2
|
Arteaga-Bracho EE, Gulinello M, Winchester ML, Pichamoorthy N, Petronglo JR, Zambrano AD, Inocencio J, De Jesus CD, Louie JO, Gokhan S, Mehler MF, Molero AE. Postnatal and adult consequences of loss of huntingtin during development: Implications for Huntington's disease. Neurobiol Dis 2016; 96:144-155. [PMID: 27623015 DOI: 10.1016/j.nbd.2016.09.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 08/25/2016] [Accepted: 09/06/2016] [Indexed: 12/25/2022] Open
Abstract
The mutation in huntingtin (mHtt) leads to a spectrum of impairments in the developing forebrain of Huntington's disease (HD) mouse models. Whether these developmental alterations are due to loss- or gain-of-function mechanisms and contribute to HD pathogenesis is unknown. We examined the role of selective loss of huntingtin (Htt) function during development on postnatal vulnerability to cell death. We employed mice expressing very low levels of Htt throughout embryonic life to postnatal day 21 (Hdhd•hyp). We demonstrated that Hdhd•hyp mice exhibit: (1) late-life striatal and cortical neuronal degeneration; (2) neurological and skeletal muscle alterations; and (3) white matter tract impairments and axonal degeneration. Hdhd•hyp embryos also exhibited subpallial heterotopias, aberrant striatal maturation and deregulation of gliogenesis. These results indicate that developmental deficits associated with Htt functions render cells present at discrete neural foci increasingly susceptible to cell death, thus implying the potential existence of a loss-of-function developmental component to HD pathogenesis.
Collapse
Affiliation(s)
- Eduardo E Arteaga-Bracho
- Roslyn and Leslie Goldstein Laboratory for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, USA; Institute for Brain Disorders and Neural Regeneration, Albert Einstein College of Medicine, Bronx, NY, USA; Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA; Rose F. Kennedy Center for Research on Intellectual and Developmental Disabilities, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Maria Gulinello
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA; Rose F. Kennedy Center for Research on Intellectual and Developmental Disabilities, Albert Einstein College of Medicine, Bronx, NY, USA; Behavioral Core Facility, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Michael L Winchester
- Roslyn and Leslie Goldstein Laboratory for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, USA; Institute for Brain Disorders and Neural Regeneration, Albert Einstein College of Medicine, Bronx, NY, USA; The Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA; Rose F. Kennedy Center for Research on Intellectual and Developmental Disabilities, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Nandini Pichamoorthy
- Roslyn and Leslie Goldstein Laboratory for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, USA; Institute for Brain Disorders and Neural Regeneration, Albert Einstein College of Medicine, Bronx, NY, USA; The Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA; Rose F. Kennedy Center for Research on Intellectual and Developmental Disabilities, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jenna R Petronglo
- Roslyn and Leslie Goldstein Laboratory for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, USA; Institute for Brain Disorders and Neural Regeneration, Albert Einstein College of Medicine, Bronx, NY, USA; The Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA; Rose F. Kennedy Center for Research on Intellectual and Developmental Disabilities, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Alicia D Zambrano
- Roslyn and Leslie Goldstein Laboratory for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, USA; Institute for Brain Disorders and Neural Regeneration, Albert Einstein College of Medicine, Bronx, NY, USA; The Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Julio Inocencio
- The Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Chirstopher D De Jesus
- Roslyn and Leslie Goldstein Laboratory for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, USA; Institute for Brain Disorders and Neural Regeneration, Albert Einstein College of Medicine, Bronx, NY, USA; Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA; Rose F. Kennedy Center for Research on Intellectual and Developmental Disabilities, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Joseph O Louie
- The Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Solen Gokhan
- Roslyn and Leslie Goldstein Laboratory for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, USA; Institute for Brain Disorders and Neural Regeneration, Albert Einstein College of Medicine, Bronx, NY, USA; The Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA; Rose F. Kennedy Center for Research on Intellectual and Developmental Disabilities, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Mark F Mehler
- Roslyn and Leslie Goldstein Laboratory for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, USA; Institute for Brain Disorders and Neural Regeneration, Albert Einstein College of Medicine, Bronx, NY, USA; The Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA; Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, USA; Rose F. Kennedy Center for Research on Intellectual and Developmental Disabilities, Albert Einstein College of Medicine, Bronx, NY, USA; Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA; Ruth L. and David S. Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, USA; Center for Epigenomics, Albert Einstein College of Medicine, Bronx, NY, USA; Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Aldrin E Molero
- Roslyn and Leslie Goldstein Laboratory for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, USA; Institute for Brain Disorders and Neural Regeneration, Albert Einstein College of Medicine, Bronx, NY, USA; The Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA; Rose F. Kennedy Center for Research on Intellectual and Developmental Disabilities, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
4
|
Chan TM, Chen JYR, Ho LI, Lin HP, Hsueh KW, Liu DD, Chen YH, Hsieh AC, Tsai NM, Hueng DY, Tsai ST, Chou PW, Lin SZ, Harn HJ. ADSC Therapy in Neurodegenerative Disorders. Cell Transplant 2014; 23:549-57. [PMID: 24816450 DOI: 10.3727/096368914x678445] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Neurodegenerative disorders, chronic diseases that can severely affect the patient's daily life, include amyotrophic lateral sclerosis, Parkinson's, Alzheimer's, and Huntington's diseases. However, these diseases all have the common characteristic that they are due to degenerative irreversibility, and thus no efficient drugs or therapy methods can mitigate symptoms completely. Stem cell therapy, such as adipose tissue-derived stem cells (ADSCs), is a promising treatment for incurable disorders. In this review, we summarized the previous studies using ADSCs to treat neurodegenerative disorders, as well as their therapeutic mechanisms. We also suggested possible expectations for future human clinical trials involving minimized intracerebroventricular combined with intravenous administration, using different cell lineages to finish complementary therapy as well as change the extracellular matrix to create a homing niche. Depending on successful experiments in relevant neurodegenerative disorders models, this could form the theoretical basis for future human clinical trials.
Collapse
Affiliation(s)
- Tzu-Min Chan
- Center for Neuropsychiatry, China Medical University Hospital, Taichung, Taiwan
- Everfront Biotech Inc., New Taipei City, Taiwan
| | | | - Li-Ing Ho
- Department of Respiratory Therapy, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hui-Ping Lin
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Kuo-Wei Hsueh
- Ph.D. Program for Aging, China Medical University, Taichung, Taiwan
| | - Demeral David Liu
- Department of Dentistry, China Medical University Beigang Hospital, Taiwan
- Department of Dentistry, School of Medicine, China Medical University and Hospital, Taiwan
| | - Yi-Hung Chen
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan
| | - An-Cheng Hsieh
- Center for Neuropsychiatry, China Medical University Hospital, Taichung, Taiwan
| | - Nu-Man Tsai
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
- Department of Pathology and Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Dueng-Yuan Hueng
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taiwan
| | - Sheng-Tzeng Tsai
- Department of Neurosurgery, Tzu Chi General Hospital/Tzu Chi University, Hualien, Taiwan
| | - Pei-Wen Chou
- Everfront Biotech Inc., New Taipei City, Taiwan
- Guang Li Biomedicine, Inc., New Taipei City, Taiwan
| | - Shinn-Zong Lin
- Center for Neuropsychiatry, China Medical University Hospital, Taichung, Taiwan
- Everfront Biotech Inc., New Taipei City, Taiwan
- Department of Dentistry, School of Medicine, China Medical University and Hospital, Taiwan
- Department of Neurosurgery, Tainan Municipal An-Nan Hospital, China Medical University, Tainan, Taiwan
- Graduate Institute of Immunology, China Medical University, Taichung, Taiwan
| | - Horng-Jyh Harn
- Department of Medicine, China Medical University, Taichung, Taiwan
- Department of Pathology, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|