1
|
Almeida‐Pinto J, Lagarto MR, Lavrador P, Mano JF, Gaspar VM. Cell Surface Engineering Tools for Programming Living Assemblies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304040. [PMID: 37823678 PMCID: PMC10700290 DOI: 10.1002/advs.202304040] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/10/2023] [Indexed: 10/13/2023]
Abstract
Breakthroughs in precision cell surface engineering tools are supporting the rapid development of programmable living assemblies with valuable features for tackling complex biological problems. Herein, the authors overview the most recent technological advances in chemically- and biologically-driven toolboxes for engineering mammalian cell surfaces and triggering their assembly into living architectures. A particular focus is given to surface engineering technologies for enabling biomimetic cell-cell social interactions and multicellular cell-sorting events. Further advancements in cell surface modification technologies may expand the currently available bioengineering toolset and unlock a new generation of personalized cell therapeutics with clinically relevant biofunctionalities. The combination of state-of-the-art cell surface modifications with advanced biofabrication technologies is envisioned to contribute toward generating living materials with increasing tissue/organ-mimetic bioactivities and therapeutic potential.
Collapse
Affiliation(s)
- José Almeida‐Pinto
- Department of ChemistryCICECO‐Aveiro Institute of Materials University of Aveiro Campus Universitário de SantiagoAveiro3810‐193Portugal
| | - Matilde R. Lagarto
- Department of ChemistryCICECO‐Aveiro Institute of Materials University of Aveiro Campus Universitário de SantiagoAveiro3810‐193Portugal
| | - Pedro Lavrador
- Department of ChemistryCICECO‐Aveiro Institute of Materials University of Aveiro Campus Universitário de SantiagoAveiro3810‐193Portugal
| | - João F. Mano
- Department of ChemistryCICECO‐Aveiro Institute of Materials University of Aveiro Campus Universitário de SantiagoAveiro3810‐193Portugal
| | - Vítor M. Gaspar
- Department of ChemistryCICECO‐Aveiro Institute of Materials University of Aveiro Campus Universitário de SantiagoAveiro3810‐193Portugal
| |
Collapse
|
2
|
Hartnett P, Boyle LA, O'Driscoll K. Rearing in female-only groups and dietary mineral supplementation improves sow welfare in the early parities and lifetime performance. Transl Anim Sci 2020; 4:txaa176. [PMID: 33367220 PMCID: PMC7745001 DOI: 10.1093/tas/txaa176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/22/2020] [Indexed: 11/29/2022] Open
Abstract
The lifetime performance of commercial sows relies on longevity, which is dependent on good health and reproductive performance. However, there is a high rate of wastage of sows in the early parities, which is influenced by the way they are managed and housed during rearing. This study investigated the carry-over effect of gilt rearing strategy on the measures of welfare and performance. Eighty sows were reared using a two by two factorial design: rearing group composition [GC; female-only (FEM) or mixed-sex (MIX) from weaning] with or without supplementary minerals (CON = control diet; SUPP = control + Cu, Zn, and Mn) from 5 wk into the finisher stage. Once served, gilts were managed in a dynamic group gestation pen and fed a standard gestating sow diet. Locomotory ability was scored (0 to 5) and salivary cortisol measured five times during the first gestation, and human approach tests were carried out on day 108. Hooves were scored for injuries and legs for bursas at day 70 of the first gestation, at first weaning, and at the second farrowing. Sow behavior in the hoof scoring crate (movement, vocalization, and handling ease) was also recorded. The number of piglets born alive and dead during the first five parities was recorded as was the performance of the first litter to finish. Data were analyzed using general or generalized linear mixed models, as appropriate, using SAS (v 9.4). There was no effect (P > 0.05) of rearing treatment on locomotory ability, bursa score, the total number of piglets born, or on offspring growth. However, there was an interaction between GC and supplementary minerals (P < 0.05) on salivary cortisol levels with MIX × SUPP sows having the highest levels. Total hoof scores and heel erosion scores were higher in sows reared in MIX groups (P < 0.01), and CON sows tended to have higher horizontal crack scores (P = 0.06). Sows from MIX kicked more at weaning than FEM (P < 0.05) and tended to be more fearful in the forced human approach test (P = 0.1) where they are scored on their reaction to being approached. They also had more stillborn piglets across all five parities than FEM (P < 0.05). Overall, rearing replacement sows in FEM groups and dietary mineral supplementation had minimal but beneficial effects on their subsequent welfare and performance.
Collapse
Affiliation(s)
- Phoebe Hartnett
- Pig Development Department, Animal & Grassland Research and Innovation Centre, Teagasc, Moorepark, Fermoy, Co. Cork, Ireland.,Department of Biological Sciences, University of Limerick, Limerick, Ireland
| | - Laura A Boyle
- Pig Development Department, Animal & Grassland Research and Innovation Centre, Teagasc, Moorepark, Fermoy, Co. Cork, Ireland
| | - Keelin O'Driscoll
- Pig Development Department, Animal & Grassland Research and Innovation Centre, Teagasc, Moorepark, Fermoy, Co. Cork, Ireland
| |
Collapse
|
3
|
Howard TA, Murray IR, Amin AK, Simpson AH, Hall AC. Damage control articular surgery: Maintaining chondrocyte health and minimising iatrogenic injury. Injury 2020; 51 Suppl 2:S83-S89. [PMID: 31685207 DOI: 10.1016/j.injury.2019.10.072] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 10/22/2019] [Indexed: 02/02/2023]
Abstract
Articular cartilage has limited intrinsic regenerative potential. The maintenance of healthy articular cartilage is essential to prevent joint degeneration and the morbidity associated with arthritis. In this review, we outline the structure and function of healthy articular cartilage. We summarise some of the recent literature outlining the influence of surgical factors on chondrocyte health. These factors include mechanical injury from instrumentation and drilling, drying, and the influence of irrigation fluids, antimicrobial solutions and local anaesthetics. We demonstrate that there is scope for improving cartilage viability at the time of surgery if simple chondroprotective measures are routinely adopted.
Collapse
Affiliation(s)
- Thomas A Howard
- Department of Trauma and Orthopaedics, Royal Infirmary of Edinburgh, 49 Little France Crescent, EH16 4SA, UK
| | - Iain R Murray
- Department of Trauma and Orthopaedics, Royal Infirmary of Edinburgh, 49 Little France Crescent, EH16 4SA, UK; The University of Edinburgh, UK
| | - Anish K Amin
- Department of Trauma and Orthopaedics, Royal Infirmary of Edinburgh, 49 Little France Crescent, EH16 4SA, UK; The University of Edinburgh, UK
| | - A Hamish Simpson
- Department of Trauma and Orthopaedics, Royal Infirmary of Edinburgh, 49 Little France Crescent, EH16 4SA, UK; The University of Edinburgh, UK.
| | | |
Collapse
|
4
|
Wilkinson JM. The hip arthroplasty journey: where are we going and who is paying the bill? Bone Joint Res 2019; 8:224-225. [PMID: 31346448 PMCID: PMC6609864 DOI: 10.1302/2046-3758.86.bjr-2019-0109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
5
|
Lin YC, Hall AC, Simpson AHRW. A novel organ culture model of a joint for the evaluation of static and dynamic load on articular cartilage. Bone Joint Res 2018; 7:205-212. [PMID: 29922437 PMCID: PMC5987700 DOI: 10.1302/2046-3758.73.bjr-2017-0320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVES The purpose of this study was to create a novel ex vivo organ culture model for evaluating the effects of static and dynamic load on cartilage. METHODS The metatarsophalangeal joints of 12 fresh cadaveric bovine feet were skinned and dissected aseptically, and cultured for up to four weeks. Dynamic movement was applied using a custom-made machine on six joints, with the others cultured under static conditions. Chondrocyte viability and matrix glycosaminoglycan (GAG) content were evaluated by the cell viability probes, 5-chloromethylfluorescein diacetate (CMFDA) and propidium iodide (PI), and dimethylmethylene blue (DMMB) assay, respectively. RESULTS Chondrocyte viability in the static model decreased significantly from 89.9% (sd 2.5%) (Day 0) to 66.5% (sd 13.1%) (Day 28), 94.7% (sd 1.1%) to 80. 9% (sd 5.8%) and 80.1% (sd 3.0%) to 46.9% (sd 8.5%) in the superficial quarter, central half and deep quarter of cartilage, respectively (p < 0.001 in each zone; one-way analysis of variance). The GAG content decreased significantly from 6.01 μg/mg (sd 0.06) (Day 0) to 4.71 μg/mg (sd 0.06) (Day 28) (p < 0.001; one-way analysis of variance). However, with dynamic movement, chondrocyte viability and GAG content were maintained at the Day 0 level over the four-week period without a significant change (chondrocyte viability: 92.0% (sd 4.0%) (Day 0) to 89.9% (sd 0.2%) (Day 28), 93.1% (sd 1.5%) to 93.8% (sd 0.9%) and 85.6% (sd 0.8%) to 84.0% (sd 2.9%) in the three corresponding zones; GAG content: 6.18 μg/mg (sd 0.15) (Day 0) to 6.06 μg/mg (sd 0.09) (Day 28)). CONCLUSION Dynamic joint movement maintained chondrocyte viability and cartilage GAG content. This long-term whole joint culture model could be of value in providing a more natural and controlled platform for investigating the influence of joint movement on articular cartilage, and for evaluating novel therapies for cartilage repair.Cite this article: Y-C. Lin, A. C. Hall, A. H. R. W. Simpson. A novel organ culture model of a joint for the evaluation of static and dynamic load on articular cartilage. Bone Joint Res 2018;7:205-212. DOI: 10.1302/2046-3758.73.BJR-2017-0320.
Collapse
Affiliation(s)
- Y-C. Lin
- Department of Orthopaedic Surgery, University of Edinburgh, The Chancellor’s Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK and Taipei Medical University-Shuang Ho Hospital, Zhonghe District, New Taipei City, 23561, Taiwan
| | - A. C. Hall
- Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - A. H. R. W. Simpson
- Department of Orthopaedics, University of Edinburgh, 51 Little France Crescent, Old Dalkeith Road, Edinburgh, EH16 4SA, UK
| |
Collapse
|
6
|
Dias IR, Viegas CA, Carvalho PP. Large Animal Models for Osteochondral Regeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1059:441-501. [PMID: 29736586 DOI: 10.1007/978-3-319-76735-2_20] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Namely, in the last two decades, large animal models - small ruminants (sheep and goats), pigs, dogs and horses - have been used to study the physiopathology and to develop new therapeutic procedures to treat human clinical osteoarthritis. For that purpose, cartilage and/or osteochondral defects are generally performed in the stifle joint of selected large animal models at the condylar and trochlear femoral areas where spontaneous regeneration should be excluded. Experimental animal care and protection legislation and guideline documents of the US Food and Drug Administration, the American Society for Testing and Materials and the International Cartilage Repair Society should be followed, and also the specificities of the animal species used for these studies must be taken into account, such as the cartilage thickness of the selected defect localization, the defined cartilage critical size defect and the joint anatomy in view of the post-operative techniques to be performed to evaluate the chondral/osteochondral repair. In particular, in the articular cartilage regeneration and repair studies with animal models, the subchondral bone plate should always be taken into consideration. Pilot studies for chondral and osteochondral bone tissue engineering could apply short observational periods for evaluation of the cartilage regeneration up to 12 weeks post-operatively, but generally a 6- to 12-month follow-up period is used for these types of studies.
Collapse
Affiliation(s)
- Isabel R Dias
- Department of Veterinary Sciences, Agricultural and Veterinary Sciences School, University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal. .,3B's Research Group - Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark - Parque da Ciência e Tecnologia, Zona Industrial da Gandra, Barco - Guimarães, 4805-017, Portugal. .,Department of Veterinary Medicine, ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Carlos A Viegas
- Department of Veterinary Sciences, Agricultural and Veterinary Sciences School, University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal.,3B's Research Group - Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark - Parque da Ciência e Tecnologia, Zona Industrial da Gandra, Barco - Guimarães, 4805-017, Portugal.,Department of Veterinary Medicine, ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Pedro P Carvalho
- Department of Veterinary Medicine, University School Vasco da Gama, Av. José R. Sousa Fernandes 197, Lordemão, Coimbra, 3020-210, Portugal.,CIVG - Vasco da Gama Research Center, University School Vasco da Gama, Coimbra, Portugal
| |
Collapse
|