeromonas spp. showed significant association with the antibiotic meropenem (χ2 = 3.993, P < 0.05). The virulence gene aer in Aeromonas was found to be positively associated with the antibiotic resistance gene blaOXA (χ2 = 6.657, P < 0.05) and the antibiotic ceftazidime (χ2 = 7.537, P < 0.05). Aeromonas recovered from both wastewater and surface water displayed high resistance to ampicillin and had higher multiple antibiotic resistance (MAR) indices close to the hospital. Pseudomonas isolates on the other hand exhibited low resistance to carbapenems but very high resistance to the third-generation cephalosporins and cefixime. The results showed that some of the Pseudomonas spp. and Aeromonas spp. isolates were extended-spectrum β-lactamase producing bacteria. In conclusion, the strong association between virulence genes and antibiotic resistance in the isolates shows the potential health risk to communities through direct and indirect exposure to the water.
Collapse
Affiliation(s)
- Reshme Govender
- Institute for Water and Wastewater Technology, Durban University of Technology, Kwa-Zulu Natal 4001, Durban, South Africa
| | - Isaac Dennis Amoah
- Institute for Water and Wastewater Technology, Durban University of Technology, Kwa-Zulu Natal 4001, Durban, South Africa
| | - Anthony Ayodeji Adegoke
- Institute for Water and Wastewater Technology, Durban University of Technology, Kwa-Zulu Natal 4001, Durban, South Africa
| | - Gulshan Singh
- Institute for Water and Wastewater Technology, Durban University of Technology, Kwa-Zulu Natal 4001, Durban, South Africa
| | - Sheena Kumari
- Institute for Water and Wastewater Technology, Durban University of Technology, Kwa-Zulu Natal 4001, Durban, South Africa.
| | - Feroz Mahomed Swalaha
- Institute for Water and Wastewater Technology, Durban University of Technology, Kwa-Zulu Natal 4001, Durban, South Africa
| | - Faizal Bux
- Institute for Water and Wastewater Technology, Durban University of Technology, Kwa-Zulu Natal 4001, Durban, South Africa
| | - Thor Axel Stenström
- Institute for Water and Wastewater Technology, Durban University of Technology, Kwa-Zulu Natal 4001, Durban, South Africa
| |
Collapse
|
13
|
Brumfield KD, Cotruvo JA, Shanks OC, Sivaganesan M, Hey J, Hasan NA, Huq A, Colwell RR, Leddy MB. Metagenomic Sequencing and Quantitative Real-Time PCR for Fecal Pollution Assessment in an Urban Watershed. FRONTIERS IN WATER 2021; 3:626849. [PMID: 34263162 PMCID: PMC8274573 DOI: 10.3389/frwa.2021.626849] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Microbial contamination of recreation waters is a major concern globally, with pollutants originating from many sources, including human and other animal wastes often introduced during storm events. Fecal contamination is traditionally monitored by employing culture methods targeting fecal indicator bacteria (FIB), namely E. coli and enterococci, which provides only limited information of a few microbial taxa and no information on their sources. Host-associated qPCR and metagenomic DNA sequencing are complementary methods for FIB monitoring that can provide enhanced understanding of microbial communities and sources of fecal pollution. Whole metagenome sequencing (WMS), quantitative real-time PCR (qPCR), and culture-based FIB tests were performed in an urban watershed before and after a rainfall event to determine the feasibility and application of employing a multi-assay approach for examining microbial content of ambient source waters. Cultivated E. coli and enterococci enumeration confirmed presence of fecal contamination in all samples exceeding local single sample recreational water quality thresholds (E. coli, 410 MPN/100 mL; enterococci, 107 MPN/100 mL) following a rainfall. Test results obtained with qPCR showed concentrations of E. coli, enterococci, and human-associated genetic markers increased after rainfall by 1.52-, 1.26-, and 1.11-fold log10 copies per 100 mL, respectively. Taxonomic analysis of the surface water microbiome and detection of antibiotic resistance genes, general FIB, and human-associated microorganisms were also employed. Results showed that fecal contamination from multiple sources (human, avian, dog, and ruminant), as well as FIB, enteric microorganisms, and antibiotic resistance genes increased demonstrably after a storm event. In summary, the addition of qPCR and WMS to traditional surrogate techniques may provide enhanced characterization and improved understanding of microbial pollution sources in ambient waters.
Collapse
Affiliation(s)
- Kyle D. Brumfield
- Maryland Pathogen Research Institute, University of Maryland, College Park, MD, United States
- University of Maryland Institute for Advanced Computer Studies, University of Maryland, College Park, MD, United States
| | | | - Orin C. Shanks
- U.S. Environmental Protection Agency, Office of Research and Development, Cincin nati, OH, United States
| | - Mano Sivaganesan
- U.S. Environmental Protection Agency, Office of Research and Development, Cincin nati, OH, United States
| | - Jessica Hey
- U.S. Environmental Protection Agency, Office of Research and Development, Cincin nati, OH, United States
| | - Nur A. Hasan
- University of Maryland Institute for Advanced Computer Studies, University of Maryland, College Park, MD, United States
| | - Anwar Huq
- Maryland Pathogen Research Institute, University of Maryland, College Park, MD, United States
| | - Rita R. Colwell
- Maryland Pathogen Research Institute, University of Maryland, College Park, MD, United States
- University of Maryland Institute for Advanced Computer Studies, University of Maryland, College Park, MD, United States
- CosmosID Inc., Rockville, MD, United States
- Correspondence: Rita R. Colwell , Menu B. Leddy
| | - Menu B. Leddy
- Essential Environmental and Engineering Systems, Huntington Beach, CA, United States
- Correspondence: Rita R. Colwell , Menu B. Leddy
| |
Collapse
|
14
|
Urban L, Holzer A, Baronas JJ, Hall MB, Braeuninger-Weimer P, Scherm MJ, Kunz DJ, Perera SN, Martin-Herranz DE, Tipper ET, Salter SJ, Stammnitz MR. Freshwater monitoring by nanopore sequencing. eLife 2021; 10:e61504. [PMID: 33461660 PMCID: PMC7815314 DOI: 10.7554/elife.61504] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 12/01/2020] [Indexed: 12/15/2022] Open
Abstract
While traditional microbiological freshwater tests focus on the detection of specific bacterial indicator species, including pathogens, direct tracing of all aquatic DNA through metagenomics poses a profound alternative. Yet, in situ metagenomic water surveys face substantial challenges in cost and logistics. Here, we present a simple, fast, cost-effective and remotely accessible freshwater diagnostics workflow centred around the portable nanopore sequencing technology. Using defined compositions and spatiotemporal microbiota from surface water of an example river in Cambridge (UK), we provide optimised experimental and bioinformatics guidelines, including a benchmark with twelve taxonomic classification tools for nanopore sequences. We find that nanopore metagenomics can depict the hydrological core microbiome and fine temporal gradients in line with complementary physicochemical measurements. In a public health context, these data feature relevant sewage signals and pathogen maps at species level resolution. We anticipate that this framework will gather momentum for new environmental monitoring initiatives using portable devices.
Collapse
Affiliation(s)
- Lara Urban
- European Bioinformatics Institute, Wellcome Genome CampusHinxtonUnited Kingdom
| | - Andre Holzer
- Department of Plant Sciences, University of CambridgeCambridgeUnited Kingdom
| | - J Jotautas Baronas
- Department of Earth Sciences, University of CambridgeCambridgeUnited Kingdom
| | - Michael B Hall
- European Bioinformatics Institute, Wellcome Genome CampusHinxtonUnited Kingdom
| | | | - Michael J Scherm
- Department of Biochemistry, University of CambridgeCambridgeUnited Kingdom
| | - Daniel J Kunz
- Wellcome Sanger Institute, Wellcome Trust Genome CampusHinxtonUnited Kingdom
- Department of Physics, University of CambridgeCambridgeUnited Kingdom
| | - Surangi N Perera
- Department of Physiology, Development & Neuroscience, University of CambridgeCambridgeUnited Kingdom
| | | | - Edward T Tipper
- Department of Earth Sciences, University of CambridgeCambridgeUnited Kingdom
| | - Susannah J Salter
- Department of Veterinary Medicine, University of CambridgeCambridgeUnited Kingdom
| | | |
Collapse
|
15
|
Jones EF, Griffin N, Kelso JE, Carling GT, Baker MA, Aanderud ZT. Stream Microbial Community Structured by Trace Elements, Headwater Dispersal, and Large Reservoirs in Sub-Alpine and Urban Ecosystems. Front Microbiol 2020; 11:491425. [PMID: 33324353 PMCID: PMC7726219 DOI: 10.3389/fmicb.2020.491425] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 11/04/2020] [Indexed: 01/09/2023] Open
Abstract
Stream bacterioplankton communities, a crucial component of aquatic ecosystems and surface water quality, are shaped by environmental selection (i.e., changes in taxa abundance associated with more or less favorable abiotic conditions) and passive dispersal (i.e., organisms' abundance and distribution is a function of the movement of the water). These processes are a function of hydrologic conditions such as residence time and water chemistry, which are mediated by human infrastructure. To quantify the role of environmental conditions, dispersal, and human infrastructure (dams) on stream bacterioplankton, we measured bacterioplankton community composition in rivers from sub-alpine to urban environments in three watersheds (Utah, United States) across three seasons. Of the 53 environmental parameters measured (including physicochemical parameters, solute concentrations, and catchment characteristics), trace element concentrations explained the most variability in bacterioplankton community composition using Redundancy Analysis ordination. Trace elements may correlate with bacterioplankton due to the commonality in source of water and microorganisms, and/or environmental selection creating more or less favorable conditions for bacteria. Bacterioplankton community diversity decreased downstream along parts of the stream continuum but was disrupted where large reservoirs increased water residence time by orders of magnitude, potentially indicating a shift in the relative importance of environmental selection and dispersal at these sites. Reservoirs also had substantial effects on community composition, dissimilarity (Bray-Curtis distance) and species interactions as indicated by co-occurrence networks. Communities downstream of reservoirs were enriched with anaerobic Sporichthyaceae, methanotrophic Methylococcaceae, and iron-transforming Acidimicrobiales, suggesting alternative metabolic pathways became active in the hypolimnion of large reservoirs. Our results identify that human activity affects river microbial communities, with potential impacts on water quality through modified biogeochemical cycling.
Collapse
Affiliation(s)
- Erin Fleming Jones
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT, United States
| | - Natasha Griffin
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT, United States
| | - Julia E. Kelso
- Department of Biology and the Ecology Center, Utah State University, Logan, UT, United States
| | - Gregory T. Carling
- Department of Geological Sciences, Brigham Young University, Provo, UT, United States
| | - Michelle A. Baker
- Department of Biology and the Ecology Center, Utah State University, Logan, UT, United States
| | - Zachary T. Aanderud
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT, United States
| |
Collapse
|
16
|
Sediment Microbial Diversity in Urban Piedmont North Carolina Watersheds Receiving Wastewater Input. WATER 2020. [DOI: 10.3390/w12061557] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Urban streams are heavily influenced by human activity. One way that this occurs is through the reintroduction of treated effluent from wastewater treatment plants. We measured the microbial community composition of water, sediment, and soil at sites upstream and downstream from two Charlotte treatment facilities. We performed 16S rRNA gene sequencing to assay the microbial community composition at each site at four time points between the late winter and mid-summer of 2016. Despite the location of these streams in an urban area with many influences and disruptions, the streams maintain distinct water, sediment, and soil microbial profiles. While there is an overlap of microbial species in upstream and downstream sites, there are several taxa that differentiate these sites. Some taxa characteristics of human-associated microbial communities appear elevated in the downstream sediment communities. In the wastewater treatment plant and to a lesser extent in the downstream community, there are high abundance amplicon sequence variants (ASVs) which are less than 97% similar to any sequence in reference databases, suggesting that these environments contain an unexplored biological novelty. Taken together, these results suggest a need to more fully characterize the microbial communities associated with urban streams, and to integrate information about microbial community composition with mechanistic models.
Collapse
|
17
|
Prevalence of Potentially Pathogenic Antibiotic-Resistant Aeromonas spp. in Treated Urban Wastewater Effluents versus Recipient Riverine Populations: a 3-Year Comparative Study. Appl Environ Microbiol 2020; 86:AEM.02053-19. [PMID: 31757827 DOI: 10.1128/aem.02053-19] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/05/2019] [Indexed: 12/11/2022] Open
Abstract
Antibiotic resistance continues to be an emerging threat both in clinical and environmental settings. Among the many causes, the impact of postchlorinated human wastewater on antibiotic resistance has not been well studied. Our study compared antibiotic susceptibility among Aeromonas spp. in postchlorinated effluents to that of the recipient riverine populations for three consecutive years against 12 antibiotics. Aeromonas veronii and Aeromonas hydrophila predominated among both aquatic environments, although greater species diversity was evident in treated wastewater. Overall, treated wastewater contained a higher prevalence of nalidixic acid-, trimethoprim-sulfamethoxazole (SXT)-, and tetracycline-resistant isolates, as well as multidrug-resistant (MDR) isolates compared to upstream surface water. After selecting for tetracycline-resistant strains, 34.8% of wastewater isolates compared to 8.3% of surface water isolates were multidrug resistant, with nalidixic acid, streptomycin, and SXT being the most common. Among tetracycline-resistant isolates, efflux pump genes tetE and tetA were the most prevalent, though stronger resistance correlated with tetA. Over 50% of river and treated wastewater isolates exhibited cytotoxicity that was significantly correlated with serine protease activity, suggesting many MDR strains from effluent have the potential to be pathogenic. These findings highlight that conventionally treated wastewater remains a reservoir of resistant, potentially pathogenic bacterial populations being introduced into aquatic systems that could pose a threat to both the environment and public health.IMPORTANCE Aeromonads are Gram-negative, asporogenous rod-shaped bacteria that are autochthonous in fresh and brackish waters. Their pathogenic nature in poikilotherms and mammals, including humans, pose serious environmental and public health concerns especially with rising levels of antibiotic resistance. Wastewater treatment facilities serve as major reservoirs for the dissemination of antibiotic resistance genes (ARGs) and resistant bacterial populations and are, thus, a potential major contributor to resistant populations in aquatic ecosystems. However, few longitudinal studies exist analyzing resistance among human wastewater effluents and their recipient aquatic environments. In this study, considering their ubiquitous nature in aquatic environments, we used Aeromonas spp. as bacterial indicators of environmental antimicrobial resistance, comparing it to that in postchlorinated wastewater effluents over 3 years. Furthermore, we assessed the potential of these resistant populations to be pathogenic, thus elaborating on their potential public health threat.
Collapse
|
18
|
Hanashiro FTT, Mukherjee S, Souffreau C, Engelen J, Brans KI, Busschaert P, De Meester L. Freshwater Bacterioplankton Metacommunity Structure Along Urbanization Gradients in Belgium. Front Microbiol 2019; 10:743. [PMID: 31031725 PMCID: PMC6473040 DOI: 10.3389/fmicb.2019.00743] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 03/25/2019] [Indexed: 12/29/2022] Open
Abstract
Urbanization is transforming and fragmenting natural environments worldwide, driving changes in biological communities through alterations in local environmental conditions as well as by changing the capacity of species to reach specific habitats. While the majority of earlier studies have been performed on higher plants and animals, it is crucial to increase our insight on microbial responses to urbanization across different spatial scales. Here, using a metacommunity approach, we evaluated the effects of urbanization on bacterioplankton communities in 50 shallow ponds in Belgium (Flanders region), one of the most urbanized areas in Northwest Europe. We estimated the relative importance of local environmental factors (35 abiotic and biotic variables), regional spatial factors and urbanization (built-up area) quantified at two spatial scales (200 m × 200 m and 3 km × 3 km). We show that urbanization at local or regional scales did not lead to strong changes in community composition and taxon diversity of bacterioplankton. Urbanization at regional scale (3 km × 3 km) explained only 2% of community composition variation while at local scale (200 m × 200 m), no effect was detected. Local environmental factors explained 13% (OTUs with relative abundance ≥ 0.1%) to 24% (12 dominant OTUs -≥ 1%) of community variation. Six local environmental variables significantly explained variation in bacterioplankton community composition: pH, alkalinity, conductivity, total phosphorus, abundance of Daphnia and concentration of copper (Cu), of which pH was partly mediated by urbanization. Our results indicate that environmental rather than spatial factors accounted for the variation in bacterioplankton community structure, suggesting that species sorting is the main process explaining bacterioplankton community assembly. Apparently, urbanization does not have a direct and strong effect on bacterioplankton metacommunity structure, probably due to the capacity of these organisms to adapt toward and colonize habitats with different environmental conditions and due to their fast adaptation and metabolic versatility. Thus, bacterioplankton communities inhabiting shallow ponds may be less affected by environmental conditions resulting from urbanization as compared to the impacts previously described for other taxa.
Collapse
Affiliation(s)
- Fabio Toshiro T Hanashiro
- Laboratory of Aquatic Ecology, Evolution and Conservation, Department of Biology, KU Leuven, Leuven, Belgium
| | - Shinjini Mukherjee
- Laboratory of Aquatic Ecology, Evolution and Conservation, Department of Biology, KU Leuven, Leuven, Belgium
| | - Caroline Souffreau
- Laboratory of Aquatic Ecology, Evolution and Conservation, Department of Biology, KU Leuven, Leuven, Belgium
| | - Jessie Engelen
- Laboratory of Aquatic Ecology, Evolution and Conservation, Department of Biology, KU Leuven, Leuven, Belgium
| | - Kristien I Brans
- Laboratory of Aquatic Ecology, Evolution and Conservation, Department of Biology, KU Leuven, Leuven, Belgium
| | - Pieter Busschaert
- Department of Gynaecology and Obstetrics, UZ Leuven, Leuven, Belgium.,Division of Gynaecological Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Luc De Meester
- Laboratory of Aquatic Ecology, Evolution and Conservation, Department of Biology, KU Leuven, Leuven, Belgium
| |
Collapse
|
19
|
Albert RA, McGuine M, Pavlons SC, Roecker J, Bruess J, Mossman S, Sun S, King M, Hong S, Farrance CE, Danner J, Joung Y, Shapiro N, Whitman WB, Busse HJ. Bosea psychrotolerans sp. nov., a psychrotrophic alphaproteobacterium isolated from Lake Michigan water. Int J Syst Evol Microbiol 2019; 69:1376-1383. [PMID: 30882299 DOI: 10.1099/ijsem.0.003319] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Three strains of a Gram-stain negative bacterium were isolated from Lake Michigan water. 16S rRNA gene sequence analysis revealed that strain 1131 had sequence similarities to Bosea vaviloviae LMG 28367T, Bosea lathyri LMG 26379T, Bosea lupini LMG 26383T, Bosea eneae CCUG 43111T, Bosea vestrisii CCUG 43114T and Boseamassiliensis CCUG 43117T of 99.8, 99.1, 98.4, 98.4, 98.4 and 98.2 %, respectively. The average nucleotide identity value between strain 1131T and Bosea vaviloviae Vaf-18T was 93.4 % and the DNA relatedness was 38 %. The primary cellular fatty acids of strain 1131T were C16 : 1ω7c and C18 : 1ω7c. The primary polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and phosphatidylcholine. The major compound in the quinone system was ubiquinone Q-10 and in the polyamine pattern sym-homospermidine was predominant. Additional phenotypic characteristics included growth at 5-35 °C, pH values of pH 5.5-8.0, a salt tolerance range of 0.0-1.2 % (w/v), and production of an unknown water soluble brown pigment. After phenotypic, chemotaxonomic and genomic analyses, this isolate was identified as a novel species for which the name Bosea psychrotolerans is proposed. The type strain is 1131T (NRRL B-65405=LMG 30034).
Collapse
Affiliation(s)
- Richard A Albert
- 1Kleen Test Products, 1611 Sunset Road, Port Washington, WI 53074, USA.,2Water Quality Center, Marquette University, Civil and Environmental Engineering, P.O. Box 1881 Milwaukee, WI, USA
| | - Molly McGuine
- 1Kleen Test Products, 1611 Sunset Road, Port Washington, WI 53074, USA
| | - Shawn C Pavlons
- 1Kleen Test Products, 1611 Sunset Road, Port Washington, WI 53074, USA
| | - Jon Roecker
- 1Kleen Test Products, 1611 Sunset Road, Port Washington, WI 53074, USA
| | - Jennifer Bruess
- 1Kleen Test Products, 1611 Sunset Road, Port Washington, WI 53074, USA
| | - Shane Mossman
- 1Kleen Test Products, 1611 Sunset Road, Port Washington, WI 53074, USA
| | - Sona Sun
- 3Microbial Discovery Group, Franklin, WI, USA
| | - Mike King
- 3Microbial Discovery Group, Franklin, WI, USA
| | - Sunhee Hong
- 4Charles River Laboratories, Microbial Solutions, Newark, DE, USA
| | | | - Joseph Danner
- 4Charles River Laboratories, Microbial Solutions, Newark, DE, USA
| | - Yochan Joung
- 5Department of Biological Sciences, College of Natural Sciences, Inha University, Incheon 22212, Republic of Korea
| | - Nicole Shapiro
- 6DOE Joint Genomics Institute, Walnut Creek, CA 94598, USA
| | - William B Whitman
- 7Microbiology Department, Univeristy of Georgia, Athens, GA 30602, USA
| | - Hans-Jürgen Busse
- 8Institute of Microbiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, A-1210 Vienna, Austria
| |
Collapse
|
20
|
Highly Specific Sewage-Derived Bacteroides Quantitative PCR Assays Target Sewage-Polluted Waters. Appl Environ Microbiol 2019; 85:AEM.02696-18. [PMID: 30635376 DOI: 10.1128/aem.02696-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 01/02/2019] [Indexed: 12/17/2022] Open
Abstract
The identification of sewage contamination in water has primarily relied on the detection of human-associated Bacteroides using markers within the V2 region of the 16S rRNA gene. Despite the establishment of multiple assays that target the HF183 cluster (i.e., Bacteroides dorei) and other Bacteroides organisms (e.g., Bacteroides thetaiota omicron), the potential for more human-associated markers in this genus has not been explored in depth. We examined the Bacteroides population structure in sewage and animal hosts across the V4V5 and V6 hypervariable regions. Using near-full-length cloned sequences, we identified the sequences in the V4V5 and V6 hypervariable regions that are linked to the HF183 marker in the V2 region and found these sequences were present in multiple animals. In addition, the V4V5 and V6 regions contained human fecal marker sequences for organisms that were independent of the HF183 cluster. The most abundant Bacteroides in untreated sewage was not human associated but pipe derived. Two TaqMan quantitative PCR (qPCR) assays targeting the V4V5 and V6 regions of this organism were developed. Validation studies using fecal samples from seven animal hosts (n = 76) and uncontaminated water samples (n = 30) demonstrated the high specificity of the assays for sewage. Freshwater Bacteroides were also identified in uncontaminated water samples, demonstrating that measures of total Bacteroides do not reflect fecal pollution. A comparison of two previously described human Bacteroides assays (HB and HF183/BacR287) in municipal wastewater influent and sewage-contaminated urban water samples revealed identical results, illustrating the assays target the same organism. The detection of sewage-derived Bacteroides provided an independent measure of sewage-impacted waters.IMPORTANCE Bacteroides are major members of the gut microbiota, and host-specific organisms within this genus have been used extensively to gain information on pollution sources. This study provides a broad view of the population structure of Bacteroides within sewage to contextualize the well-studied HF183 marker for a human-associated Bacteroides The study also delineates host-specific sequence patterns across multiple hypervariable regions of the 16S rRNA gene to improve our ability to use sequence data to assess water quality. Here, we demonstrate that regions downstream of the HF183 marker are nonspecific but other potential human-associated markers are present. Furthermore, we show the most abundant Bacteroides in sewage is free living, rather than host associated, and specifically found in sewage. Quantitative PCR assays that target organisms specific to sewer pipes offer measures that are independent of the human microbiome for identifying sewage pollution in water.
Collapse
|
21
|
Batrich M, Maskeri L, Schubert R, Ho B, Kohout M, Abdeljaber M, Abuhasna A, Kholoki M, Psihogios P, Razzaq T, Sawhney S, Siddiqui S, Xoubi E, Cooper A, Hatzopoulos T, Putonti C. Pseudomonas Diversity Within Urban Freshwaters. Front Microbiol 2019; 10:195. [PMID: 30828321 PMCID: PMC6384249 DOI: 10.3389/fmicb.2019.00195] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 01/23/2019] [Indexed: 11/23/2022] Open
Abstract
Freshwater lakes are home to bacterial communities with 1000s of interdependent species. Numerous high-throughput 16S rRNA gene sequence surveys have provided insight into the microbial taxa found within these waters. Prior surveys of Lake Michigan waters have identified bacterial species common to freshwater lakes as well as species likely introduced from the urban environment. We cultured bacterial isolates from samples taken from the Chicago nearshore waters of Lake Michigan in an effort to look more closely at the genetic diversity of species found there within. The most abundant genus detected was Pseudomonas, whose presence in freshwaters is often attributed to storm water or runoff. Whole genome sequencing was conducted for 15 Lake Michigan Pseudomonas strains, representative of eight species and three isolates that could not be resolved with named species. These genomes were examined specifically for genes encoding functionality which may be advantageous in their urban environment. Antibiotic resistance, amidst other known virulence factors and defense mechanisms, were identified in the genome annotations and verified in the lab. We also tested the Lake Michigan Pseudomonas strains for siderophore production and resistance to the heavy metals mercury and copper. As the study presented here shows, a variety of pseudomonads have inhabited the urban coastal waters of Lake Michigan.
Collapse
Affiliation(s)
- Mary Batrich
- Niehoff School of Nursing, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
| | - Laura Maskeri
- Bioinformatics Program, Loyola University Chicago, Chicago, IL, United States
| | - Ryan Schubert
- Bioinformatics Program, Loyola University Chicago, Chicago, IL, United States.,Department of Biology, Loyola University Chicago, Chicago, IL, United States
| | - Brian Ho
- Bioinformatics Program, Loyola University Chicago, Chicago, IL, United States.,Department of Biology, Loyola University Chicago, Chicago, IL, United States
| | - Melanie Kohout
- Department of Biology, Loyola University Chicago, Chicago, IL, United States
| | - Malik Abdeljaber
- Department of Biology, Loyola University Chicago, Chicago, IL, United States
| | - Ahmed Abuhasna
- Department of Biology, Loyola University Chicago, Chicago, IL, United States
| | - Mutah Kholoki
- Department of Biology, Loyola University Chicago, Chicago, IL, United States
| | - Penelope Psihogios
- Department of Biology, Loyola University Chicago, Chicago, IL, United States
| | - Tahir Razzaq
- Department of Biology, Loyola University Chicago, Chicago, IL, United States
| | - Samrita Sawhney
- Department of Biology, Loyola University Chicago, Chicago, IL, United States
| | - Salah Siddiqui
- Department of Biology, Loyola University Chicago, Chicago, IL, United States
| | - Eyad Xoubi
- Department of Biology, Loyola University Chicago, Chicago, IL, United States
| | - Alexandria Cooper
- Department of Biology, Loyola University Chicago, Chicago, IL, United States
| | - Thomas Hatzopoulos
- Department of Computer Science, Loyola University Chicago, Chicago, IL, United States
| | - Catherine Putonti
- Bioinformatics Program, Loyola University Chicago, Chicago, IL, United States.,Department of Biology, Loyola University Chicago, Chicago, IL, United States.,Department of Computer Science, Loyola University Chicago, Chicago, IL, United States.,Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
| |
Collapse
|
22
|
Microbial Community Composition and Antibiotic Resistance Genes within a North Carolina Urban Water System. WATER 2018. [DOI: 10.3390/w10111539] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Wastewater treatment plants (WWTPs) are thought to be potential incubators of antibiotic resistance. Persistence of commonly used antibiotics in wastewater may increase the potential for selection of resistance genes transferred between bacterial populations, some of which might pose a threat to human health. In this study, we measured the concentrations of ten antibiotics in wastewater plant influents and effluents, and in surface waters up- and downstream from two Charlotte area treatment facilities. We performed Illumina shotgun sequencing to assay the microbial community and resistome compositions at each site across four time points from late winter to mid-summer of 2016. Antibiotics are present throughout wastewater treatment, and elevated concentrations of multiple antibiotics are maintained in moving stream water downstream of effluent release. While some human gut and activated sludge associated taxa are detectable downstream, these seem to attenuate with distance while the core microbial community of the stream remains fairly consistent. We observe the slight suppression of functional pathways in the downstream microbial communities, including amino acid, carbohydrate, and nucleic acid metabolism, as well as nucleotide and amino acid scavenging. Nearly all antibiotic resistance genes (ARGs) and potentially pathogenic taxa are removed in the treatment process, though a few ARG markers are elevated downstream of effluent release. Taken together, these results represent baseline measurements that future studies can utilize to help to determine which factors control the movement of antibiotics and resistance genes through aquatic urban ecosystems before, during, and after wastewater treatment.
Collapse
|
23
|
Roguet A, Eren AM, Newton RJ, McLellan SL. Fecal source identification using random forest. MICROBIOME 2018; 6:185. [PMID: 30336775 PMCID: PMC6194674 DOI: 10.1186/s40168-018-0568-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 10/01/2018] [Indexed: 05/06/2023]
Abstract
BACKGROUND Clostridiales and Bacteroidales are uniquely adapted to the gut environment and have co-evolved with their hosts resulting in convergent microbiome patterns within mammalian species. As a result, members of Clostridiales and Bacteroidales are particularly suitable for identifying sources of fecal contamination in environmental samples. However, a comprehensive evaluation of their predictive power and development of computational approaches is lacking. Given the global public health concern for waterborne disease, accurate identification of fecal pollution sources is essential for effective risk assessment and management. Here, we use random forest algorithm and 16S rRNA gene amplicon sequences assigned to Clostridiales and Bacteroidales to identify common fecal pollution sources. We benchmarked the accuracy, consistency, and sensitivity of our classification approach using fecal, environmental, and artificial in silico generated samples. RESULTS Clostridiales and Bacteroidales classifiers were composed mainly of sequences that displayed differential distributions (host-preferred) among sewage, cow, deer, pig, cat, and dog sources. Each classifier correctly identified human and individual animal sources in approximately 90% of the fecal and environmental samples tested. Misclassifications resulted mostly from false-positive identification of cat and dog fecal signatures in host animals not used to build the classifiers, suggesting characterization of additional animals would improve accuracy. Random forest predictions were highly reproducible, reflecting the consistency of the bacterial signatures within each of the animal and sewage sources. Using in silico generated samples, we could detect fecal bacterial signatures when the source dataset accounted for as little as ~ 0.5% of the assemblage, with ~ 0.04% of the sequences matching the classifiers. Finally, we developed a proxy to estimate proportions among sources, which allowed us to determine which sources contribute the most to observed fecal pollution. CONCLUSION Random forest classification with 16S rRNA gene amplicons offers a rapid, sensitive, and accurate solution for identifying host microbial signatures to detect human and animal fecal contamination in environmental samples.
Collapse
Affiliation(s)
- Adélaïde Roguet
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - A Murat Eren
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Ryan J Newton
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Sandra L McLellan
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, USA.
| |
Collapse
|
24
|
Dila DK, Corsi SR, Lenaker PL, Baldwin AK, Bootsma MJ, McLellan SL. Patterns of Host-Associated Fecal Indicators Driven by Hydrology, Precipitation, and Land Use Attributes in Great Lakes Watersheds. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:11500-11509. [PMID: 30192524 PMCID: PMC6437017 DOI: 10.1021/acs.est.8b01945] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Fecal contamination from sewage and agricultural runoff is a pervasive problem in Great Lakes watersheds. Most work examining fecal pollution loads relies on discrete samples of fecal indicators and modeling land use. In this study, we made empirical measurements of human and ruminant-associated fecal indicator bacteria and combined these with hydrological measurements in eight watersheds ranging from predominantly forested to highly urbanized. Flow composited river samples were collected over low-flow ( n = 89) and rainfall or snowmelt runoff events ( n = 130). Approximately 90% of samples had evidence of human fecal pollution, with highest loads from urban watersheds. Ruminant indicators were found in ∼60-100% of runoff-event samples in agricultural watersheds, with concentrations and loads related to cattle density. Rain depth, season, agricultural tile drainage, and human or cattle density explained variability in daily flux of human or ruminant indicators. Mapping host-associated indicator loads to watershed discharge points sheds light on the type, level, and possible health risk from fecal pollution entering the Great Lakes and can inform total maximum daily load implementation and other management practices to target specific fecal pollution sources.
Collapse
Affiliation(s)
- Deborah K. Dila
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53204, USA
| | - Steven R. Corsi
- U.S. Geological Survey, Wisconsin Water Science Center, Middleton, WI 53562, USA
| | - Peter L. Lenaker
- U.S. Geological Survey, Wisconsin Water Science Center, Middleton, WI 53562, USA
| | - Austin K. Baldwin
- U.S. Geological Survey, Idaho Water Science Center, Boise, ID 83702, USA
| | - Melinda J. Bootsma
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53204, USA
| | - Sandra L. McLellan
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53204, USA
- Corresponding Author:
| |
Collapse
|
25
|
Abstract
Urban streams are susceptible to stormwater and sewage inputs that can impact their ecological health and water quality. Microbial communities in streams play important functional roles, and their composition and metabolic potential can help assess ecological state and water quality. Although these environments are highly heterogenous, little is known about the influence of isolated perturbations, such as those resulting from rain events on urban stream microbiota. Here, we examined the microbial community composition and diversity in an urban stream during dry and wet weather conditions with both 16S rRNA gene sequencing across multiple years and shotgun metagenomics to more deeply analyze a single storm flow event. Metagenomics was used to assess population-level dynamics as well as shifts in the microbial community taxonomic profile and functional potential before and after a substantial rainfall. The results demonstrated general trends present in the stream under storm flow versus base flow conditions and also highlighted the influence of increased effluent flow following rain in shifting the stream microbial community from abundant freshwater taxa to those more associated with urban/anthropogenic settings. Shifts in the taxonomic composition were also linked to changes in functional gene content, particularly for transmembrane transport and organic substance biosynthesis. We also observed an increase in relative abundance of genes encoding degradation of organic pollutants and antibiotic resistance after rain. Overall, this study highlighted some differences in the microbial community of an urban stream under storm flow conditions and showed the impact of a storm flow event on the microbiome from an environmental and public health perspective.IMPORTANCE Urban streams in various parts of the world are facing increased anthropogenic pressure on their water quality, and storm flow events represent one such source of complex physical, chemical, and biological perturbations. Microorganisms are important components of these streams from both ecological and public health perspectives. Analysis of the effect of perturbations on the stream microbial community can help improve current knowledge on the impact such chronic disturbances can have on these water resources. This study examines microbial community dynamics during rain-induced storm flow conditions in an urban stream of the Chicago Area Waterway System. Additionally, using shotgun metagenomics we identified significant shifts in the microbial community composition and functional gene content following a high-rainfall event, with potential environment and public health implications. Previous work in this area has focused on specific genes/organisms or has not assessed immediate storm flow impact.
Collapse
|
26
|
Bartelme RP, McLellan SL, Newton RJ. Freshwater Recirculating Aquaculture System Operations Drive Biofilter Bacterial Community Shifts around a Stable Nitrifying Consortium of Ammonia-Oxidizing Archaea and Comammox Nitrospira. Front Microbiol 2017; 8:101. [PMID: 28194147 PMCID: PMC5276851 DOI: 10.3389/fmicb.2017.00101] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 01/13/2017] [Indexed: 01/04/2023] Open
Abstract
Recirculating aquaculture systems (RAS) are unique engineered ecosystems that minimize environmental perturbation by reducing nutrient pollution discharge. RAS typically employ a biofilter to control ammonia levels produced as a byproduct of fish protein catabolism. Nitrosomonas (ammonia-oxidizing), Nitrospira, and Nitrobacter (nitrite-oxidizing) species are thought to be the primary nitrifiers present in RAS biofilters. We explored this assertion by characterizing the biofilter bacterial and archaeal community of a commercial scale freshwater RAS that has been in operation for >15 years. We found the biofilter community harbored a diverse array of bacterial taxa (>1000 genus-level taxon assignments) dominated by Chitinophagaceae (~12%) and Acidobacteria (~9%). The bacterial community exhibited significant composition shifts with changes in biofilter depth and in conjunction with operational changes across a fish rearing cycle. Archaea also were abundant, and were comprised solely of a low diversity assemblage of Thaumarchaeota (>95%), thought to be ammonia-oxidizing archaea (AOA) from the presence of AOA ammonia monooxygenase genes. Nitrosomonas were present at all depths and time points. However, their abundance was >3 orders of magnitude less than AOA and exhibited significant depth-time variability not observed for AOA. Phylogenetic analysis of the nitrite oxidoreductase beta subunit (nxrB) gene indicated two distinct Nitrospira populations were present, while Nitrobacter were not detected. Subsequent identification of Nitrospira ammonia monooxygenase alpha subunit genes in conjunction with the phylogenetic placement and quantification of the nxrB genotypes suggests complete ammonia-oxidizing (comammox) and nitrite-oxidizing Nitrospira populations co-exist with relatively equivalent and stable abundances in this system. It appears RAS biofilters harbor complex microbial communities whose composition can be affected directly by typical system operations while supporting multiple ammonia oxidation lifestyles within the nitrifying consortium.
Collapse
Affiliation(s)
- Ryan P Bartelme
- School of Freshwater Sciences, University of Wisconsin-Milwaukee Milwaukee, WI, USA
| | - Sandra L McLellan
- School of Freshwater Sciences, University of Wisconsin-Milwaukee Milwaukee, WI, USA
| | - Ryan J Newton
- School of Freshwater Sciences, University of Wisconsin-Milwaukee Milwaukee, WI, USA
| |
Collapse
|
27
|
Dubinsky EA, Butkus SR, Andersen GL. Microbial source tracking in impaired watersheds using PhyloChip and machine-learning classification. WATER RESEARCH 2016; 105:56-64. [PMID: 27598696 DOI: 10.1016/j.watres.2016.08.035] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 08/16/2016] [Accepted: 08/19/2016] [Indexed: 06/06/2023]
Abstract
Sources of fecal indicator bacteria are difficult to identify in watersheds that are impacted by a variety of non-point sources. We developed a molecular source tracking test using the PhyloChip microarray that detects and distinguishes fecal bacteria from humans, birds, ruminants, horses, pigs and dogs with a single test. The multiplexed assay targets 9001 different 25-mer fragments of 16S rRNA genes that are common to the bacterial community of each source type. Both random forests and SourceTracker were tested as discrimination tools, with SourceTracker classification producing superior specificity and sensitivity for all source types. Validation with 12 different mammalian sources in mixtures found 100% correct identification of the dominant source and 84-100% specificity. The test was applied to identify sources of fecal indicator bacteria in the Russian River watershed in California. We found widespread contamination by human sources during the wet season proximal to settlements with antiquated septic infrastructure and during the dry season at beaches during intense recreational activity. The test was more sensitive than common fecal indicator tests that failed to identify potential risks at these sites. Conversely, upstream beaches and numerous creeks with less reliance on onsite wastewater treatment contained no fecal signal from humans or other animals; however these waters did contain high counts of fecal indicator bacteria after rain. Microbial community analysis revealed that increased E. coli and enterococci at these locations did not co-occur with common fecal bacteria, but rather co-varied with copiotrophic bacteria that are common in freshwaters with high nutrient and carbon loading, suggesting runoff likely promoted the growth of environmental strains of E. coli and enterococci. These results indicate that machine-learning classification of PhyloChip microarray data can outperform conventional single marker tests that are used to assess health risks, and is an effective tool for distinguishing numerous fecal and environmental sources of pathogen indicators.
Collapse
Affiliation(s)
- Eric A Dubinsky
- Ecology Department, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Steven R Butkus
- North Coast Regional Water Quality Control Board, Santa Rosa, CA 95403, USA
| | - Gary L Andersen
- Ecology Department, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| |
Collapse
|
28
|
Influence of Fishmeal-Free Diets on Microbial Communities in Atlantic Salmon (Salmo salar) Recirculation Aquaculture Systems. Appl Environ Microbiol 2016. [PMID: 27129964 DOI: 10.1128/aem.00902-16/suppl_file/zam999117249so1.pdf] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
UNLABELLED Reliance on fishmeal as a primary protein source is among the chief economic and environmental concerns in aquaculture today. Fishmeal-based feeds often require harvest from wild fish stocks, placing pressure on natural ecosystems and causing price instability. Alternative diet formulations without the use of fishmeal provide a potential solution to this challenge. Although the impact of alternative diets on fish performance, intestinal inflammation, palatability, and gut microbiota has been a topic of recent interest, less is known about how alternative feeds impact the aquaculture environment as a whole. The recent focus on recirculating aquaculture systems (RAS) and the closed-containment approach to raising food fish highlights the need to maintain stable environmental and microbiological conditions within a farm environment. Microbial stability in RAS biofilters is particularly important, given its role in nutrient processing and water quality in these closed systems. If and how the impacts of alternative feeds on microbial communities in fish translate into changes to the biofilters are not known. We tested the influence of a fishmeal-free diet on the microbial communities in RAS water, biofilters, and salmon microbiomes using high-throughput 16S rRNA gene V6 hypervariable region amplicon sequencing. We grew Atlantic salmon (Salmo salar) to market size in six replicate RAS tanks, three with traditional fishmeal diets and three with alternative-protein, fishmeal-free diets. We sampled intestines and gills from market-ready adult fish, water, and biofilter medium in each corresponding RAS unit. Our results provide data on how fish diet influences the RAS environment and corroborate previous findings that diet has a clear influence on the microbiome structure of the salmon intestine, particularly within the order Lactobacillales (lactic acid bacteria). We conclude that the strong stability of taxa likely involved in water quality processing regardless of diet (e.g., Nitrospira) may further alleviate concerns regarding the use of alternative feeds in RAS operations. IMPORTANCE The growth of the aquaculture industry has outpaced terrestrial livestock production and wild-capture fisheries for over 2 decades, currently producing nearly 50% of all seafood consumed globally. As wild-capture fisheries continue to decline, aquaculture's role in food production will grow, and it will produce an estimated 62% of all seafood consumed in 2020. A significant environmental concern of the industry is the reliance on fishmeal as a primary feed ingredient, as its production still requires harvest from wild fisheries. Our study adds to the growing body of literature on the feasibility of alternative, fishmeal-free diets. Specifically, we asked how fishmeal-free diets influence microbial communities in recirculating salmon farms. Unlike previous studies, we extended our investigation beyond the microbiome of the fish itself and asked how alterative diets influence microbial communities in water and critical biofilter habitats. We found no evidence for adverse effects of alternative diets on any microbial habitat within the farm.
Collapse
|
29
|
Uyaguari-Diaz MI, Chan M, Chaban BL, Croxen MA, Finke JF, Hill JE, Peabody MA, Van Rossum T, Suttle CA, Brinkman FSL, Isaac-Renton J, Prystajecky NA, Tang P. A comprehensive method for amplicon-based and metagenomic characterization of viruses, bacteria, and eukaryotes in freshwater samples. MICROBIOME 2016; 4:20. [PMID: 27391119 PMCID: PMC5011856 DOI: 10.1186/s40168-016-0166-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 04/04/2016] [Indexed: 05/16/2023]
Abstract
BACKGROUND Studies of environmental microbiota typically target only specific groups of microorganisms, with most focusing on bacteria through taxonomic classification of 16S rRNA gene sequences. For a more holistic understanding of a microbiome, a strategy to characterize the viral, bacterial, and eukaryotic components is necessary. RESULTS We developed a method for metagenomic and amplicon-based analysis of freshwater samples involving the concentration and size-based separation of eukaryotic, bacterial, and viral fractions. Next-generation sequencing and culture-independent approaches were used to describe and quantify microbial communities in watersheds with different land use in British Columbia. Deep amplicon sequencing was used to investigate the distribution of certain viruses (g23 and RdRp), bacteria (16S rRNA and cpn60), and eukaryotes (18S rRNA and ITS). Metagenomic sequencing was used to further characterize the gene content of the bacterial and viral fractions at both taxonomic and functional levels. CONCLUSION This study provides a systematic approach to separate and characterize eukaryotic-, bacterial-, and viral-sized particles. Methodologies described in this research have been applied in temporal and spatial studies to study the impact of land use on watershed microbiomes in British Columbia.
Collapse
Affiliation(s)
- Miguel I. Uyaguari-Diaz
- British Columbia Public Health Laboratory, British Columbia Centre for Disease Control, Vancouver, BC V5Z 4R4 Canada
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
| | - Michael Chan
- British Columbia Public Health Laboratory, British Columbia Centre for Disease Control, Vancouver, BC V5Z 4R4 Canada
| | - Bonnie L. Chaban
- South Kensington Campus, Imperial College London, Sir Ernst Chain Building, London, SW7 2AZ UK
| | - Matthew A. Croxen
- British Columbia Public Health Laboratory, British Columbia Centre for Disease Control, Vancouver, BC V5Z 4R4 Canada
| | - Jan F. Finke
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
| | - Janet E. Hill
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4 Canada
| | - Michael A. Peabody
- Department of Molecular Biology and Biochemistry, South Science Building, Simon Fraser University, Burnaby, BC V5A 1S6 Canada
| | - Thea Van Rossum
- Department of Molecular Biology and Biochemistry, South Science Building, Simon Fraser University, Burnaby, BC V5A 1S6 Canada
| | - Curtis A. Suttle
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
- Integrated Microbial Biodiversity Program, Canadian Institute for Advanced Research, Toronto, ON M5G 1Z8 Canada
| | - Fiona S. L. Brinkman
- Department of Molecular Biology and Biochemistry, South Science Building, Simon Fraser University, Burnaby, BC V5A 1S6 Canada
| | - Judith Isaac-Renton
- British Columbia Public Health Laboratory, British Columbia Centre for Disease Control, Vancouver, BC V5Z 4R4 Canada
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
| | - Natalie A. Prystajecky
- British Columbia Public Health Laboratory, British Columbia Centre for Disease Control, Vancouver, BC V5Z 4R4 Canada
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
| | - Patrick Tang
- Department of Pathology, Sidra Medical and Research Center, PO Box 26999, Doha, Qatar
| |
Collapse
|
30
|
Influence of Fishmeal-Free Diets on Microbial Communities in Atlantic Salmon (Salmo salar) Recirculation Aquaculture Systems. Appl Environ Microbiol 2016; 82:4470-4481. [PMID: 27129964 PMCID: PMC4984271 DOI: 10.1128/aem.00902-16] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 04/22/2016] [Indexed: 12/31/2022] Open
Abstract
Reliance on fishmeal as a primary protein source is among the chief economic and environmental concerns in aquaculture today. Fishmeal-based feeds often require harvest from wild fish stocks, placing pressure on natural ecosystems and causing price instability. Alternative diet formulations without the use of fishmeal provide a potential solution to this challenge. Although the impact of alternative diets on fish performance, intestinal inflammation, palatability, and gut microbiota has been a topic of recent interest, less is known about how alternative feeds impact the aquaculture environment as a whole. The recent focus on recirculating aquaculture systems (RAS) and the closed-containment approach to raising food fish highlights the need to maintain stable environmental and microbiological conditions within a farm environment. Microbial stability in RAS biofilters is particularly important, given its role in nutrient processing and water quality in these closed systems. If and how the impacts of alternative feeds on microbial communities in fish translate into changes to the biofilters are not known. We tested the influence of a fishmeal-free diet on the microbial communities in RAS water, biofilters, and salmon microbiomes using high-throughput 16S rRNA gene V6 hypervariable region amplicon sequencing. We grew Atlantic salmon (Salmo salar) to market size in six replicate RAS tanks, three with traditional fishmeal diets and three with alternative-protein, fishmeal-free diets. We sampled intestines and gills from market-ready adult fish, water, and biofilter medium in each corresponding RAS unit. Our results provide data on how fish diet influences the RAS environment and corroborate previous findings that diet has a clear influence on the microbiome structure of the salmon intestine, particularly within the order Lactobacillales (lactic acid bacteria). We conclude that the strong stability of taxa likely involved in water quality processing regardless of diet (e.g., Nitrospira) may further alleviate concerns regarding the use of alternative feeds in RAS operations. IMPORTANCE The growth of the aquaculture industry has outpaced terrestrial livestock production and wild-capture fisheries for over 2 decades, currently producing nearly 50% of all seafood consumed globally. As wild-capture fisheries continue to decline, aquaculture's role in food production will grow, and it will produce an estimated 62% of all seafood consumed in 2020. A significant environmental concern of the industry is the reliance on fishmeal as a primary feed ingredient, as its production still requires harvest from wild fisheries. Our study adds to the growing body of literature on the feasibility of alternative, fishmeal-free diets. Specifically, we asked how fishmeal-free diets influence microbial communities in recirculating salmon farms. Unlike previous studies, we extended our investigation beyond the microbiome of the fish itself and asked how alterative diets influence microbial communities in water and critical biofilter habitats. We found no evidence for adverse effects of alternative diets on any microbial habitat within the farm.
Collapse
|
31
|
Van Rossum T, Peabody MA, Uyaguari-Diaz MI, Cronin KI, Chan M, Slobodan JR, Nesbitt MJ, Suttle CA, Hsiao WWL, Tang PKC, Prystajecky NA, Brinkman FSL. Year-Long Metagenomic Study of River Microbiomes Across Land Use and Water Quality. Front Microbiol 2015; 6:1405. [PMID: 26733955 PMCID: PMC4681185 DOI: 10.3389/fmicb.2015.01405] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 11/25/2015] [Indexed: 01/04/2023] Open
Abstract
Select bacteria, such as Escherichia coli or coliforms, have been widely used as sentinels of low water quality; however, there are concerns regarding their predictive accuracy for the protection of human and environmental health. To develop improved monitoring systems, a greater understanding of bacterial community structure, function, and variability across time is required in the context of different pollution types, such as agricultural and urban contamination. Here, we present a year-long survey of free-living bacterial DNA collected from seven sites along rivers in three watersheds with varying land use in Southwestern Canada. This is the first study to examine the bacterial metagenome in flowing freshwater (lotic) environments over such a time span, providing an opportunity to describe bacterial community variability as a function of land use and environmental conditions. Characteristics of the metagenomic data, such as sequence composition and average genome size (AGS), vary with sampling site, environmental conditions, and water chemistry. For example, AGS was correlated with hours of daylight in the agricultural watershed and, across the agriculturally and urban-affected sites, k-mer composition clustering corresponded to nutrient concentrations. In addition to indicating a community shift, this change in AGS has implications in terms of the normalization strategies required, and considerations surrounding such strategies in general are discussed. When comparing abundances of gene functional groups between high- and low-quality water samples collected from an agricultural area, the latter had a higher abundance of nutrient metabolism and bacteriophage groups, possibly reflecting an increase in agricultural runoff. This work presents a valuable dataset representing a year of monthly sampling across watersheds and an analysis targeted at establishing a foundational understanding of how bacterial lotic communities vary across time and land use. The results provide important context for future studies, including further analyses of watershed ecosystem health, and the identification and development of biomarkers for improved water quality monitoring systems.
Collapse
Affiliation(s)
- Thea Van Rossum
- Department of Molecular Biology and Biochemistry, Simon Fraser University Burnaby, BC, Canada
| | - Michael A Peabody
- Department of Molecular Biology and Biochemistry, Simon Fraser University Burnaby, BC, Canada
| | - Miguel I Uyaguari-Diaz
- Department of Pathology and Laboratory Medicine, University of British Columbia Vancouver, BC, Canada
| | - Kirby I Cronin
- Department of Pathology and Laboratory Medicine, University of British Columbia Vancouver, BC, Canada
| | - Michael Chan
- British Columbia Public Health Microbiology and Reference Laboratory, British Columbia Centre for Disease Control Vancouver, BC, Canada
| | | | | | - Curtis A Suttle
- Department of Microbiology and Immunology, University of British ColumbiaVancouver, BC, Canada; Department of Earth, Ocean and Atmospheric Sciences, University of British ColumbiaVancouver, BC, Canada; Department of Botany, University of British ColumbiaVancouver, BC, Canada; Canadian Institute for Advanced ResearchToronto, ON, Canada
| | - William W L Hsiao
- Department of Pathology and Laboratory Medicine, University of British ColumbiaVancouver, BC, Canada; British Columbia Public Health Microbiology and Reference Laboratory, British Columbia Centre for Disease ControlVancouver, BC, Canada
| | - Patrick K C Tang
- Department of Pathology and Laboratory Medicine, University of British ColumbiaVancouver, BC, Canada; British Columbia Public Health Microbiology and Reference Laboratory, British Columbia Centre for Disease ControlVancouver, BC, Canada
| | - Natalie A Prystajecky
- Department of Pathology and Laboratory Medicine, University of British ColumbiaVancouver, BC, Canada; British Columbia Public Health Microbiology and Reference Laboratory, British Columbia Centre for Disease ControlVancouver, BC, Canada
| | - Fiona S L Brinkman
- Department of Molecular Biology and Biochemistry, Simon Fraser University Burnaby, BC, Canada
| |
Collapse
|
32
|
Newton RJ, McLellan SL. A unique assemblage of cosmopolitan freshwater bacteria and higher community diversity differentiate an urbanized estuary from oligotrophic Lake Michigan. Front Microbiol 2015; 6:1028. [PMID: 26483766 PMCID: PMC4586452 DOI: 10.3389/fmicb.2015.01028] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 09/10/2015] [Indexed: 12/31/2022] Open
Abstract
Water quality is impacted significantly by urbanization. The delivery of increased nutrient loads to waterways is a primary characteristic of this land use change. Despite the recognized effects of nutrient loading on aquatic systems, the influence of urbanization on the bacterial community composition of these systems is not understood. We used massively-parallel sequencing of bacterial 16S rRNA genes to examine the bacterial assemblages in transect samples spanning the heavily urbanized estuary of Milwaukee, WI to the relatively un-impacted waters of Lake Michigan. With this approach, we found that genera and lineages common to freshwater lake epilimnia were common and abundant in both the high nutrient, urban-impacted waterways, and the low nutrient Lake Michigan. Although the two environments harbored many taxa in common, we identified a significant change in the community assemblage across the urban-influence gradient, and three distinct community features drove this change. First, we found the urban-influenced waterways harbored significantly greater bacterial richness and diversity than Lake Michigan (i.e., taxa augmentation). Second, we identified a shift in the relative abundance among common freshwater lineages, where acI, acTH1, Algoriphagus and LD12, had decreased representation and Limnohabitans, Polynucleobacter, and Rhodobacter had increased representation in the urban estuary. Third, by oligotyping 18 common freshwater genera/lineages, we found that oligotypes (highly resolved sequence clusters) within many of these genera/lineages had opposite preferences for the two environments. With these data, we suggest many of the defined cosmopolitan freshwater genera/lineages contain both oligotroph and more copiotroph species or populations, promoting the idea that within-genus lifestyle specialization, in addition to shifts in the dominance among core taxa and taxa augmentation, drive bacterial community change in urbanized waters.
Collapse
Affiliation(s)
- Ryan J Newton
- School of Freshwater Sciences, University of Wisconsin-Milwaukee Milwaukee, WI, USA
| | - Sandra L McLellan
- School of Freshwater Sciences, University of Wisconsin-Milwaukee Milwaukee, WI, USA
| |
Collapse
|
33
|
McLellan SL, Fisher JC, Newton RJ. The microbiome of urban waters. Int Microbiol 2015; 18:141-9. [PMID: 27036741 PMCID: PMC8793681 DOI: 10.2436/20.1501.01.244] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 09/10/2015] [Indexed: 11/15/2022]
Abstract
More than 50% of the world's population lives in urban centers. As collection basins for landscape activity, urban waters are an interface between human activity and the natural environment. The microbiome of urban waters could provide insight into the impacts of pollution, the presence of human health risks, or the potential for long-term consequences for these ecosystems and the people who depend upon them. An integral part of the urban water cycle is sewer infrastructure. Thousands of miles of pipes line cities as part of wastewater and stormwater systems. As stormwater and sewage are released into natural waterways, traces of human and animal microbiomes reflect the sources and magnitude of fecal pollution and indicate the presence of pollutants, such as nutrients, pathogens, and chemicals. Non-fecal organisms are also released as part of these systems. Runoff from impervious surfaces delivers microbes from soils, plants and the built environment to stormwater systems. Further, urban sewer infrastructure contains its own unique microbial community seemingly adapted to this relatively new artificial habitat. High microbial densities are conveyed via pipes to waterways, and these organisms can be found as an urban microbial signature imprinted on the natural community of rivers and urban coastal waters. The potential consequences of mass releases of non-indigenous microorganisms into natural waters include creation of reservoirs for emerging human pathogens, altered nutrient flows into aquatic food webs, and increased genetic exchange between two distinct gene pools. This review highlights the recent characterization of the microbiome of urban sewer and stormwater infrastructure and its connection to and potential impact upon freshwater systems.
Collapse
Affiliation(s)
- Sandra L. McLellan
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Jenny C. Fisher
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Ryan J. Newton
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| |
Collapse
|
34
|
Comparison of Sewage and Animal Fecal Microbiomes by Using Oligotyping Reveals Potential Human Fecal Indicators in Multiple Taxonomic Groups. Appl Environ Microbiol 2015; 81:7023-33. [PMID: 26231648 DOI: 10.1128/aem.01524-15] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 07/25/2015] [Indexed: 12/30/2022] Open
Abstract
Most DNA-based microbial source tracking (MST) approaches target host-associated organisms within the order Bacteroidales, but the gut microbiota of humans and other animals contain organisms from an array of other taxonomic groups that might provide indicators of fecal pollution sources. To discern between human and nonhuman fecal sources, we compared the V6 regions of the 16S rRNA genes detected in fecal samples from six animal hosts to those found in sewage (as a proxy for humans). We focused on 10 abundant genera and used oligotyping, which can detect subtle differences between rRNA gene sequences from ecologically distinct organisms. Our analysis showed clear patterns of differential oligotype distributions between sewage and animal samples. Over 100 oligotypes of human origin occurred preferentially in sewage samples, and 99 human oligotypes were sewage specific. Sequences represented by the sewage-specific oligotypes can be used individually for development of PCR-based assays or together with the oligotypes preferentially associated with sewage to implement a signature-based approach. Analysis of sewage from Spain and Brazil showed that the sewage-specific oligotypes identified in U.S. sewage have the potential to be used as global alternative indicators of human fecal pollution. Environmental samples with evidence of prior human fecal contamination had consistent ratios of sewage signature oligotypes that corresponded to the trends observed for sewage. Our methodology represents a promising approach to identifying new bacterial taxa for MST applications and further highlights the potential of the family Lachnospiraceae to provide human-specific markers. In addition to source tracking applications, the patterns of the fine-scale population structure within fecal taxa suggest a fundamental relationship between bacteria and their hosts.
Collapse
|