1
|
Mendez DA, Soñanez-Organis JG, Yang X, Vazquez-Anaya G, Nishiyama A, Ortiz RM. Exogenous thyroxine increases cardiac GLUT4 translocation in insulin resistant OLETF rats. Mol Cell Endocrinol 2024; 590:112254. [PMID: 38677465 DOI: 10.1016/j.mce.2024.112254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/16/2024] [Accepted: 04/23/2024] [Indexed: 04/29/2024]
Abstract
During insulin resistance, the heart undergoes a metabolic shift in which fatty acids (FA) account for roughly about 99% of the ATP production. This metabolic shift is indicative of impaired glucose metabolism. A shift in FA metabolism with impaired glucose tolerance can increase reactive oxygen species (ROS), lipotoxicity, and mitochondrial dysfunction, ultimately leading to cardiomyopathy. Thyroid hormones (TH) may improve the glucose intolerance by increasing glucose reabsorption and metabolism in peripheral tissues, but little is known on its effects on cardiac tissue during insulin resistance. In the present study, insulin resistant Otsuka Long Evans Tokushima Fatty (OLETF) rats were used to assess the effects of exogenous thyroxine (T4) on glucose metabolism in cardiac tissue. Rats were assigned to four groups: (1) lean, Long Evans Tokushima Otsuka (LETO; n=6), (2) LETO + T4 (8 μg/100 g BM/d × 5 wks; n = 7), (3) untreated OLETF (n = 6), and (4) OLETF + T4 (8 μg/100 g BM/d × 5 wks; n = 7). T4 increased GLUT4 gene expression by 85% in OLETF and increased GLUT4 protein translocation to the membrane by 294%. Additionally, T4 increased p-AS160 by 285%, phosphofructokinase-1 (PFK-1) mRNA, the rate limiting step in glycolysis, by 98% and hexokinase II by 64% in OLETF. T4 decreased both CPT2 mRNA and protein expression in OLETF. The results suggest that exogenous T4 has the potential to increase glucose uptake and metabolism while simultaneously reducing fatty acid transport in the heart of insulin resistant rats. Thus, L-thyroxine may have therapeutic value to help correct the impaired substrate metabolism associated with diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Dora A Mendez
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, CA, USA.
| | - José G Soñanez-Organis
- Division of Science and Engineering, Department of Chemical Biological and Agropecuary Sciences, University of Sonora, Navojoa, SON, Mexico
| | - Xue Yang
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, CA, USA
| | - Guillermo Vazquez-Anaya
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, CA, USA
| | - Akira Nishiyama
- Department of Pharmacology, Kagawa University Medical School, Kagawa, Japan
| | - Rudy M Ortiz
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, CA, USA
| |
Collapse
|
2
|
Lkhagva B, Lee TW, Lin YK, Chen YC, Chung CC, Higa S, Chen YJ. Disturbed Cardiac Metabolism Triggers Atrial Arrhythmogenesis in Diabetes Mellitus: Energy Substrate Alternate as a Potential Therapeutic Intervention. Cells 2022; 11:cells11182915. [PMID: 36139490 PMCID: PMC9497243 DOI: 10.3390/cells11182915] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/10/2022] [Accepted: 09/16/2022] [Indexed: 11/20/2022] Open
Abstract
Atrial fibrillation (AF) is the most common type of sustained arrhythmia in diabetes mellitus (DM). Its morbidity and mortality rates are high, and its prevalence will increase as the population ages. Despite expanding knowledge on the pathophysiological mechanisms of AF, current pharmacological interventions remain unsatisfactory; therefore, novel findings on the underlying mechanism are required. A growing body of evidence suggests that an altered energy metabolism is closely related to atrial arrhythmogenesis, and this finding engenders novel insights into the pathogenesis of the pathophysiology of AF. In this review, we provide comprehensive information on the mechanistic insights into the cardiac energy metabolic changes, altered substrate oxidation rates, and mitochondrial dysfunctions involved in atrial arrhythmogenesis, and suggest a promising advanced new therapeutic approach to treat patients with AF.
Collapse
Affiliation(s)
- Baigalmaa Lkhagva
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Ting-Wei Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
| | - Yung-Kuo Lin
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Yao-Chang Chen
- Department of Biomedical Engineering, National Defense Medical Center, Taipei 11490, Taiwan
| | - Cheng-Chih Chung
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Satoshi Higa
- Cardiac Electrophysiology and Pacing Laboratory, Division of Cardiovascular Medicine, Makiminato Central Hospital, Okinawa 901-2131, Japan
| | - Yi-Jen Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Cardiovascular Research Center, Wan-Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
- Correspondence:
| |
Collapse
|
3
|
Dabravolski SA, Sadykhov NK, Kartuesov AG, Borisov EE, Sukhorukov VN, Orekhov AN. The Role of Mitochondrial Abnormalities in Diabetic Cardiomyopathy. Int J Mol Sci 2022; 23:ijms23147863. [PMID: 35887211 PMCID: PMC9321738 DOI: 10.3390/ijms23147863] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 02/06/2023] Open
Abstract
Diabetic cardiomyopathy (DCM) is defined as the presence in diabetic patients of abnormal cardiac structure and performance (such as left ventricular hypertrophy, fibrosis, and arrhythmia) in the absence of other cardiac risk factors (such as hypertension or coronary artery disease). Although the pathogenesis of DCM remains unclear currently, mitochondrial structural and functional dysfunctions are recognised as a central player in the DCM development. In this review, we focus on the role of mitochondrial dynamics, biogenesis and mitophagy, Ca2+ metabolism and bioenergetics in the DCM development and progression. Based on the crucial role of mitochondria in DCM, application of mitochondria-targeting therapies could be effective strategies to slow down the progression of the disease.
Collapse
Affiliation(s)
- Siarhei A. Dabravolski
- Department of Clinical Diagnostics, Vitebsk State Academy of Veterinary Medicine [UO VGAVM], 7/11 Dovatora Str., 210026 Vitebsk, Belarus
- Correspondence:
| | - Nikolay K. Sadykhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia; (N.K.S.); (A.G.K.)
| | - Andrey G. Kartuesov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia; (N.K.S.); (A.G.K.)
| | - Evgeny E. Borisov
- Petrovsky National Research Centre of Surgery, 2, Abrikosovsky Lane, 119991 Moscow, Russia; (E.E.B.); (V.N.S.)
| | - Vasily N. Sukhorukov
- Petrovsky National Research Centre of Surgery, 2, Abrikosovsky Lane, 119991 Moscow, Russia; (E.E.B.); (V.N.S.)
- Institute for Atherosclerosis Research, Osennyaya 4-1-207, 121609 Moscow, Russia;
| | - Alexander N. Orekhov
- Institute for Atherosclerosis Research, Osennyaya 4-1-207, 121609 Moscow, Russia;
| |
Collapse
|
4
|
Mitochondria-Mediated Cardiovascular Benefits of Sodium-Glucose Co-Transporter 2 Inhibitors. Int J Mol Sci 2022; 23:ijms23105371. [PMID: 35628174 PMCID: PMC9140946 DOI: 10.3390/ijms23105371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/04/2022] [Accepted: 05/10/2022] [Indexed: 11/23/2022] Open
Abstract
Several recent cardiovascular trials of SGLT 2 (sodium-glucose cotransporter 2) inhibitors revealed that they could reduce adverse cardiovascular events in patients with T2DM (type 2 diabetes mellitus). However, the exact molecular mechanism underlying the beneficial effects that SGLT2 inhibitors have on the cardiovascular system is still unknown. In this review, we focus on the molecular mechanisms of the mitochondria-mediated beneficial effects of SGLT2 inhibitors on the cardiovascular system. The application of SGLT2 inhibitors ameliorates mitochondrial dysfunction, dynamics, bioenergetics, and ion homeostasis and reduces the production of mitochondrial reactive oxygen species, which results in cardioprotective effects. Herein, we present a comprehensive overview of the impact of SGLT2 inhibitors on mitochondria and highlight the potential application of these medications to treat both T2DM and cardiovascular diseases.
Collapse
|
5
|
Yamamoto T, Sano M. Deranged Myocardial Fatty Acid Metabolism in Heart Failure. Int J Mol Sci 2022; 23:996. [PMID: 35055179 PMCID: PMC8779056 DOI: 10.3390/ijms23020996] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 01/27/2023] Open
Abstract
The heart requires fatty acids to maintain its activity. Various mechanisms regulate myocardial fatty acid metabolism, such as energy production using fatty acids as fuel, for which it is known that coordinated control of fatty acid uptake, β-oxidation, and mitochondrial oxidative phosphorylation steps are important for efficient adenosine triphosphate (ATP) production without unwanted side effects. The fatty acids taken up by cardiomyocytes are not only used as substrates for energy production but also for the synthesis of triglycerides and the replacement reaction of fatty acid chains in cell membrane phospholipids. Alterations in fatty acid metabolism affect the structure and function of the heart. Recently, breakthrough studies have focused on the key transcription factors that regulate fatty acid metabolism in cardiomyocytes and the signaling systems that modify their functions. In this article, we reviewed the latest research on the role of fatty acid metabolism in the pathogenesis of heart failure and provide an outlook on future challenges.
Collapse
Affiliation(s)
| | - Motoaki Sano
- Department of Cardiology, Keio University School of Medicine, Tokyo 160-8582, Japan;
| |
Collapse
|
6
|
Hsp22 Deficiency Induces Age-Dependent Cardiac Dilation and Dysfunction by Impairing Autophagy, Metabolism, and Oxidative Response. Antioxidants (Basel) 2021; 10:antiox10101550. [PMID: 34679684 PMCID: PMC8533440 DOI: 10.3390/antiox10101550] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/19/2021] [Accepted: 09/27/2021] [Indexed: 02/04/2023] Open
Abstract
Heat shock protein 22 (Hsp22) is a small heat shock protein predominantly expressed in skeletal and cardiac muscle. Previous studies indicate that Hsp22 plays a vital role in protecting the heart against cardiac stress. However, the essential role of Hsp22 in the heart under physiological conditions remains largely unknown. In this study, we used an Hsp22 knockout (KO) mouse model to determine whether loss of Hsp22 impairs cardiac growth and function with increasing age under physiological conditions. Cardiac structural and functional alterations at baseline were measured using echocardiography and invasive catheterization in Hsp22 KO mice during aging transition compared to their age-matched wild-type (WT) littermates. Our results showed that Hsp22 deletion induced progressive cardiac dilation along with declined function during the aging transition. Mechanistically, the loss of Hsp22 impaired BCL-2-associated athanogene 3 (BAG3) expression and its associated cardiac autophagy, undermined cardiac energy metabolism homeostasis and increased oxidative damage. This study showed that Hsp22 played an essential role in the non-stressed heart during the early stage of aging, which may bring new insight into understanding the pathogenesis of age-related dilated cardiomyopathy.
Collapse
|
7
|
Sun X, Alford J, Qiu H. Structural and Functional Remodeling of Mitochondria in Cardiac Diseases. Int J Mol Sci 2021; 22:ijms22084167. [PMID: 33920673 PMCID: PMC8072869 DOI: 10.3390/ijms22084167] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 12/31/2022] Open
Abstract
Mitochondria undergo structural and functional remodeling to meet the cell demand in response to the intracellular and extracellular stimulations, playing an essential role in maintaining normal cellular function. Merging evidence demonstrated that dysregulation of mitochondrial remodeling is a fundamental driving force of complex human diseases, highlighting its crucial pathophysiological roles and therapeutic potential. In this review, we outlined the progress of the molecular basis of mitochondrial structural and functional remodeling and their regulatory network. In particular, we summarized the latest evidence of the fundamental association of impaired mitochondrial remodeling in developing diverse cardiac diseases and the underlying mechanisms. We also explored the therapeutic potential related to mitochondrial remodeling and future research direction. This updated information would improve our knowledge of mitochondrial biology and cardiac diseases’ pathogenesis, which would inspire new potential strategies for treating these diseases by targeting mitochondria remodeling.
Collapse
Affiliation(s)
| | | | - Hongyu Qiu
- Correspondence: ; Tel.: +404-413-3371; Fax: +404-413-9566
| |
Collapse
|
8
|
Karwi QG, Ho KL, Pherwani S, Ketema EB, Sun QY, Lopaschuk GD. Concurrent diabetes and heart failure: interplay and novel therapeutic approaches. Cardiovasc Res 2021; 118:686-715. [PMID: 33783483 DOI: 10.1093/cvr/cvab120] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
Diabetes mellitus increases the risk of developing heart failure, and the co-existence of both diseases worsens cardiovascular outcomes, hospitalization and the progression of heart failure. Despite current advancements on therapeutic strategies to manage hyperglycemia, the likelihood of developing diabetes-induced heart failure is still significant, especially with the accelerating global prevalence of diabetes and an ageing population. This raises the likelihood of other contributing mechanisms beyond hyperglycemia in predisposing diabetic patients to cardiovascular disease risk. There has been considerable interest in understanding the alterations in cardiac structure and function in the diabetic patients, collectively termed as "diabetic cardiomyopathy". However, the factors that contribute to the development of diabetic cardiomyopathies is not fully understood. This review summarizes the main characteristics of diabetic cardiomyopathies, and the basic mechanisms that contribute to its occurrence. This includes perturbations in insulin resistance, fuel preference, reactive oxygen species generation, inflammation, cell death pathways, neurohormonal mechanisms, advanced glycated end-products accumulation, lipotoxicity, glucotoxicity, and posttranslational modifications in the heart of the diabetic. This review also discusses the impact of antihyperglycemic therapies on the development of heart failure, as well as how current heart failure therapies influence glycemic control in diabetic patients. We also highlight the current knowledge gaps in understanding how diabetes induces heart failure.
Collapse
Affiliation(s)
- Qutuba G Karwi
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Kim L Ho
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Simran Pherwani
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Ezra B Ketema
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Qiu Yu Sun
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Gary D Lopaschuk
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|