1
|
Kluz N, Kraj L, Chmiel P, Przybyłkowski AM, Wyrwicz L, Stec R, Szymański Ł. Correlation Between Antihypertensive Drugs and Survival Among Patients with Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2024; 16:3945. [PMID: 39682132 DOI: 10.3390/cancers16233945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/22/2024] [Accepted: 11/23/2024] [Indexed: 12/18/2024] Open
Abstract
There is a growing prevalence of pancreatic cancer, accompanied by accelerated disease progression and diminished survival rates. Radical resection with clear margins remains the sole viable option for achieving a long-term cure in patients. In cases of advanced, unresectable, and metastatic disease, chemotherapy based on leucovorin, 5-fluorouracil, irinotecan, oxaliplatin, gemcitabine, or nab-paclitaxel represents the cornerstone of the treatment. Considering the limited treatment options available following initial therapy, the strategy of repurposing commonly prescribed drugs such as antihypertensives into anti-cancer therapies in palliative treatment represents a promising avenue for enhancing survival in patients with pancreatic ductal adenocarcinoma. The repurposing of existing drugs is typically a more cost-effective and expedient strategy than the development of new ones. The potential for antihypertensive drugs to be employed as adjunctive therapies could facilitate a more comprehensive treatment approach by targeting multiple pathways involved in cancer progression and acquired resistance to treatment. Antihypertensive medications, particularly those belonging to the pharmacological classes of angiotensin-converting enzyme inhibitors, angiotensin II receptor blockers, and calcium channel blockers, are commonly prescribed and have well-established safety profiles, particularly among patients with pancreatic cancer who are affected by multiple comorbidities. Therefore, we emphasize the preclinical and clinical evidence supporting the use of antihypertensive agents in the treatment of pancreatic cancer, emphasizing their beneficial chemosensitizing effects.
Collapse
Affiliation(s)
- Natalia Kluz
- Department of Gastroenterology and Internal Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Leszek Kraj
- Department of Oncology, Medical University of Warsaw, 02-091 Warsaw, Poland
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Garbatka, Poland
| | - Paulina Chmiel
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Garbatka, Poland
| | - Adam M Przybyłkowski
- Department of Gastroenterology and Internal Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Lucjan Wyrwicz
- Department of Oncology and Radiotherapy, Maria Sklodowska-Curie National Cancer Research Institute, 02-781 Warsaw, Poland
| | - Rafał Stec
- Department of Oncology, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Łukasz Szymański
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Garbatka, Poland
| |
Collapse
|
2
|
Farina A, Viggiani V, Cortese F, Moretti M, Tartaglione S, Angeloni A, Anastasi E. Combined PIVKA II and Vimentin-Guided EMT Tracking in Pancreatic Adenocarcinoma Combined Biomarker-Guided EMT Tracking in PDAC. Cancers (Basel) 2024; 16:2362. [PMID: 39001424 PMCID: PMC11240554 DOI: 10.3390/cancers16132362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/26/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
"Background/Aim": the current inability to diagnose Pancreatic Cancer Adenocarcinoma (PDAC) at an early stage strongly influences therapeutic strategies. Protein Induced by Vitamin K Absence (PIVKA II) showed an accurate diagnostic performance for PDAC. Since circulating PIVKA II has been recently associated with pancreatic origin cells with Vimentin, an epithelial-to-mesenchymal transition (EMT) early activation marker, the aim of this study was to investigate in vivo the combination between the two proteins. "Materials and Methods": we assayed the presence of PIVKA II and Vimentin proteins by using different diagnostic methods. A total of 20 PDAC patients and 10 healthy donors were tested by Western Blot analysis; 74 PDAC patient and 46 healthy donors were assayed by ECLIA and Elisa. "Results": Western Blot analysis showed the concomitant expression of PIVKA II and Vimentin in PDAC patient sera. Immunometric assay performed on a larger cohort of patients demonstrated that 72% of PIVKA II-positive PDAC patients were Vimentin-positive. Additionally, in a group of PDAC patients with PIVKA II levels ≥2070 ng/mL, the percentage of Vimentin-positive subjects reached 84%. "Conclusion": the association between PIVKA II protein and the EMT suggests that this molecule could be considered a marker of the acquisition of an aggressive phenotype.
Collapse
Affiliation(s)
- Antonella Farina
- Department of Experimental Medicine, "La Sapienza" University of Rome, V. Le Regina Elena 324, 00161 Rome, Italy
| | - Valentina Viggiani
- Department of Experimental Medicine, "La Sapienza" University of Rome, V. Le Regina Elena 324, 00161 Rome, Italy
| | - Francesca Cortese
- Department of Experimental Medicine, "La Sapienza" University of Rome, V. Le Regina Elena 324, 00161 Rome, Italy
| | - Marta Moretti
- Department of Experimental Medicine, "La Sapienza" University of Rome, V. Le Regina Elena 324, 00161 Rome, Italy
| | - Sara Tartaglione
- Department of Experimental Medicine, "La Sapienza" University of Rome, V. Le Regina Elena 324, 00161 Rome, Italy
| | - Antonio Angeloni
- Department of Experimental Medicine, "La Sapienza" University of Rome, V. Le Regina Elena 324, 00161 Rome, Italy
| | - Emanuela Anastasi
- Department of Experimental Medicine, "La Sapienza" University of Rome, V. Le Regina Elena 324, 00161 Rome, Italy
| |
Collapse
|
3
|
Tangsiri M, Hheidari A, Liaghat M, Razlansari M, Ebrahimi N, Akbari A, Varnosfaderani SMN, Maleki-Sheikhabadi F, Norouzi A, Bakhtiyari M, Zalpoor H, Nabi-Afjadi M, Rahdar A. Promising applications of nanotechnology in inhibiting chemo-resistance in solid tumors by targeting epithelial-mesenchymal transition (EMT). Biomed Pharmacother 2024; 170:115973. [PMID: 38064969 DOI: 10.1016/j.biopha.2023.115973] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/25/2023] [Accepted: 11/29/2023] [Indexed: 01/10/2024] Open
Abstract
The resistance of cancer cells to chemotherapy, also known as chemo-resistance, poses a significant obstacle to cancer treatment and can ultimately result in patient mortality. Epithelial-mesenchymal transition (EMT) is one of the many factors and processes responsible for chemo-resistance. Studies have shown that targeting EMT can help overcome chemo-resistance, and nanotechnology and nanomedicine have emerged as promising approaches to achieve this goal. This article discusses the potential of nanotechnology in inhibiting EMT and proposes a viable strategy to combat chemo-resistance in various solid tumors, including breast cancer, lung cancer, pancreatic cancer, glioblastoma, ovarian cancer, gastric cancer, and hepatocellular carcinoma. While nanotechnology has shown promising results in targeting EMT, further research is necessary to explore its full potential in overcoming chemo-resistance and discovering more effective methods in the future.
Collapse
Affiliation(s)
- Mona Tangsiri
- Department of Medical Entomology and Vector Control, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Hheidari
- Department of Mechanical Engineering, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mahsa Liaghat
- Department of Medical Laboratory sciences, Faculty of Medical Sciences, Kazerun Branch, Islamic Azad University, Kazerun, Iran; Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Mahtab Razlansari
- Faculty of Mathematics and Natural Sciences, Tübingen University, Tübingen 72076, Germany
| | - Narges Ebrahimi
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Abdullatif Akbari
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran; Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Fahimeh Maleki-Sheikhabadi
- Department of Hematology and Blood Banking, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Norouzi
- Dental Research Center, Faculty of Dentistry, Mazandaran University of Medical Sciences, Sari, Iran
| | - Maryam Bakhtiyari
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran; Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Hamidreza Zalpoor
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran; Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol 98613-35856, Iran.
| |
Collapse
|
4
|
Ungkulpasvich U, Hatakeyama H, Hirotsu T, di Luccio E. Pancreatic Cancer and Detection Methods. Biomedicines 2023; 11:2557. [PMID: 37760999 PMCID: PMC10526344 DOI: 10.3390/biomedicines11092557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/05/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
The pancreas is a vital organ with exocrine and endocrine functions. Pancreatitis is an inflammation of the pancreas caused by alcohol consumption and gallstones. This condition can heighten the risk of pancreatic cancer (PC), a challenging disease with a high mortality rate. Genetic and epigenetic factors contribute significantly to PC development, along with other risk factors. Early detection is crucial for improving PC outcomes. Diagnostic methods, including imagining modalities and tissue biopsy, aid in the detection and analysis of PC. In contrast, liquid biopsy (LB) shows promise in early tumor detection by assessing biomarkers in bodily fluids. Understanding the function of the pancreas, associated diseases, risk factors, and available diagnostic methods is essential for effective management and early PC detection. The current clinical examination of PC is challenging due to its asymptomatic early stages and limitations of highly precise diagnostics. Screening is recommended for high-risk populations and individuals with potential benign tumors. Among various PC screening methods, the N-NOSE plus pancreas test stands out with its high AUC of 0.865. Compared to other commercial products, the N-NOSE plus pancreas test offers a cost-effective solution for early detection. However, additional diagnostic tests are required for confirmation. Further research, validation, and the development of non-invasive screening methods and standardized scoring systems are crucial to enhance PC detection and improve patient outcomes. This review outlines the context of pancreatic cancer and the challenges for early detection.
Collapse
Affiliation(s)
| | | | | | - Eric di Luccio
- Hirotsu Bioscience Inc., 22F The New Otani Garden Court, 4-1 Kioi-cho, Chiyoda-ku, Tokyo 102-0094, Japan; (U.U.); (H.H.); (T.H.)
| |
Collapse
|
5
|
Chebaro Z, Abdallah R, Badran A, Hamade K, Hijazi A, Maresca M, Mesmar JE, Baydoun E. Study of the antioxidant and anti-pancreatic cancer activities of Anchusa strigosa aqueous extracts obtained by maceration and ultrasonic extraction techniques. Front Pharmacol 2023; 14:1201969. [PMID: 37593172 PMCID: PMC10427766 DOI: 10.3389/fphar.2023.1201969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 07/18/2023] [Indexed: 08/19/2023] Open
Abstract
Pancreatic cancer is a highly aggressive malignancy and a leading cause of cancer-related deaths worldwide. Moreover, the incidence and mortality rates for pancreatic cancer are projected to keep increasing. A major challenge in the treatment of pancreatic cancer is the lack of effective screening approaches, which contributes to its poor prognosis, indicating the need for new treatment regimens and alternative therapies, such as herbal medicine. The medicinal plant A. strigosa, which is widely distributed in the Eastern Mediterranean region, is a short prickly plant from the Boraginaceae family that has been widely used in traditional medicine for treating various diseases. Nevertheless, its effect on human pancreatic cancer remains poorly investigated. In the present study, we screened the phytochemical content of Anchusa strigosa aqueous extracts obtained by maceration and ultrasound-assisted methods (ASM and ASU, respectively) and evaluated their antioxidant effects. We also investigated their anticancer effects and possible underlying mechanisms. The results show that both extracts were rich in bioactive molecules, with slight differences in their composition. Both extracts exhibited remarkable antioxidant potential and potent radical-scavenging activity in vitro. Additionally, non-cytotoxic concentrations of both extracts attenuated cell proliferation in a time- and concentration-dependent manner, which was associated with a decrease in the proliferation marker Ki67 and an induction of the intrinsic apoptotic pathway. Furthermore, the extracts increased the aggregation of pancreatic cancer cells and reduced their migratory potential, with a concomitant downregulation of integrin β1. Finally, we showed that the ASM extract caused a significant decrease in the levels of COX-2, an enzyme that has been linked to inflammation, carcinogenesis, tumor progression, and metastasis. Taken together, our findings provide evidence that A. strigosa extracts, particularly the extract obtained using the maceration method, have a potential anticancer effect and may represent a new resource for the design of novel drugs against pancreatic cancer.
Collapse
Affiliation(s)
- Ziad Chebaro
- Platforme de Recherche et D’analyse en Sciences de L’environnement (EDST-PRASE), Beirut, Lebanon
| | - Rola Abdallah
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Adnan Badran
- Department of Nutrition, University of Petra, Amman, Jordan
| | - Kamar Hamade
- UMRT INRE 1158 BioEcoAgro, Laboratorie BIOPI, University of Picardie Jules Verne, Amiens, France
| | - Akram Hijazi
- Platforme de Recherche et D’analyse en Sciences de L’environnement (EDST-PRASE), Beirut, Lebanon
| | - Marc Maresca
- Aix-Marseille Univ, CNRS, Centrale Marseille, iSM2, Marseille, France
| | | | - Elias Baydoun
- Department of Biology, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
6
|
Nam MW, Lee HK, Kim CW, Choi Y, Ahn D, Go RE, Choi KC. Effects of CCN6 overexpression on the cell motility and activation of p38/bone morphogenetic protein signaling pathways in pancreatic cancer cells. Biomed Pharmacother 2023; 163:114780. [PMID: 37105075 DOI: 10.1016/j.biopha.2023.114780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/17/2023] [Accepted: 04/23/2023] [Indexed: 04/29/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive cancer types that is highly resistant to conventional treatments, such as chemotherapy and radiotherapy. As the demand for more effective therapeutics for PDAC treatment increases, various approaches have been studied to develop novel targets. The cellular communication network (CCN) family is a matricellular protein that modulates various cellular functions, including cell adhesion, proliferation, migration, and invasiveness. Despite this, little is known about the role of CCN6 in PDAC. The current study investigated the role of CCN6 in PDAC by generating CCN6-overexpressing PANC-1 cells (PANC-1-CCN6) by infecting lentivirus particles containing CCN6. PANC-1-CCN6 induces cell viability and tumorigenesis than PANC-1 cells with empty vector (control). The PANC-1-CCN6 formed more colonies, and the size of spheroids increased compared to the control. The upregulation of CCN6 enhances the expression of bone morphogenetic proteins (BMPs) genes and the upregulation of p38 mitogen-activated protein kinases (MAPKs). In PANC-1-CCN6 cells, the levels of N-cadherin, VEGF, and Snail expression were higher than the control, while E-cadherin expression was lower, which is associated with upregulation of epithelial-to-mesenchymal transition (EMT). Consistent with the changes in EMT-related proteins in PANC-1-CCN6, the migratory ability and invasiveness were enhanced in PANC-1-CCN6. Xenografted PANC-1-CCN6 in immunocompromised mice exhibited accelerated tumor growth than the control group. In immunohistochemistry (IHC), the PANC-1-CCN6 xenografted tumor showed an increased positive area of PCNA and Ki-67 than the control. These results suggest that CCN6 plays a tumorigenic role and induces the metastatic potential by the p38 MAPK and BMPs signaling pathways. Although the role of CCN6 has been introduced as an antitumor factor, there was evidence of CCN6 acting to cause tumorigenesis and invasion in PANC-1.
Collapse
Affiliation(s)
- Min-Woo Nam
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, the Republic of Korea
| | - Hong Kyu Lee
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, the Republic of Korea
| | - Cho-Won Kim
- Division of Endocrinology, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115, USA
| | - Youngdong Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, the Republic of Korea
| | - Dohee Ahn
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, the Republic of Korea
| | - Ryeo-Eun Go
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, the Republic of Korea
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, the Republic of Korea.
| |
Collapse
|
7
|
Bhoopathi P, Mannangatti P, Das SK, Fisher PB, Emdad L. Chemoresistance in pancreatic ductal adenocarcinoma: Overcoming resistance to therapy. Adv Cancer Res 2023; 159:285-341. [PMID: 37268399 DOI: 10.1016/bs.acr.2023.02.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC), a prominent cause of cancer deaths worldwide, is a highly aggressive cancer most frequently detected at an advanced stage that limits treatment options to systemic chemotherapy, which has provided only marginal positive clinical outcomes. More than 90% of patients with PDAC die within a year of being diagnosed. PDAC is increasing at a rate of 0.5-1.0% per year, and it is expected to be the second leading cause of cancer-related mortality by 2030. The resistance of tumor cells to chemotherapeutic drugs, which can be innate or acquired, is the primary factor contributing to the ineffectiveness of cancer treatments. Although many PDAC patients initially responds to standard of care (SOC) drugs they soon develop resistance caused partly by the substantial cellular heterogeneity seen in PDAC tissue and the tumor microenvironment (TME), which are considered key factors contributing to resistance to therapy. A deeper understanding of molecular mechanisms involved in PDAC progression and metastasis development, and the interplay of the TME in all these processes is essential to better comprehend the etiology and pathobiology of chemoresistance observed in PDAC. Recent research has recognized new therapeutic targets ushering in the development of innovative combinatorial therapies as well as enhancing our comprehension of several different cell death pathways. These approaches facilitate the lowering of the therapeutic threshold; however, the possibility of subsequent resistance development still remains a key issue and concern. Discoveries, that can target PDAC resistance, either alone or in combination, have the potential to serve as the foundation for future treatments that are effective without posing undue health risks. In this chapter, we discuss potential causes of PDAC chemoresistance and approaches for combating chemoresistance by targeting different pathways and different cellular functions associated with and mediating resistance.
Collapse
Affiliation(s)
- Praveen Bhoopathi
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Richmond, VA, United States
| | - Padmanabhan Mannangatti
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Richmond, VA, United States
| | - Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| |
Collapse
|
8
|
Ganji C, Farran B. Current clinical trials for epigenetic targets and therapeutic inhibitors for pancreatic cancer therapy. Drug Discov Today 2022; 27:1404-1410. [PMID: 34952224 DOI: 10.1016/j.drudis.2021.12.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/08/2021] [Accepted: 12/17/2021] [Indexed: 02/06/2023]
Abstract
Pancreatic cancer (PC) is an aggressive disease characterized by high mortality. Diagnosis at advanced stage, resistance, and recurrence are major hurdles for PC therapy and contribute to poor survival rate. Mutations in tumor-promoting kinases and epigenetic dysregulation in tumor suppressor genes are hallmarks of PC and can be used for diagnosis and therapy. In this review, we highlight dysregulated genes associated with epigenetic mechanisms, including DNA methylation and histone acetylation, involved in PC progression and resistance. We also explore epigenetic drugs currently in clinical trials. Combining epigenetic drugs and targeted therapies might represent a promising approach for PC.
Collapse
Affiliation(s)
| | - Batoul Farran
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
9
|
Gulla A, Andriusaityte U, Zdanys GT, Babonaite E, Strupas K, Kelly H. The Impact of Epithelial-Mesenchymal Transition and Metformin on Pancreatic Cancer Chemoresistance: A Pathway towards Individualized Therapy. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:467. [PMID: 35454306 PMCID: PMC9032206 DOI: 10.3390/medicina58040467] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/14/2022] [Accepted: 03/21/2022] [Indexed: 12/26/2022]
Abstract
Globally, pancreatic ductal adenocarcinoma remains among the most aggressive forms of neoplastic diseases, having a dismal prognostic outcome. Recent findings elucidated that epithelial-mesenchymal transition (EMT) can play an important role in pancreatic tumorigenic processes, as it contributes to the manifestation of malignant proliferative masses, which impede adequate drug delivery. An organized literature search with PubMed, Scopus, Microsoft Academic and the Cochrane library was performed for articles published in English from 2011 to 2021 to review and summarize the latest updates and knowledge on the current understanding of EMT and its implications for tumorigenesis and chemoresistance. Furthermore, in the present paper, we investigate the recent findings on metformin as a possible neoadjuvant chemotherapy agent, which affects EMT progression and potentially provides superior oncological outcomes for PDAC patients. Our main conclusions indicate that selectively suppressing EMT in pancreatic cancer cells has a promising therapeutic utility by selectively targeting the chemotherapy-resistant sub-population of cancer stem cells, inhibiting tumor growth via EMT pathways and thereby improving remission in PDAC patients. Moreover, given that TGF-β1-driven EMT generates the migration of tumor-initiating cells by directly linking the acquisition of abnormal cellular motility with the maintenance of tumor initiating potency, the chemoprevention of TGF-β1-induced EMT may have promising clinical applications in the therapeutic management of PDAC outcomes.
Collapse
Affiliation(s)
- Aiste Gulla
- Institute of Clinical Medicine, Clinic of Gastroenterology, Surgery, Nephrology, Faculty of Medicine, Vilnius University, Santariskiu Str. 2, 08661 Vilnius, Lithuania;
- Center of Visceral Medicine and Translational Research, Department of Surgery, Georgetown University Hospital, 3800 Reservoir Road Northwest BLES Building 1st. Floor, Washington, DC 20007, USA
| | - Urte Andriusaityte
- Faculty of Medicine, Vilnius University, M. K. Čiurlionio Str. 21, 03101 Vilnius, Lithuania; (U.A.); (G.T.Z.); (E.B.)
| | - Gabrielius Tomas Zdanys
- Faculty of Medicine, Vilnius University, M. K. Čiurlionio Str. 21, 03101 Vilnius, Lithuania; (U.A.); (G.T.Z.); (E.B.)
| | - Elena Babonaite
- Faculty of Medicine, Vilnius University, M. K. Čiurlionio Str. 21, 03101 Vilnius, Lithuania; (U.A.); (G.T.Z.); (E.B.)
| | - Kestutis Strupas
- Institute of Clinical Medicine, Clinic of Gastroenterology, Surgery, Nephrology, Faculty of Medicine, Vilnius University, Santariskiu Str. 2, 08661 Vilnius, Lithuania;
| | - Helena Kelly
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, 123 St. Stephen’s Green, D02 YN77 Dublin, Ireland;
| |
Collapse
|