1
|
van Agtmaal JL, van Hoogstraten SWG, Arts JJC. Prosthetic Joint Infection Research Models in NZW Rabbits: Opportunities for Standardization-A Systematic Review. J Funct Biomater 2024; 15:307. [PMID: 39452605 PMCID: PMC11508679 DOI: 10.3390/jfb15100307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024] Open
Abstract
Prosthetic joint infection (PJI) is a major complication following total arthroplasty. Rising antimicrobial resistance (AMR) to antibiotics will further increase therapeutic insufficiency. New antibacterial technologies are being developed to prevent PJI. In vivo models are still needed to bridge the translational gap to clinical implementation. Though rabbit models have been used most frequently, there is no consensus about methodology and measured outcomes. The PubMed, Scopus, and EMBASE databases were searched for literature on PJI in rabbit models. Data extraction included bias control, experimental design, and outcome measures of the NZW rabbit models in the articles. A total of 60 articles were included in this systematic literature review. The articles were divided into six groups based on the PJI intervention: no intervention used (21%), revision surgery (14%), prevention with only antibiotics (21%), prevention with surface modifications (7%), prevention with coatings (23%), and others (14%). Despite the current availability of guidelines and recommendations regarding experimental design, bias control, and outcome measures, many articles neglect to report on these matters. Ultimately, this analysis aims to assist researchers in determining suitable clinically relevant methodologies and outcome measures for in vivo PJI models using NZW rabbits to test new antimicrobial technologies.
Collapse
Affiliation(s)
- Julia L. van Agtmaal
- Laboratory for Experimental Orthopaedics, Department of Orthopaedic Surgery, Care and Public Health Research Institute (CAPHRI), Maastricht University Medical Centre, 6229 Maastricht, The Netherlands; (J.L.v.A.); (S.W.G.v.H.)
| | - Sanne W. G. van Hoogstraten
- Laboratory for Experimental Orthopaedics, Department of Orthopaedic Surgery, Care and Public Health Research Institute (CAPHRI), Maastricht University Medical Centre, 6229 Maastricht, The Netherlands; (J.L.v.A.); (S.W.G.v.H.)
| | - Jacobus J. C. Arts
- Laboratory for Experimental Orthopaedics, Department of Orthopaedic Surgery, Care and Public Health Research Institute (CAPHRI), Maastricht University Medical Centre, 6229 Maastricht, The Netherlands; (J.L.v.A.); (S.W.G.v.H.)
- Department of Biomedical Engineering, Orthopaedic Biomechanics, Eindhoven University of Technology, 5612 Eindhoven, The Netherlands
| |
Collapse
|
2
|
Wang T, Yang C, Li G, Wang Y, Ji B, Chen Y, Zhou H, Cao L. Enhanced antibiofilm potential of low-intensity pulsed ultrasound combined with 0.35% povidone-iodine in a rat model of periprosthetic joint infection. Bone Joint Res 2024; 13:332-341. [PMID: 38964744 PMCID: PMC11223899 DOI: 10.1302/2046-3758.137.bjr-2023-0339.r1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/06/2024] Open
Abstract
Aims Although low-intensity pulsed ultrasound (LIPUS) combined with disinfectants has been shown to effectively eliminate portions of biofilm in vitro, its efficacy in vivo remains uncertain. Our objective was to assess the antibiofilm potential and safety of LIPUS combined with 0.35% povidone-iodine (PI) in a rat debridement, antibiotics, and implant retention (DAIR) model of periprosthetic joint infection (PJI). Methods A total of 56 male Sprague-Dawley rats were established in acute PJI models by intra-articular injection of bacteria. The rats were divided into four groups: a Control group, a 0.35% PI group, a LIPUS and saline group, and a LIPUS and 0.35% PI group. All rats underwent DAIR, except for Control, which underwent a sham procedure. General status, serum biochemical markers, weightbearing analysis, radiographs, micro-CT analysis, scanning electron microscopy of the prostheses, microbiological analysis, macroscope, and histopathology evaluation were performed 14 days after DAIR. Results The group with LIPUS and 0.35% PI exhibited decreased levels of serum biochemical markers, improved weightbearing scores, reduced reactive bone changes, absence of viable bacteria, and decreased inflammation compared to the Control group. Despite the greater antibiofilm activity observed in the PI group compared to the LIPUS and saline group, none of the monotherapies were successful in preventing reactive bone changes or eliminating the infection. Conclusion In the rat model of PJI treated with DAIR, LIPUS combined with 0.35% PI demonstrated stronger antibiofilm potential than monotherapy, without impairing any local soft-tissue.
Collapse
Affiliation(s)
- Tianxing Wang
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang, China
- Laboratory of High Incidence Disease Research in Xingjiang, Xinjang Medical University, Ministry of Education, Ürümqi, xinjiang, China
- Xinjiang Clinical Research Center for Orthopedics, Ürümqi, xinjiang, China
| | - Chenchen Yang
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang, China
- Laboratory of High Incidence Disease Research in Xingjiang, Xinjang Medical University, Ministry of Education, Ürümqi, xinjiang, China
- Xinjiang Clinical Research Center for Orthopedics, Ürümqi, xinjiang, China
| | - Guoqing Li
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang, China
| | - Yang Wang
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang, China
| | - Baochao Ji
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang, China
| | - Yongjie Chen
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang, China
| | - Haikang Zhou
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang, China
| | - Li Cao
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang, China
- Laboratory of High Incidence Disease Research in Xingjiang, Xinjang Medical University, Ministry of Education, Ürümqi, xinjiang, China
- Xinjiang Clinical Research Center for Orthopedics, Ürümqi, xinjiang, China
| |
Collapse
|
3
|
Constantinescu S, Niculescu AG, Hudiță A, Grumezescu V, Rădulescu D, Bîrcă AC, Dorcioman G, Gherasim O, Holban AM, Gălățeanu B, Vasile BȘ, Grumezescu AM, Bolocan A, Rădulescu R. Nanostructured Coatings Based on Graphene Oxide for the Management of Periprosthetic Infections. Int J Mol Sci 2024; 25:2389. [PMID: 38397066 PMCID: PMC10889398 DOI: 10.3390/ijms25042389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
To modulate the bioactivity and boost the therapeutic outcome of implantable metallic devices, biodegradable coatings based on polylactide (PLA) and graphene oxide nanosheets (nGOs) loaded with Zinforo™ (Zin) have been proposed in this study as innovative alternatives for the local management of biofilm-associated periprosthetic infections. Using a modified Hummers protocol, high-purity and ultra-thin nGOs have been obtained, as evidenced by X-ray diffraction (XRD) and transmission electron microscopy (TEM) investigations. The matrix-assisted pulsed laser evaporation (MAPLE) technique has been successfully employed to obtain the PLA-nGO-Zin coatings. The stoichiometric and uniform transfer was revealed by infrared microscopy (IRM) and scanning electron microscopy (SEM) studies. In vitro evaluation, performed on fresh blood samples, has shown the excellent hemocompatibility of PLA-nGO-Zin-coated samples (with a hemolytic index of 1.15%), together with their anti-inflammatory ability. Moreover, the PLA-nGO-Zin coatings significantly inhibited the development of mature bacterial biofilms, inducing important anti-biofilm efficiency in the as-coated samples. The herein-reported results evidence the promising potential of PLA-nGO-Zin coatings to be used for the biocompatible and antimicrobial surface modification of metallic implants.
Collapse
Affiliation(s)
- Sorin Constantinescu
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Street, 050474 Bucharest, Romania; (S.C.); (D.R.); (A.B.); (R.R.)
| | - Adelina-Gabriela Niculescu
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 90-92 Panduri, 050663 Bucharest, Romania; (A.-G.N.); (A.H.); (A.M.H.)
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 060042 Bucharest, Romania; (A.C.B.); (B.Ș.V.)
| | - Ariana Hudiță
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 90-92 Panduri, 050663 Bucharest, Romania; (A.-G.N.); (A.H.); (A.M.H.)
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei Street, 050095 Bucharest, Romania;
| | - Valentina Grumezescu
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Romania; (V.G.); (G.D.); (O.G.)
| | - Dragoș Rădulescu
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Street, 050474 Bucharest, Romania; (S.C.); (D.R.); (A.B.); (R.R.)
| | - Alexandra Cătălina Bîrcă
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 060042 Bucharest, Romania; (A.C.B.); (B.Ș.V.)
| | - Gabriela Dorcioman
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Romania; (V.G.); (G.D.); (O.G.)
| | - Oana Gherasim
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Romania; (V.G.); (G.D.); (O.G.)
| | - Alina Maria Holban
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 90-92 Panduri, 050663 Bucharest, Romania; (A.-G.N.); (A.H.); (A.M.H.)
- Microbiology and Immunology Department, Faculty of Biology, University of Bucharest, 1-3 Portocalelor Lane, 77206 Bucharest, Romania
| | - Bianca Gălățeanu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei Street, 050095 Bucharest, Romania;
| | - Bogdan Ștefan Vasile
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 060042 Bucharest, Romania; (A.C.B.); (B.Ș.V.)
| | - Alexandru Mihai Grumezescu
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 90-92 Panduri, 050663 Bucharest, Romania; (A.-G.N.); (A.H.); (A.M.H.)
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 060042 Bucharest, Romania; (A.C.B.); (B.Ș.V.)
| | - Alexandra Bolocan
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Street, 050474 Bucharest, Romania; (S.C.); (D.R.); (A.B.); (R.R.)
| | - Radu Rădulescu
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Street, 050474 Bucharest, Romania; (S.C.); (D.R.); (A.B.); (R.R.)
| |
Collapse
|
4
|
Sangaletti R, Zanna L, Akkaya M, Sandiford N, Ekhtiari S, Gehrke T, Citak M. Periprosthetic joint infection in patients with multiple arthroplasties. Bone Joint J 2023; 105-B:294-300. [PMID: 36854322 DOI: 10.1302/0301-620x.105b3.bjj-2022-0800.r1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Despite numerous studies focusing on periprosthetic joint infections (PJIs), there are no robust data on the risk factors and timing of metachronous infections. Metachronous PJIs are PJIs that can arise in the same or other artificial joints after a period of time, in patients who have previously had PJI. Between January 2010 and December 2018, 661 patients with multiple joint prostheses in situ were treated for PJI at our institution. Of these, 73 patients (11%) developed a metachronous PJI (periprosthetic infection in patients who have previously had PJI in another joint, after a lag period) after a mean time interval of 49.5 months (SD 30.24; 7 to 82.9). To identify patient-related risk factors for a metachronous PJI, the following parameters were analyzed: sex; age; BMI; and pre-existing comorbidity. Metachronous infections were divided into three groups: Group 1, metachronous infections in ipsilateral joints; Group 2, metachronous infections of the contralateral lower limb; and Group 3, metachronous infections of the lower and upper limb. We identified a total of 73 metachronous PJIs: 32 PJIs in Group 1, 38 in Group 2, and one in Group 3. The rate of metachronous infection was 11% (73 out 661 cases) at a mean of four years following first infection. Diabetes mellitus incidence was found significantly more frequently in the metachronous infection group than in non-metachronous infection group. The rate of infection in Group 1 (21.1%) was significantly higher (p = 0.049) compared to Groups 2 (6.2%) and 3 (3%). The time interval of metachronous infection development was shorter in adjacent joint infections. Concordance between the bacterium of the first PJI and that of the metachronous PJI in Group 1 (21/34) was significantly higher than Group 2 (13/38; p = 0.001). The findings of this study suggest that metachronous PJI occurs in more than one in ten patients with an index PJI. Female patients, diabetic patients, and patients with a polymicrobial index PJI are at significantly higher risk for developing a metachronous PJI. Furthermore, metachronous PJIs are significantly more likely to occur in an adjacent joint (e.g. ipsilateral hip and knee) as opposed to a more remote site (i.e. contralateral or upper vs lower limb). Additionally, adjacent joint PJIs occur significantly earlier and are more likely to be caused by the same bacteria as the index PJI.
Collapse
Affiliation(s)
- Rudy Sangaletti
- Department of Orthopaedic Surgery, HELIOS ENDO-Klinik Hamburg, Hamburg, Germany.,Sezione di Chirurgia Protesica ad Indirizzo Robotico - Unità di Traumatologia dello Sport, U.O.C Ortopedia e Traumatologia, Fondazione Poliambulanza, Brescia, Italy
| | - Luigi Zanna
- Department of Orthopaedic Surgery, HELIOS ENDO-Klinik Hamburg, Hamburg, Germany
| | - Mustafa Akkaya
- Department of Orthopaedic Surgery, HELIOS ENDO-Klinik Hamburg, Hamburg, Germany.,Department of Orthopaedics and Traumatology, Ankara Yildirim Beyazit University, Ankara, Turkey
| | - Nemandra Sandiford
- Joint Reconstruction Unit, Southland Hospital, Invercargill, New Zealand
| | - Seper Ekhtiari
- Department of Orthopaedic Surgery, HELIOS ENDO-Klinik Hamburg, Hamburg, Germany
| | - Thorsten Gehrke
- Department of Orthopaedic Surgery, HELIOS ENDO-Klinik Hamburg, Hamburg, Germany
| | - Mustafa Citak
- Department of Orthopaedic Surgery, HELIOS ENDO-Klinik Hamburg, Hamburg, Germany
| |
Collapse
|
5
|
Poilvache H, Van Bambeke F, Cornu O. Development of an innovative in vivo model of PJI treated with DAIR. Front Med (Lausanne) 2022; 9:984814. [PMID: 36314026 PMCID: PMC9606572 DOI: 10.3389/fmed.2022.984814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction Prosthetic Joint Infection (PJI) are catastrophic complications of joint replacement. Debridement, implant retention, and antibiotic therapy (DAIR) is the usual strategy in acute infections but fails in 45% of MRSA infections. We describe the development of a model of infected arthroplasty in rabbits, treated with debridement and a course of vancomycin with clinically relevant dosage. Materials and methods A total of 15 rabbits were assigned to three groups: vancomycin pharmacokinetics (A), infection (B), and DAIR (C). All groups received a tibial arthroplasty using a Ti-6Al-4V implant. Groups B and C were infected per-operatively with a 5.5 log10 MRSA inoculum. After 1 week, groups C infected knees were surgically debrided. Groups A and C received 1 week of vancomycin. Pharmacokinetic profiles were obtained in group A following 1st and 5th injections. Animals were euthanized 2 weeks after the arthroplasty. Implants and tissue samples were processed for bacterial counts and histology. Results Average vancomycin AUC0–12 h were 213.0 mg*h/L (1st injection) and 207.8 mg*h/L (5th injection), reaching clinical targets. All inoculated animals were infected. CFUs were reproducible in groups B. A sharp decrease in CFU was observed in groups C. Serum markers and leukocytes counts increased significantly in infected groups. Conclusion We developed a reproducible rabbit model of PJI treated with DAIR, using vancomycin at clinically relevant concentrations.
Collapse
Affiliation(s)
- Hervé Poilvache
- Neuro Musculo-Skeletal Laboratory, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium,Cellular and Molecular Pharmacology Laboratory, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium,Orthopedic Surgery and Traumatology Department, Cliniques universitaires Saint-Luc, Brussels, Belgium,*Correspondence: Hervé Poilvache,
| | - Françoise Van Bambeke
- Cellular and Molecular Pharmacology Laboratory, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Olivier Cornu
- Neuro Musculo-Skeletal Laboratory, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium,Orthopedic Surgery and Traumatology Department, Cliniques universitaires Saint-Luc, Brussels, Belgium
| |
Collapse
|
6
|
Li J, Cheung WH, Chow SK, Ip M, Leung SYS, Wong RMY. Current therapeutic interventions combating biofilm-related infections in orthopaedics : a systematic review of in vivo animal studies. Bone Joint Res 2022; 11:700-714. [PMID: 36214177 PMCID: PMC9582863 DOI: 10.1302/2046-3758.1110.bjr-2021-0495.r3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Aims Biofilm-related infection is a major complication that occurs in orthopaedic surgery. Various treatments are available but efficacy to eradicate infections varies significantly. A systematic review was performed to evaluate therapeutic interventions combating biofilm-related infections on in vivo animal models. Methods Literature research was performed on PubMed and Embase databases. Keywords used for search criteria were “bone AND biofilm”. Information on the species of the animal model, bacterial strain, evaluation of biofilm and bone infection, complications, key findings on observations, prevention, and treatment of biofilm were extracted. Results A total of 43 studies were included. Animal models used included fracture-related infections (ten studies), periprosthetic joint infections (five studies), spinal infections (three studies), other implant-associated infections, and osteomyelitis. The most common bacteria were Staphylococcus species. Biofilm was most often observed with scanning electron microscopy. The natural history of biofilm revealed that the process of bacteria attachment, proliferation, maturation, and dispersal would take 14 days. For systemic mono-antibiotic therapy, only two of six studies using vancomycin reported significant biofilm reduction, and none reported eradication. Ten studies showed that combined systemic and topical antibiotics are needed to achieve higher biofilm reduction or eradication, and the effect is decreased with delayed treatment. Overall, 13 studies showed promising therapeutic potential with surface coating and antibiotic loading techniques. Conclusion Combined topical and systemic application of antimicrobial agents effectively reduces biofilm at early stages. Future studies with sustained release of antimicrobial and biofilm-dispersing agents tailored to specific pathogens are warranted to achieve biofilm eradication. Cite this article: Bone Joint Res 2022;11(10):700–714.
Collapse
Affiliation(s)
- Jie Li
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Wing-Hoi Cheung
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Simon K. Chow
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Margaret Ip
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong, China
| | - Sharon Y. S. Leung
- School of Pharmacy, The Chinese University of Hong Kong, Hong Kong, China
| | - Ronald M. Y. Wong
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, China, Ronald Man Yeung Wong. E-mail:
| |
Collapse
|
7
|
Huang DB, Brothers KM, Mandell JB, Taguchi M, Alexander PG, Parker DM, Shinabarger D, Pillar C, Morrissey I, Hawser S, Ghahramani P, Dobbins D, Pachuda N, Montelaro R, Steckbeck JD, Urish KL. Engineered peptide PLG0206 overcomes limitations of a challenging antimicrobial drug class. PLoS One 2022; 17:e0274815. [PMID: 36112657 PMCID: PMC9481017 DOI: 10.1371/journal.pone.0274815] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/02/2022] [Indexed: 11/24/2022] Open
Abstract
The absence of novel antibiotics for drug-resistant and biofilm-associated infections is a global public health crisis. Antimicrobial peptides explored to address this need have encountered significant development challenges associated with size, toxicity, safety profile, and pharmacokinetics. We designed PLG0206, an engineered antimicrobial peptide, to address these limitations. PLG0206 has broad-spectrum activity against >1,200 multidrug-resistant (MDR) ESKAPEE clinical isolates, is rapidly bactericidal, and displays potent anti-biofilm activity against diverse MDR pathogens. PLG0206 displays activity in diverse animal infection models following both systemic (urinary tract infection) and local (prosthetic joint infection) administration. These findings support continuing clinical development of PLG0206 and validate use of rational design for peptide therapeutics to overcome limitations associated with difficult-to-drug pharmaceutical targets.
Collapse
Affiliation(s)
- David B. Huang
- Peptilogics, Pittsburgh, Pennsylvania, United States of America
- * E-mail: (DBH); (KLU)
| | - Kimberly M. Brothers
- Department of Orthopedic Surgery, Arthritis and Arthroplasty Design Group, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Jonathan B. Mandell
- Department of Orthopedic Surgery, Arthritis and Arthroplasty Design Group, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Masashi Taguchi
- Department of Orthopedic Surgery, Arthritis and Arthroplasty Design Group, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Orthopedic Surgery, Tokyo Women’s Medical University, Medical Center East, Tokyo, Japan
| | - Peter G. Alexander
- Department of Orthopedic Surgery, Arthritis and Arthroplasty Design Group, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Dana M. Parker
- Department of Orthopedic Surgery, Arthritis and Arthroplasty Design Group, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | | | - Chris Pillar
- Micromyx, Kalamazoo, Michigan, United States of America
| | | | | | | | - Despina Dobbins
- Peptilogics, Pittsburgh, Pennsylvania, United States of America
| | | | - Ronald Montelaro
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | | | - Kenneth L. Urish
- Department of Orthopedic Surgery, Arthritis and Arthroplasty Design Group, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- The Bone and Joint Center, Magee Women’s Hospital of the University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
- Department of Bioengineering, and Clinical and Translational Science, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail: (DBH); (KLU)
| |
Collapse
|
8
|
Mian HM, Lyons JG, Perrin J, Froehle AW, Krishnamurthy AB. A review of current practices in periprosthetic joint infection debridement and revision arthroplasty. ARTHROPLASTY 2022; 4:31. [PMID: 36045436 PMCID: PMC9434893 DOI: 10.1186/s42836-022-00136-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Periprosthetic joint infection remains a significant challenge for arthroplasty surgeons globally. Over the last few decades, there has been much advancement in terms of treatment and diagnosis, however, the fight rages on. As management of periprosthetic joint infections continues to evolve, it is critical to reflect back on current debridement practices to establish common ground as well as identify areas for future research and improvement. BODY: In order to understand the debridement techniques of periprosthetic joint infections, one must also understand how to diagnose a periprosthetic joint infection. Multiple definitions have been elucidated over the years with no single consensus established but rather sets of criteria. Once a diagnosis has been established the decision of debridement method becomes whether to proceed with single vs two-stage revision based on the probability of infection as well as individual patient factors. After much study, two-stage revision has emerged as the gold standard in the management of periprosthetic infections but single-stage remains prominent with further and further research. CONCLUSION Despite decades of data, there is no single treatment algorithm for periprosthetic joint infections and subsequent debridement technique. Our review touches on the goals of debridement while providing a perspective as to diagnosis and the particulars of how intraoperative factors such as intraarticular irrigation can play pivotal roles in infection eradication. By providing a perspective on current debridement practices, we hope to encourage future study and debate on how to address periprosthetic joint infections best.
Collapse
Affiliation(s)
- Humza M Mian
- Department of Orthopaedic Surgery, Wright State University Boonshoft School of Medicine, 30 E. Apple St. Suite #2200, Dayton, OH, 45409, USA.
| | - Joseph G Lyons
- Department of Orthopaedic Surgery, Wright State University Boonshoft School of Medicine, 30 E. Apple St. Suite #2200, Dayton, OH, 45409, USA
| | - Joshua Perrin
- Wright State University Boonshoft School of Medicine, Wright State Physicians Bldg, 725 University Blvd., Dayton, OH, 45435, USA
| | - Andrew W Froehle
- Department of Orthopaedic Surgery, Wright State University Boonshoft School of Medicine, 30 E. Apple St. Suite #2200, Dayton, OH, 45409, USA
- School of Nursing, Kinesiology and Health, Wright State University, 3640 Colonel Glenn Hwy., Dayton, OH, 45435, USA
| | - Anil B Krishnamurthy
- Department of Orthopaedic Surgery, Wright State University Boonshoft School of Medicine, 30 E. Apple St. Suite #2200, Dayton, OH, 45409, USA
| |
Collapse
|
9
|
Otero JE, Brown TS, Courtney PM, Kamath AF, Nandi S, Fehring KA. What's New in Musculoskeletal Infection. J Bone Joint Surg Am 2022; 104:1228-1235. [PMID: 35700085 DOI: 10.2106/jbjs.22.00183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Jesse E Otero
- OrthoCarolina Hip and Knee Center, Atrium Health Musculoskeletal Institute, Charlotte, North Carolina
| | - Timothy S Brown
- Department of Orthopedics and Sports, Houston Methodist Hospital, Houston, Texas
| | | | - Atul F Kamath
- Orthopaedic & Rheumatologic Institute, Cleveland Clinic, Cleveland, Ohio
| | - Sumon Nandi
- University of Maryland School of Medicine, Baltimore, Maryland
| | - Keith A Fehring
- OrthoCarolina Hip and Knee Center, Atrium Health Musculoskeletal Institute, Charlotte, North Carolina
| |
Collapse
|
10
|
Xu T, Zeng Y, Yang X, Liu G, Lv T, Yang H, Jiang F, Chen Y. Application of 68Ga-citrate PET/CT for differentiating periprosthetic joint infection from aseptic loosening after joint replacement surgery. Bone Joint Res 2022; 11:398-408. [PMID: 35731211 PMCID: PMC9233412 DOI: 10.1302/2046-3758.116.bjr-2021-0464.r1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
AIMS We aimed to evaluate the utility of 68Ga-citrate positron emission tomography (PET)/CT in the differentiation of periprosthetic joint infection (PJI) and aseptic loosening (AL), and compare it with 99mTc-methylene bisphosphonates (99mTc-MDP) bone scan. METHODS We studied 39 patients with suspected PJI or AL. These patients underwent 68Ga-citrate PET/CT, 99mTc-MDP three-phase bone scan and single-photon emission CT (SPECT)/CT. PET/CT was performed at ten minutes and 60 minutes after injection, respectively. Images were evaluated by three nuclear medicine doctors based on: 1) visual analysis of the three methods based on tracer uptake model, and PET images attenuation-corrected with CT and those not attenuation-corrected with CT were analyzed, respectively; and 2) semi-quantitative analysis of PET/CT: maximum standardized uptake value (SUVmax) of lesions, SUVmax of the lesion/SUVmean of the normal bone, and SUVmax of the lesion/SUVmean of the normal muscle. The final diagnosis was based on the clinical and intraoperative findings, and histopathological and microbiological examinations. RESULTS Overall, 23 and 16 patients were diagnosed with PJI and AL, respectively. The sensitivity and specificity of three-phase bone scan and SPECT/CT were 100% and 62.5%, 82.6%, and 100%, respectively. Attenuation correction (AC) at 60 minutes and non-AC at 60 minutes of PET/CT had the same highest sensitivity and specificity (91.3% and 100%), and AC at 60 minutes combined with SPECT/CT could improve the diagnostic efficiency (sensitivity = 95.7%). Diagnostic efficacy of the SUVmax was low (area under the curve (AUC) of ten minutes and 60 minutes was 0.814 and 0.806, respectively), and SUVmax of the lesion/SUVmean of the normal bone at 60 minutes was the best semi-quantitative parameter (AUC = 0.969). CONCLUSION 68Ga-citrate showed the potential to differentiate PJI from AL, and visual analysis based on uptake pattern of tracer was reliable. The visual analysis method of AC at 60 minutes, combined with 99mTc-MDP SPECT/CT, could improve the sensitivity from 91.3% to 95.7%. In addition, a major limitation of our study was that it had a limited sample size, and more detailed studies with a larger sample size are warranted. Cite this article: Bone Joint Res 2022;11(6):398-408.
Collapse
Affiliation(s)
- Tingting Xu
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China.,Institute of Nuclear Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Yalan Zeng
- Department of Orthopedics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiao Yang
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China.,Institute of Nuclear Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Guangfu Liu
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China.,Institute of Nuclear Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Taiyong Lv
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China.,Institute of Nuclear Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Hongbin Yang
- Department of Orthopedics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Fei Jiang
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China.,Institute of Nuclear Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Yue Chen
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China.,Institute of Nuclear Medicine, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
11
|
Huang D, Pachuda N, Sauer JM, Dobbins D, Steckbeck J. The Engineered Antibiotic Peptide PLG0206 Eliminates Biofilms and Is a Potential Treatment for Periprosthetic Joint Infections. Antibiotics (Basel) 2021; 11:41. [PMID: 35052918 PMCID: PMC8772972 DOI: 10.3390/antibiotics11010041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/13/2021] [Accepted: 12/27/2021] [Indexed: 11/17/2022] Open
Abstract
Antimicrobial peptides (AMPs) have recently gained attention for their potential to treat diseases related to bacterial and viral infections, as many traditional antimicrobial drugs have reduced efficacy in treating these infections due to the increased prevalence of drug-resistant pathogens. PLG0206, an engineered cationic antibiotic peptide that is 24 residues long, has been designed to address some limitations of other natural AMPs, such as toxicity and limited activity due to pH and ion concentrations. Nonclinical studies have shown that PLG0206 is highly selective for targeting bacterial cells and is not toxic to human blood cells. Antibiofilm experiments demonstrated that PLG0206 is effective at reducing both biotic and abiotic biofilm burdens following direct biofilm contact. PLG0206 has rapid and broad-spectrum activity against both Gram-positive and Gram-negative bacteria that are implicated as etiologic agents in periprosthetic joint infections, including multidrug-resistant ESKAPE pathogens and colistin-resistant isolates. A recent first-in-human study demonstrated that PLG0206 is well tolerated and safe as an intravenous infusion in healthy volunteers. Studies are planned to determine the efficacy of PLG0206 in patients for the treatment of periprosthetic joint infections. This review summarizes the chemistry, pharmacology, and microbiology of PLG0206 and explores its current preclinical, clinical, and regulatory status.
Collapse
Affiliation(s)
- David Huang
- Peptilogics, 2730 Sidney Street, Suite 300, Pittsburgh, PA 15203, USA; (N.P.); (J.M.S.); (D.D.); (J.S.)
| | | | | | | | | |
Collapse
|